Abstract

The Scattered Light Imaging Method (SLIM) was applied to measure the nonlinear refractive index of scattering media. The measurements are based on the analysis of the side-view images of the laser beam propagating inside highly scattering liquid suspensions. Proof-of-principle experiments were performed with colloids containing silica nanoparticles that behave as light scatterers. The technique allows measurements with lasers operating with arbitrary repetition rate as well as in the single-shot regime. The new method shows advantages and complementarity with respect to the Z-scan technique which is not appropriate to characterize scattering media.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatial phase modulation due to quintic and septic nonlinearities in metal colloids

Albert S. Reyna and Cid B. de Araújo
Opt. Express 22(19) 22456-22469 (2014)

High-order optical nonlinearities in plasmonic nanocomposites—a review

Albert S. Reyna and Cid B. de Araújo
Adv. Opt. Photon. 9(4) 720-774 (2017)

An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites

Albert S. Reyna and Cid B. de Araújo
Opt. Express 23(6) 7659-7666 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
    [Crossref] [PubMed]
  2. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  3. H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
    [Crossref]
  4. D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
    [Crossref]
  5. D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
    [Crossref]
  6. R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc. 112, 906–913 (2012).
    [Crossref]
  7. G. Boudebs and C. B. de Araújo, “Characterization of light-induced modification of the nonlinear refractive index using a one-laser-shot nonlinear imaging technique,” Appl. Phys. Lett. 85, 3740–3742 (2004).
    [Crossref]
  8. K. Fedus, G. Boudebs, C. B. de Araújo, M. Cathelinaud, F. Charpentier, and V. Nazabal, “Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization,” Appl. Phys. Lett. 94, 061122 (2009).
    [Crossref]
  9. A. Marcano O., H. Maillotte, D. Gindre, and D. Métin, “Picosecond nonlinear refraction measurement in single-beam open Z scan by charge-coupled device image processing,” Opt. Lett. 21, 101–103 (1996).
    [Crossref] [PubMed]
  10. J. Hein, M. Helbig, and S. Rentsch, “Measurements of a nonlinear refractive index with a single laser pulse,” Appl. Opt. 36, 1173–1176 (1997).
    [Crossref] [PubMed]
  11. S. Cherukulappurath, G. Boudebs, and A. Monteil, “4 f coherent imager system and its application to nonlinear optical measurements,” J. Opt. Soc. Am. B 21, 273–279 (2004).
    [Crossref]
  12. G. Boudebs and S. Cherukulappurath, “Nonlinear optical measurements using a 4 f coherent imaging system with phase objects,” Phys. Rev. A 69, 053812 (2004).
    [Crossref]
  13. J. Jayabalan, A. Singh, and S. M. Oak, “Single-shot measurement of nonlinear absorption and nonlinear refraction,” Appl. Opt. 45, 3852–3858 (2006).
    [Crossref] [PubMed]
  14. R. A. Ganeev, “Single-shot refraction Z-scan for measurements of the nonlinear refraction of nontransparent materials,” Appl. Phys. B 91, 273–277 (2008).
    [Crossref]
  15. R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A: Pure Appl. Opt. 11, 085001 (2009).
    [Crossref]
  16. M. R. Ferdinandus, H. Hu, M. Reichert, D. J. Hagan, and E. W. Van Stryland, “Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction,” Opt. Lett. 38, 3518–3521 (2013).
    [Crossref] [PubMed]
  17. P. Samineni, Z. Perret, W. S. Wareen, and M. C. Fischer, “Measurements of nonlinear refractive index in scattering media,” Opt. Express 18, 12727–12735 (2010).
    [Crossref] [PubMed]
  18. M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Dual-Arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express 2, 1776–1790 (2012).
    [Crossref]
  19. K. C. Jorge, R. Riva, and N. A. S. Rodrigues, “Device and method for characterization of laser beams, of low and high powers, with basis on the light scattering (in Portuguese),” Patent PI 0605596-6 A, DCTA, 23November 2006.
  20. K. C. Jorge, R. Riva, J. M. S. Sakamoto, N. A. S. Rodrigues, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).
    [Crossref] [PubMed]
  21. K. C. Jorge, R. Riva, N. A. S. Rodrigues, and M. G. Destro, “M2 beam quality measurement of a single pulse of the Nd:YAG laser,” Proc. Conference on Lasers in Manufacturing, p. 323–326, Munich (2009).
  22. International Organization for Standardization, ISO 11146-1/2/3., “Test methods for laser beam widths, divergence angles and beam propagation ratios. Part 1: Stigmatic and simple beams/ Part 2: General astigmatic beams/ Part 3: Intrinsic and geometrical classification, propagation and details of test methods” (ISO, Geneva, 2005).
  23. A. E. Siegman, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues (DLAI) (OSA, 1998), paper MQ1.
    [Crossref]
  24. M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soleau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
    [Crossref]
  25. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  26. A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to the quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
    [Crossref]

