Abstract

We report ultra-broadband supercontinuum generation in high-confinement Si3N4 integrated optical waveguides. The spectrum extends through the visible (from 470 nm) to the infrared spectral range (2130 nm) comprising a spectral bandwidth wider than 495 THz, which is the widest supercontinuum spectrum generated on a chip.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths

Marco A. G. Porcel, Florian Schepers, Jörn P. Epping, Tim Hellwig, Marcel Hoekman, René G. Heideman, Peter J. M. van der Slot, Chris J. Lee, Robert Schmidt, Rudolf Bratschitsch, Carsten Fallnich, and Klaus-J. Boller
Opt. Express 25(2) 1542-1554 (2017)

Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides

Alexander Klenner, Aline S. Mayer, Adrea R. Johnson, Kevin Luke, Michael R. E. Lamont, Yoshitomo Okawachi, Michal Lipson, Alexander L. Gaeta, and Ursula Keller
Opt. Express 24(10) 11043-11053 (2016)

On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses

Lin Zhang, Yan Yan, Yang Yue, Qiang Lin, Oskar Painter, Raymond G. Beausoleil, and Alan E. Willner
Opt. Express 19(12) 11584-11590 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. S. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596 (2006).
    [Crossref] [PubMed]
  2. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32(4), 391 (2007).
    [Crossref] [PubMed]
  3. M. Wulf, D. M. Beggs, N. Rotenberg, and L. Kuipers, “Unravelling nonlinear spectral evolution using nanoscale photonic near-field point-to-point measurements,” Nano Lett. 13(12), 5858–5865 (2013).
    [Crossref] [PubMed]
  4. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644 (2008).
    [Crossref] [PubMed]
  5. H. Kano and H.-O. Hamaguchi, “Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,” Opt. Lett. 28(23), 2360 (2003).
    [Crossref] [PubMed]
  6. J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277 (2009).
    [Crossref]
  7. F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
    [Crossref] [PubMed]
  8. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415 (2000).
    [Crossref]
  9. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 µ m,” Opt. Express 20(22), 24218–24225 (2012).
    [Crossref] [PubMed]
  10. J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  11. M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560 nm,” Opt. Lett. 38(22), 4679–4682 (2013).
    [Crossref] [PubMed]
  12. X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
    [Crossref]
  13. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36(19), 3912–3914 (2011).
    [Crossref] [PubMed]
  14. B. Rangarajan, A. Y. Kovalgin, K. Wörhoff, and J. Schmitz, “Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics,” Opt. Lett. 38(6), 941–943 (2013).
    [Crossref] [PubMed]
  15. F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39(12), 3623–3626 (2014).
    [Crossref] [PubMed]
  16. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
    [Crossref] [PubMed]
  17. D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39(4), 1046–1048 (2014).
    [Crossref] [PubMed]
  18. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18(2), 923–930 (2010).
    [Crossref] [PubMed]
  19. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
    [Crossref] [PubMed]
  20. J. M. ChavezBoggio, D. Bodenmüller, T. Fremberg, R. Haynes, M. M. Roth, R. Eisermann, M. Lisker, L. Zim-mermann, and M. Böhm, “Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization,” J. Opt. Soc. Am. B 31(11), 2846 (2014).
    [Crossref]
  21. H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40(10), 2177–2180 (2015).
    [Crossref]
  22. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [Crossref] [PubMed]
  23. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-c. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref]
  24. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  25. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
    [Crossref] [PubMed]
  26. E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
    [Crossref] [PubMed]
  27. L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express 19(12), 11584–11590 (2011).
    [Crossref] [PubMed]
  28. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20(25), 27661–27669 (2012).
    [Crossref] [PubMed]
  29. J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23(2), 642 (2015).
    [Crossref] [PubMed]
  30. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Techn. 4(2), 189–207 (2015).
  31. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [Crossref]
  32. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25(10), 1645–1654 (2008).
    [Crossref]
  33. G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  34. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref] [PubMed]
  35. J. P. Epping, M. Kues, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “Integrated CARS source based on seeded four-wave mixing in silicon nitride,” Opt. Express 21(26), 32123–32129 (2013).
    [Crossref]

2015 (5)

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Techn. 4(2), 189–207 (2015).

