Abstract

We analyze and demonstrate a method for increasing the efficiency of thermo-optic phase shifters on a silicon-on-insulator platform. The lack of cross-coupling between dissimilar waveguides allows highly dense waveguide routing under heating elements and a corresponding increase in efficiency. We demonstrate a device with highly dense routing of 9 waveguides under a 10 µm wide heater and achieve a low switching power of 95 µW, extinction ratio greater than 20 dB, and less than 0.1 dB ripple in the through spectrum with a footprint of less than 800 µm × 180 µm. The increase in waveguide density is found not to negatively impact the switch response time.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides

Peng Sun and Ronald M. Reano
Opt. Express 18(8) 8406-8411 (2010)

Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides

Tao Chu, Hirohito Yamada, Satomi Ishida, and Yasuhiko Arakawa
Opt. Express 13(25) 10109-10114 (2005)

Efficient, compact and low loss thermo-optic phase shifter in silicon

Nicholas C. Harris, Yangjin Ma, Jacob Mower, Tom Baehr-Jones, Dirk Englund, Michael Hochberg, and Christophe Galland
Opt. Express 22(9) 10487-10493 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13, 10109–10114 (2005).
    [Crossref] [PubMed]
  2. L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach-Zehnder Interferometer,” IEEE Photon. J. 7, 1–8 (2015).
    [Crossref]
  3. P. Dong, L. Chen, and Y. kai Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
    [Crossref] [PubMed]
  4. G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
    [Crossref]
  5. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
    [Crossref] [PubMed]
  6. R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  7. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
    [Crossref]
  8. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18, 9071–9075 (2010).
    [Crossref] [PubMed]
  9. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
    [Crossref] [PubMed]
  10. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23, 2487–2511 (2015).
    [Crossref] [PubMed]
  11. Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
    [Crossref]
  12. Y. Hashizume, S. Katayose, T. Tsuchizawa, T. Watanabe, and M. Itoh, “Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures,” Electron. Lett. 48, 1234–1235 (2012).
    [Crossref]
  13. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17, 10457–10465 (2009).
    [Crossref] [PubMed]
  14. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
    [Crossref]
  15. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
    [Crossref]
  16. Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, are preparing a manuscript to be called “Michelson interferometer thermo-optic switch on SOI with a 50 microwatt power consumption,”.
  17. V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, 89150Z (2013).
    [Crossref]
  18. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015). Chap. 4.1.
  19. W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
    [Crossref] [PubMed]
  20. L. Liu, “Densely packed waveguide array (dpwa) on a silicon chip for mode division multiplexing,” Opt. Express 23, 12135–12143 (2015).
    [Crossref] [PubMed]
  21. M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
    [Crossref] [PubMed]
  22. H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-db coupler on silicon-on-insulator rib waveguides,” Proc. SPIE,  8915, 89150V (2013).
    [Crossref]
  23. Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
    [Crossref]
  24. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.37.

2015 (6)

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach-Zehnder Interferometer,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23, 2487–2511 (2015).
[Crossref] [PubMed]

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

L. Liu, “Densely packed waveguide array (dpwa) on a silicon chip for mode division multiplexing,” Opt. Express 23, 12135–12143 (2015).
[Crossref] [PubMed]

M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

2013 (4)

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-db coupler on silicon-on-insulator rib waveguides,” Proc. SPIE,  8915, 89150V (2013).
[Crossref]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
[Crossref] [PubMed]

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, 89150Z (2013).
[Crossref]

2012 (2)

P. Dong, L. Chen, and Y. kai Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
[Crossref] [PubMed]

Y. Hashizume, S. Katayose, T. Tsuchizawa, T. Watanabe, and M. Itoh, “Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures,” Electron. Lett. 48, 1234–1235 (2012).
[Crossref]

2011 (1)

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

2010 (2)

2009 (1)

2005 (1)

1999 (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]

1994 (1)

1987 (1)

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[Crossref]

Abbaslou, S.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

Arakawa, Y.

Asghari, M.

Bennett, B.

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Brimont, A.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach-Zehnder Interferometer,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

Cai, H.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Cheben, P.

Chen, L.

Chen, R. T.

Chihhui, W.

M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Christodoulides, D. N.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

Chrostowski, L.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-db coupler on silicon-on-insulator rib waveguides,” Proc. SPIE,  8915, 89150V (2013).
[Crossref]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, 89150Z (2013).
[Crossref]

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015). Chap. 4.1.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.37.

Chu, T.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]

Cunningham, J. E.

Delâge, A.

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]

Densmore, A.

DeRose, C.

Dong, P.

Donzella, V.

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, 89150Z (2013).
[Crossref]

Fang, Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Fard, S. T.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.37.

Feng, D.

Flueckiger, J.

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.37.

Gatdula, R.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

Griol, A.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach-Zehnder Interferometer,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

Hasama, T.