2014 (2)

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to the quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

K. C. Jorge, R. Riva, J. M. S. Sakamoto, N. A. S. Rodrigues, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Dual-Arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express 2, 1776–1790 (2012).
[Crossref]

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc. 112, 906–913 (2012).
[Crossref]

2010 (1)

2009 (2)

K. Fedus, G. Boudebs, C. B. de Araújo, M. Cathelinaud, F. Charpentier, and V. Nazabal, “Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization,” Appl. Phys. Lett. 94, 061122 (2009).
[Crossref]

R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A: Pure Appl. Opt. 11, 085001 (2009).
[Crossref]

2008 (1)

R. A. Ganeev, “Single-shot refraction Z-scan for measurements of the nonlinear refraction of nontransparent materials,” Appl. Phys. B 91, 273–277 (2008).
[Crossref]

2006 (1)

2004 (3)

S. Cherukulappurath, G. Boudebs, and A. Monteil, “4 f coherent imager system and its application to nonlinear optical measurements,” J. Opt. Soc. Am. B 21, 273–279 (2004).
[Crossref]

G. Boudebs and S. Cherukulappurath, “Nonlinear optical measurements using a 4 f coherent imaging system with phase objects,” Phys. Rev. A 69, 053812 (2004).
[Crossref]

G. Boudebs and C. B. de Araújo, “Characterization of light-induced modification of the nonlinear refractive index using a one-laser-shot nonlinear imaging technique,” Appl. Phys. Lett. 85, 3740–3742 (2004).
[Crossref]

1997 (1)

1996 (2)

1994 (1)

D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[Crossref]

1991 (2)

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soleau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

1989 (1)

Boltaev, G. S.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc. 112, 906–913 (2012).
[Crossref]

Boudebs, G.

K. Fedus, G. Boudebs, C. B. de Araújo, M. Cathelinaud, F. Charpentier, and V. Nazabal, “Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization,” Appl. Phys. Lett. 94, 061122 (2009).
[Crossref]

G. Boudebs and C. B. de Araújo, “Characterization of light-induced modification of the nonlinear refractive index using a one-laser-shot nonlinear imaging technique,” Appl. Phys. Lett. 85, 3740–3742 (2004).
[Crossref]

G. Boudebs and S. Cherukulappurath, “Nonlinear optical measurements using a 4 f coherent imaging system with phase objects,” Phys. Rev. A 69, 053812 (2004).
[Crossref]

S. Cherukulappurath, G. Boudebs, and A. Monteil, “4 f coherent imager system and its application to nonlinear optical measurements,” J. Opt. Soc. Am. B 21, 273–279 (2004).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cathelinaud, M.

K. Fedus, G. Boudebs, C. B. de Araújo, M. Cathelinaud, F. Charpentier, and V. Nazabal, “Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization,” Appl. Phys. Lett. 94, 061122 (2009).
[Crossref]

Charpentier, F.