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23(2), 642 (2015).
[Crossref] [PubMed]

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40(10), 2177–2180 (2015).
[Crossref]

2014 (4)

2013 (5)

2012 (4)

2011 (3)

2010 (1)

2009 (2)

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[Crossref] [PubMed]

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277 (2009).
[Crossref]

2008 (4)

2007 (1)

2006 (2)

2003 (1)

2000 (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415 (2000).
[Crossref]

Adam, T. N.

Agrawal, G. P.

Agrawal, G.P.

G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Alic, N.

Austin, D.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Babic, F.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Baets, R.

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40(10), 2177–2180 (2015).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Barton, J. S.

Baudisch, M.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Bauters, J. F.

Beausoleil, R. G.

Beggs, D. M.

M. Wulf, D. M. Beggs, N. Rotenberg, and L. Kuipers, “Unravelling nonlinear spectral evolution using nanoscale photonic near-field point-to-point measurements,” Nano Lett. 13(12), 5858–5865 (2013).
[Crossref] [PubMed]

Biegert, J.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Birks, T.

Birks, T. A.

Blumenthal, D. J.

Bodenmüller, D.

Böhm, M.

Boller, K.-J.

Bookey, H.

Bowers, J. E.

Bradley, J. D. B.

Brainis, E.

Brasch, V.

Breuer, E.

Brown, S. W.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277 (2009).
[Crossref]

Buczynski, R.

Burla, M.

Byer, R. L.

ChavezBoggio, J. M.

Chu, S.

Clemmen, S.

Coen, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39(12), 3623–3626 (2014).
[Crossref] [PubMed]

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Coolbaugh, D. D.

Couairon, A.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Dai, D.

Dave, U.

Dhakal, A.

Dianov, E. M.

Diddams, S. A.

D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39(4), 1046–1048 (2014).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Duchesne, D.

Dudley, J. M.

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644 (2008).
[Crossref] [PubMed]

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Eggleton, B. J.

Eisermann, R.

Epping, J. P.

Faccio, D.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Fainman, Y.

Fallahkhair, A. B.

Fallnich, C.

Fejer, M. M.

Fermann, M. E.

Ferrera, M.

Finger, M. A.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Foster, M. A.

Fremberg, T.

Gaeta, A. L.

Genty, G.

Gondarenko, A.

Gorza, S.-P.

Halir, R.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Hamaguchi, H.-O.

Hänsch, T. W.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Hartinger, K.

Hartl, I.

Haynes, R.

Heck, M. J. R.

Heideman, R. G.

Helin, P.

Hemmer, M.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Herr, T.

Hoekman, M.

Holzner, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Holzwarth, R.

Horak, P.

Hosseini, E. S.

Humbert, G.

Ideguchi, T.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Ikeda, K.

Jenkins, C. A.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277 (2009).
[Crossref]

Jiang, J.

Jiang, X.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

John, D.

Joly, N. Y.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Kano, H.

Kar, A.

Kippenberg, T. J.

Klimczak, M.

Knight, J.

Kockaert, P.

Kopf, D.

Kovalgin, A. Y.

Kues, M.

Kuipers, L.

M. Wulf, D. M. Beggs, N. Rotenberg, and L. Kuipers, “Unravelling nonlinear spectral evolution using nanoscale photonic near-field point-to-point measurements,” Nano Lett. 13(12), 5858–5865 (2013).
[Crossref] [PubMed]

Kuyken, B.

Lamont, M. R. E.

Langrock, C.

Leake, G.

Lederer, M.

Lee, C. J.

Lee, H.

Légaré, F.

Leinse, A.

Leo, F.

Leon-Saval, S.

Levy, J. S.

Li, K. S.

Lin, C.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277 (2009).
[Crossref]

Lin, Q.

Lipson, M.

Lisker, M.

Little, B. E.

Lykke, K. R.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277 (2009).
[Crossref]

Marandi, A.