Hashizume, Y.

Y. Hashizume, S. Katayose, T. Tsuchizawa, T. Watanabe, and M. Itoh, “Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures,” Electron. Lett. 48, 1234–1235 (2012).
[Crossref]

Hochberg, M.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015). Chap. 4.1.

Hosseini, A.

Huang, W.-P.

Ishida, S.

Ishikawa, H.

Itoh, M.

Y. Hashizume, S. Katayose, T. Tsuchizawa, T. Watanabe, and M. Itoh, “Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures,” Electron. Lett. 48, 1234–1235 (2012).
[Crossref]

Jaeger, N. A. F.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-db coupler on silicon-on-insulator rib waveguides,” Proc. SPIE,  8915, 89150V (2013).
[Crossref]

Jang, K.-S.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Janz, S.

Jiang, W.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

Joo, J.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

kai Chen, Y.

Katayose, S.

Y. Hashizume, S. Katayose, T. Tsuchizawa, T. Watanabe, and M. Itoh, “Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures,” Electron. Lett. 48, 1234–1235 (2012).
[Crossref]

Kawashima, H.

Kevin, O.

M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Kim, G.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Kim, I. G.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Kim, S.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Kim, S. A.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Kintaka, K.

Krishnamoorthy, A. V.

Kwack, M.-J.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Kwong, D.

Kwong, D.-L.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Lai, W. Y.-C.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

Lapointe, J.

Lechago, S.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach-Zehnder Interferometer,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

Li, G.

Liang, F.

M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Liang, H.

Lin, C.

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

Liow, T.-Y.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Liu, L.

Lo, G.-Q.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Lu, M.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

Ma, R.

Mrejen, M.

M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Nielson, G. N.

Oh, J. H.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Park, G. S.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Park, H.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Park, J.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Park, J. W.

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

Pease, R. F. W.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

Provine, J.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

Qian, W.

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]

Sanchez, L.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach-Zehnder Interferometer,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

Sanchis, P.

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach-Zehnder Interferometer,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

Schmid, J. H.

Shafiiha, R.

Shi, W.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-db coupler on silicon-on-insulator rib waveguides,” Proc. SPIE,  8915, 89150V (2013).
[Crossref]

Shoji, Y.

Song, J. F.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Song, W.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

Soref, R. A.

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Stein, A.

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

Subbaraman, H.

Suchowski, H.

M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Suda, S.

Sun, J.

Taiki, H.

M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Talebi Fard, S.

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, 89150Z (2013).
[Crossref]

Trotter, D. C.

Tsuchizawa, T.

Y. Hashizume, S. Katayose, T. Tsuchizawa, T. Watanabe, and M. Itoh, “Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures,” Electron. Lett. 48, 1234–1235 (2012).
[Crossref]

Vachon, M.

Wang, X.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.37.

Wang, Y.

M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-db coupler on silicon-on-insulator rib waveguides,” Proc. SPIE,  8915, 89150V (2013).
[Crossref]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.37.

Watanabe, T.

Y. Hashizume, S. Katayose, T. Tsuchizawa, T. Watanabe, and M. Itoh, “Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures,” Electron. Lett. 48, 1234–1235 (2012).
[Crossref]

Watts, M. R.

Wu, Y.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.37.

Xu, D.-X.

Xu, X.

Yamada, H.

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[Crossref]

Young, R. W.

Yu, M. B.

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

Yun, H.

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-db coupler on silicon-on-insulator rib waveguides,” Proc. SPIE,  8915, 89150V (2013).
[Crossref]

Zhang, X.

M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23, 2487–2511 (2015).
[Crossref] [PubMed]

Zhang, Y.

Appl. Phys. Lett. (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74, 3338–3340 (1999).
[Crossref]

Electron. Lett. (1)

Y. Hashizume, S. Katayose, T. Tsuchizawa, T. Watanabe, and M. Itoh, “Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures,” Electron. Lett. 48, 1234–1235 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[Crossref]

R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE Photon. J. (1)

L. Sanchez, A. Griol, S. Lechago, A. Brimont, and P. Sanchis, “Low-Power Operation in a Silicon Switch Based on an Asymmetric Mach-Zehnder Interferometer,” IEEE Photon. J. 7, 1–8 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G.-Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23, 525–527 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Commun. (2)

W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, “High-density waveguide superlattices with low crosstalk,” Nat. Commun. 6, 7027 (2015).
[Crossref] [PubMed]

M. Mrejen, H. Suchowski, H. Taiki, W. Chihhui, F. Liang, O. Kevin, Y. Wang, and X. Zhang, “Adiabatic elimination-based coupling control in densely packed subwavelength waveguides,” Nat. Commun. 6, 7565 (2015).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Proc. SPIE (4)