K. Fedus, G. Boudebs, C. B. de Araújo, M. Cathelinaud, F. Charpentier, and V. Nazabal, “Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization,” Appl. Phys. Lett. 94, 061122 (2009).
[Crossref]

Cherukulappurath, S.

G. Boudebs and S. Cherukulappurath, “Nonlinear optical measurements using a 4 f coherent imaging system with phase objects,” Phys. Rev. A 69, 053812 (2004).
[Crossref]

S. Cherukulappurath, G. Boudebs, and A. Monteil, “4 f coherent imager system and its application to nonlinear optical measurements,” J. Opt. Soc. Am. B 21, 273–279 (2004).
[Crossref]

de Araújo, C. B.

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to the quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

K. Fedus, G. Boudebs, C. B. de Araújo, M. Cathelinaud, F. Charpentier, and V. Nazabal, “Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization,” Appl. Phys. Lett. 94, 061122 (2009).
[Crossref]

G. Boudebs and C. B. de Araújo, “Characterization of light-induced modification of the nonlinear refractive index using a one-laser-shot nonlinear imaging technique,” Appl. Phys. Lett. 85, 3740–3742 (2004).
[Crossref]

D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
[Crossref]

D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[Crossref]

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
[Crossref]

Destro, M. G.

K. C. Jorge, R. Riva, J. M. S. Sakamoto, N. A. S. Rodrigues, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).
[Crossref] [PubMed]

K. C. Jorge, R. Riva, N. A. S. Rodrigues, and M. G. Destro, “M2 beam quality measurement of a single pulse of the Nd:YAG laser,” Proc. Conference on Lasers in Manufacturing, p. 323–326, Munich (2009).

Ensley, T. R.

Fedus, K.

K. Fedus, G. Boudebs, C. B. de Araújo, M. Cathelinaud, F. Charpentier, and V. Nazabal, “Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization,” Appl. Phys. Lett. 94, 061122 (2009).
[Crossref]

Ferdinandus, M. R.

Fischer, M. C.

Fishman, D. A.

Ganeev, R. A.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc. 112, 906–913 (2012).
[Crossref]

R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A: Pure Appl. Opt. 11, 085001 (2009).
[Crossref]

R. A. Ganeev, “Single-shot refraction Z-scan for measurements of the nonlinear refraction of nontransparent materials,” Appl. Phys. B 91, 273–277 (2008).
[Crossref]

Gindre, D.

Gomes, A. S. L.

D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
[Crossref]

D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[Crossref]

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
[Crossref]

Hagan, D. J.

M. R. Ferdinandus, H. Hu, M. Reichert, D. J. Hagan, and E. W. Van Stryland, “Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction,” Opt. Lett. 38, 3518–3521 (2013).
[Crossref] [PubMed]

M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Dual-Arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express 2, 1776–1790 (2012).
[Crossref]

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soleau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Hein, J.

Helbig, M.

Hu, H.

Jayabalan, J.

Jorge, K. C.

K. C. Jorge, R. Riva, J. M. S. Sakamoto, N. A. S. Rodrigues, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).
[Crossref] [PubMed]

K. C. Jorge, R. Riva, and N. A. S. Rodrigues, “Device and method for characterization of laser beams, of low and high powers, with basis on the light scattering (in Portuguese),” Patent PI 0605596-6 A, DCTA, 23November 2006.

K. C. Jorge, R. Riva, N. A. S. Rodrigues, and M. G. Destro, “M2 beam quality measurement of a single pulse of the Nd:YAG laser,” Proc. Conference on Lasers in Manufacturing, p. 323–326, Munich (2009).

Kulagin, I. A.

R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A: Pure Appl. Opt. 11, 085001 (2009).
[Crossref]

Ma, H.

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
[Crossref]

Maillotte, H.

Marcano O., A.

Métin, D.

Monteil, A.

Nazabal, V.