Marpaung, D. A. I.

Mateman, R.

Morandotti, R.

Moss, D. J.

Murphy, T. E.

Oh, D. Y.

Okawachi, Y.

Oldenbeuving, R. M.

Painter, O.

Peccianti, M.

Pelc, J. S.

Phillips, C. R.

Picqué, N.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Plotnichenko, V. G.

Poletti, F.

Purnawirman, P.

Pysz, D.

Rangarajan, B.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Razzari, L.

Riemensberger, J.

Roelkens, G.

Roeloffzen, C. G. H.

Rotenberg, N.

M. Wulf, D. M. Beggs, N. Rotenberg, and L. Kuipers, “Unravelling nonlinear spectral evolution using nanoscale photonic near-field point-to-point measurements,” Nano Lett. 13(12), 5858–5865 (2013).
[Crossref] [PubMed]

Roth, M. M.

Rudy, C. W.

Russell, P. S. J.

Safioui, J.

Saperstein, R. E.

Schmitz, J.

Sell, D.

Severi, S.

Silva, F.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Smith, A. W.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277 (2009).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Stepien, R.

Stepniewski, G.

Stifter, D.

Subramanian, A.

Sun, J.

Szolno, A.

Taddei, C.

Taghizadeh, M. R.

Thai, A.

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Tien, M.-c.

Travers, J. C.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Vahala, K. J.

Van Campenhout, J.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

van der Slot, P. J.

van der Slot, P. J. M.

van Dijk, P. W. L.

van Rees, A.

Verheyen, P.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Vodopyanov, K. L.

Waddie, A.

Wadsworth, W.

Wadsworth, W. J.

Watts, M. R.

Wiesauer, K.

Willner, A. E.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Wong, G. K. L.

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Woodward, J. T.

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277 (2009).
[Crossref]

Wörhoff, K.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Techn. 4(2), 189–207 (2015).

B. Rangarajan, A. Y. Kovalgin, K. Wörhoff, and J. Schmitz, “Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics,” Opt. Lett. 38(6), 941–943 (2013).
[Crossref] [PubMed]

Wulf, M.

M. Wulf, D. M. Beggs, N. Rotenberg, and L. Kuipers, “Unravelling nonlinear spectral evolution using nanoscale photonic near-field point-to-point measurements,” Nano Lett. 13(12), 5858–5865 (2013).
[Crossref] [PubMed]

Yan, M.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

Yan, Y.

Yang, K. Y.

Yin, L.

Yue, Y.

Zhang, L.

Zhao, H.

Zhuang, L.

Zim-mermann, L.

Adv. Opt. Techn. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Techn. 4(2), 189–207 (2015).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Metrologia (1)

J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46(4), S277 (2009).
[Crossref]

Nano Lett. (1)

M. Wulf, D. M. Beggs, N. Rotenberg, and L. Kuipers, “Unravelling nonlinear spectral evolution using nanoscale photonic near-field point-to-point measurements,” Nano Lett. 13(12), 5858–5865 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref] [PubMed]

F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre,” Nat. Photonics 9(2), 133–139 (2015).
[Crossref]

Opt. Express (12)

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644 (2008).
[Crossref] [PubMed]

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. S. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596 (2006).
[Crossref] [PubMed]

J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, and K.-J. Boller, “High confinement, high yield Si3N4 waveguides for nonlinear optical applications,” Opt. Express 23(2), 642 (2015).
[Crossref] [PubMed]

J. P. Epping, M. Kues, P. J. M. van der Slot, C. J. Lee, C. Fallnich, and K.-J. Boller, “Integrated CARS source based on seeded four-wave mixing in silicon nitride,” Opt. Express 21(26), 32123–32129 (2013).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[Crossref] [PubMed]

D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18(2), 923–930 (2010).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-c. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref]

L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express 19(12), 11584–11590 (2011).
[Crossref] [PubMed]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 µ m,” Opt. Express 20(22), 24218–24225 (2012).
[Crossref] [PubMed]

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20(25), 27661–27669 (2012).
[Crossref] [PubMed]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