G. Kim, I. G. Kim, S. Kim, J. Joo, K.-S. Jang, S. A. Kim, J. H. Oh, J. W. Park, M.-J. Kwack, J. Park, H. Park, G. S. Park, and S. Kim, “Silicon photonic devices based on SOI/bulk-silicon platforms for chip-level optical interconnects,” Proc. SPIE 9368, 93680Z (2015).
[Crossref]

V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, 89150Z (2013).
[Crossref]

H. Yun, W. Shi, Y. Wang, L. Chrostowski, and N. A. F. Jaeger, “2×2 adiabatic 3-db coupler on silicon-on-insulator rib waveguides,” Proc. SPIE,  8915, 89150V (2013).
[Crossref]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

Other (3)

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), p. Th2A.37.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015). Chap. 4.1.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, are preparing a manuscript to be called “Michelson interferometer thermo-optic switch on SOI with a 50 microwatt power consumption,”.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Dissimilar waveguide structure and horizontal electric field profile of its modes. Modes |1⟩ and |2⟩ are the modes of the two-waveguide structure. Modes |A0⟩ and |B0⟩ are the modes when only waveguide A or waveguide B are present, respectively.
Fig. 2
Fig. 2 Maximum crosstalk between 220 nm thick waveguides with 1 µm pitch.
Fig. 3
Fig. 3 Schematic diagram of folded waveguide structure.
Fig. 4
Fig. 4 (a) Calculated spectra of the folded waveguide structure for 9 identical waveguides with gaps gI = 500 nm, 750 nm, and 1000 nm, and alternating dissimilar waveguides with widths of 500 nm and 600 nm with gap gD = 500 nm, (b) Minimum transmission of the folded waveguide structure.
Fig. 5
Fig. 5 (a) Schematic of thermally tunable MZI switch. Black traces: WGs, Red: Oxide openings define underetched region, Purple: Routing metal, and Green: Heater metal. Inset: Waveguide taper region. (b) An optical micrograph of a fabricated device. (c) Thermal phase shifter cross-section before underetching. (d) Thermal phase shifter cross-section after underetching. In (c) and (d), silicon dioxide is blue, silicon is tan, the metal heater is grey, and air is white.
Fig. 6
Fig. 6 Measured spectra of the underetched versions of (a) device 3 and (b) device 5.
Fig. 7
Fig. 7 Normalized transmission functions of the (a) short (devices 2 and 4) unetched, (b) long (devices 3 and 5) unetched, (c) short underetched, and (d) long underetched MZI switches.
Fig. 8
Fig. 8 Temporal response of (a) unetched, and (b) underetched MZI switches.

Tables (3)

Tables Icon

Table 1 Device Parameters

Tables Icon

Table 2 Tuning Efficiency of MZI Switches

Tables Icon

Table 3 Response Times of MZI Switches

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ψ 1 | ψ 2 = 1 4 [ E 1 × H 2 * d S + E 2 * × H 1 d S ] ,
| A = 1 | A 0 | 1 + 2 | A 0 | 2 .
| A ¯ = | A A | A ,
V = [ a b ] = a | 1 + b | 2 .
d V d z = i [ k 1 0 0 k 2 ] V i P V .
V ¯ = [ c d ] = c | A ¯ + d | B ¯
V = [ 1 | A 0 A | A 1 | B 0 B | B 2 | A 0 A | A 2 | B 0 B | B ] V ¯ M V ¯ ,
d V ¯ d z = i M 1 P M V ¯ i P ¯ V ¯ .
V V = V ¯ M M V ¯ V ¯ V ¯ ,
V ¯ ( z ) = M 1 e i P z M V ¯ ( 0 ) = M 1 e i P z M [ 1 0 ]
CT = max z ( | [ 0 1 ] V ¯ ( z ) | 2 ) = max z ( | [ 0 1 ] M 1 e i P z M [ 1 0 ] | 2 ) = 4 B | B A | A | 1 | A 0 2 | A 0 | 2 | 1 | A 0 2 | B 0 1 | B 0 2 | A 0 | 2
d V ¯ m + d z = a m V ¯ m + + b m V ¯ m 1 + + c m V ¯ m + 1 +
d V ¯ m d z = a m V ¯ m b m V ¯ m 1 c m V ¯ m + 1 ,
V ¯ 0 + ( 0 ) = 1
V ¯ N ( L ) = 0
V ¯ m ( L ) = V ¯ i 1 + ( L ) e i ϕ m 1 V ¯ m + ( L ) = V ¯ m 1 ( L ) e i ϕ m 1 } for m evan
V ¯ m ( 0 ) = V ¯ m 1 + ( 0 ) e i ϕ m 1 V ¯ m + ( 0 ) = V ¯ m 1 ( 0 ) e i ϕ m 1 } for m odd , m > 1 ,

Metrics