K. Fedus, G. Boudebs, C. B. de Araújo, M. Cathelinaud, F. Charpentier, and V. Nazabal, “Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization,” Appl. Phys. Lett. 94, 061122 (2009).
[Crossref]

Oak, S. M.

Perret, Z.

Petrov, D. V.

D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
[Crossref]

D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[Crossref]

Reichert, M.

Rentsch, S.

Reyna, A. S.

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to the quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

Riva, R.

K. C. Jorge, R. Riva, J. M. S. Sakamoto, N. A. S. Rodrigues, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).
[Crossref] [PubMed]

K. C. Jorge, R. Riva, and N. A. S. Rodrigues, “Device and method for characterization of laser beams, of low and high powers, with basis on the light scattering (in Portuguese),” Patent PI 0605596-6 A, DCTA, 23November 2006.

K. C. Jorge, R. Riva, N. A. S. Rodrigues, and M. G. Destro, “M2 beam quality measurement of a single pulse of the Nd:YAG laser,” Proc. Conference on Lasers in Manufacturing, p. 323–326, Munich (2009).

Rodrigues, N. A. S.

K. C. Jorge, R. Riva, J. M. S. Sakamoto, N. A. S. Rodrigues, and M. G. Destro, “Scattered light imaging method (SLIM) for characterization of arbitrary laser beam intensity profiles,” Appl. Opt. 53, 4555–4564 (2014).
[Crossref] [PubMed]

K. C. Jorge, R. Riva, N. A. S. Rodrigues, and M. G. Destro, “M2 beam quality measurement of a single pulse of the Nd:YAG laser,” Proc. Conference on Lasers in Manufacturing, p. 323–326, Munich (2009).

K. C. Jorge, R. Riva, and N. A. S. Rodrigues, “Device and method for characterization of laser beams, of low and high powers, with basis on the light scattering (in Portuguese),” Patent PI 0605596-6 A, DCTA, 23November 2006.

Said, A. A.

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soleau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[Crossref] [PubMed]

Sakamoto, J. M. S.

Samineni, P.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soleau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[Crossref]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[Crossref] [PubMed]

Siegman, A. E.

A. E. Siegman, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues (DLAI) (OSA, 1998), paper MQ1.
[Crossref]

Singh, A.

Soleau, M. J.

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soleau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[Crossref]

Tugushev, R. I.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc. 112, 906–913 (2012).
[Crossref]

Usmanov, T.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc. 112, 906–913 (2012).
[Crossref]

Van Stryland, E. W.

Wareen, W. S.

Webster, S.

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

R. A. Ganeev, “Single-shot refraction Z-scan for measurements of the nonlinear refraction of nontransparent materials,” Appl. Phys. B 91, 273–277 (2008).
[Crossref]

Appl. Phys. Lett. (4)

H. Ma, A. S. L. Gomes, and C. B. de Araújo, “Measurements of nondegenerate optical nonlinearity using a two-color single beam method,” Appl. Phys. Lett. 59, 2666–2668 (1991).
[Crossref]

D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[Crossref]

G. Boudebs and C. B. de Araújo, “Characterization of light-induced modification of the nonlinear refractive index using a one-laser-shot nonlinear imaging technique,” Appl. Phys. Lett. 85, 3740–3742 (2004).
[Crossref]

K. Fedus, G. Boudebs, C. B. de Araújo, M. Cathelinaud, F. Charpentier, and V. Nazabal, “Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization,” Appl. Phys. Lett. 94, 061122 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurements of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

R. A. Ganeev and I. A. Kulagin, “Single-shot Y-scan for characterization of the nonlinear optical parameters of transparent materials,” J. Opt. A: Pure Appl. Opt. 11, 085001 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. V. Petrov, A. S. L. Gomes, and C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
[Crossref]

Opt. Eng. (1)

M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soleau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (1)

Opt. Spectrosc. (1)

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, and T. Usmanov, “Investigation of nonlinear optical properties of various organic materials by the Z-scan method,” Opt. Spectrosc. 112, 906–913 (2012).
[Crossref]