Opt. Lett. (11)

M. Klimczak, G. Stepniewski, H. Bookey, A. Szolno, R. Stepien, D. Pysz, A. Kar, A. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560 nm,” Opt. Lett. 38(22), 4679–4682 (2013).
[Crossref] [PubMed]

B. Rangarajan, A. Y. Kovalgin, K. Wörhoff, and J. Schmitz, “Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics,” Opt. Lett. 38(6), 941–943 (2013).
[Crossref] [PubMed]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36(19), 3912–3914 (2011).
[Crossref] [PubMed]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[Crossref] [PubMed]

D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39(4), 1046–1048 (2014).
[Crossref] [PubMed]

E. S. Hosseini, P. Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39(11), 3106–3109 (2014).
[Crossref] [PubMed]

F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39(12), 3623–3626 (2014).
[Crossref] [PubMed]

H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, and R. Baets, “Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40(10), 2177–2180 (2015).
[Crossref]

L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32(4), 391 (2007).
[Crossref] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415 (2000).
[Crossref]

H. Kano and H.-O. Hamaguchi, “Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,” Opt. Lett. 28(23), 2360 (2003).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Other (1)

G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM picture (false color) of a waveguide facet. (b) Calculated dispersion parameter, D, for bulk Si3N4 (red dashed line) and Si3N4 waveguides with h = 1.0 µm and various waveguide widths, w, of 0.70 µm (blue), 0.75 µm (black), and 0.80 µm (orange) for fundamental quasi-TM modes. The calculations take into account the rounded shape of the waveguides [29]. As can be seen, the range of anomalous dispersion (D > 0) increases with the waveguide width, allowing the two zero dispersion wavelengths (ZDW) to be tuned from 1010 nm and 1410 nm at w = 0.70 µm to 990 nm and 1560 nm at w = 0.80 µm.

Fig. 2
Fig. 2

Experimental setup for on-chip supercontinuum generation. λ/2: half-wave plate; PBS: polarizing beam splitter; lens: aspheric lens; OSA: optical spectrum analyzer, d: offset between facets to reduce the collection of scattered light.

Fig. 3
Fig. 3

(a) Supercontinuum spectrum generated in a 5.5 mm long Si3N4 waveguide with h = 1.0 µm, w = 0.8 µm, and Ep = 590 pJ. The spectrum extends from 470 nm (at a −30 dB level) to 2130 nm, which is more than 495 THz. The spectrum is measured using an OSA (red) and a near-infrared spectrometer (blue). (b) Photograph of the spectrum after being dispersed by a diffraction grating.

Fig. 4
Fig. 4

Spectral broadening of the supercontinuum in a Si3N4 waveguide with w = 0.775 µm as a function of the incoupled Ep. Note that for visibility a progressive offset of 20 dB was added.

Fig. 5
Fig. 5

Supercontinuum generation with various waveguide widths, w. The obtained spectrum broadens for wider waveguides. Note that for visibility a progressive offset of 20 dB was added.

Fig. 6
Fig. 6

(a) Comparison of the spectrum modeled with the multi-mode nonlinear Schrödinger equation (blue) and the measured spectrum (red). In the calculation the pulse energy (Ep = 590 pJ) and the propagation distance (5.5 mm) are chosen to be the same as in the experiment. (b) Spectral evolution in the numerical calculation as function of propagation distance in the waveguide.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A p z = i ( β p ( 0 ) β ( 0 ) ) A p ( β p ( 1 ) β ( 1 ) ) δ A p δ t + i n 2 β p ( n ) n ! ( δ δ t ) n A p + i n 2 ω 0 c l , m , n { ( 1 + i τ p l m n ( 1 ) t ) 2 Q p l m n ( 1 ) A l A m A n * + ( 1 + i τ p l m n ( 2 ) t ) Q p l m n ( 2 ) A l * A m A n } .
τ p l m n ( 1 , 2 ) = 1 ω 0 + { δ δ t ln Q p l m n ( 1 , 2 ) ( ω ) } ω 0 ,

Metrics