Phys. Rev. A (2)

G. Boudebs and S. Cherukulappurath, “Nonlinear optical measurements using a 4 f coherent imaging system with phase objects,” Phys. Rev. A 69, 053812 (2004).
[Crossref]

A. S. Reyna and C. B. de Araújo, “Nonlinearity management of photonic composites and observation of spatial-modulation instability due to the quintic nonlinearity,” Phys. Rev. A 89, 063803 (2014).
[Crossref]

Other (5)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

K. C. Jorge, R. Riva, N. A. S. Rodrigues, and M. G. Destro, “M2 beam quality measurement of a single pulse of the Nd:YAG laser,” Proc. Conference on Lasers in Manufacturing, p. 323–326, Munich (2009).

International Organization for Standardization, ISO 11146-1/2/3., “Test methods for laser beam widths, divergence angles and beam propagation ratios. Part 1: Stigmatic and simple beams/ Part 2: General astigmatic beams/ Part 3: Intrinsic and geometrical classification, propagation and details of test methods” (ISO, Geneva, 2005).

A. E. Siegman, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues (DLAI) (OSA, 1998), paper MQ1.
[Crossref]

K. C. Jorge, R. Riva, and N. A. S. Rodrigues, “Device and method for characterization of laser beams, of low and high powers, with basis on the light scattering (in Portuguese),” Patent PI 0605596-6 A, DCTA, 23November 2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Laser pulse energy control and focusing system. (b) Experimental setup of the SLIM and ray diagram for scattered light (d1 = 10.7 cm and d2 = 21.3 cm). (c) A scattered light image obtained by SLIM and the definition of the beam waist 2 w0 (vertical bar) and the divergence angle θ, between the arrow and the horizontal dashed line. (d) The beam radii (black open circles) measured for z >7 mm (it corresponds to 3 mm of the end of the cell) and the slope (red solid line) was equal to 0.0107. The linear fit determines the angle θ0 of the laser beam propagation in the linear scattering medium with I = 5 GW/cm2.
Fig. 2
Fig. 2 Images obtained by SLIM for I = (9.7 ±0.5) GW/cm2: (a) sample A; (b) sample B; (c) sample C and (d) sample D.
Fig. 3
Fig. 3 Divergence angle determined from an average of 50 images (or pulses) for I varying from 7 to 16 GW/cm2. Black squares represent the experimental data and the red solid line corresponds to the line fit for (a) sample A: θ = 10.80 − 0.15I; (b) sample B: θ = 10.91 − 0.11I; (c) sample C: θ = 10.65 − 0.08I and (d) sample D: θ = 10.71 − 0.06I.
Fig. 4
Fig. 4 Values of n 2 eff from the θ values determined for I varying from 7 to 16 GW/cm2. Black squares represent the experimental data and the red dotted line corresponds to the average value for (a) sample A: 2.35×10−15 cm2/W ; (b) sample B: 1.53×10−15 cm2/W; (c) sample C: 1.46×10−15 cm2/W and (d) sample D: 0.94×10−15 cm2/W.
Fig. 5
Fig. 5 Single-shot NL refractive index, n 2 eff, obtained by SLIM for sample B. Black circles: single-shot pulses; red dotted line: average value.
Fig. 6
Fig. 6 Z-scan data for I = (9.4 ±1.9) GW/cm2: (a) sample A; (b) sample B; (c) sample C and (d) sample D. The open circles are experimental data and the solid lines are Z-scan fits.
Fig. 7
Fig. 7 Comparison of Z-scan results (filled blue circles) measured with I = (9.4 ±1.9) GW/cm2 and SLIM (filled red squares) for I = (9.7 ±0.5) GW/cm2 with the n 2 eff versus volume fraction of acetone and filling fraction of silica NPs. The black solid line represents the theoretical predictions of our model.

Tables (1)

Tables Icon

Table 1 Characteristics of the samples.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( 1 z 1 f eff 1 ) ,
1 f eff = a λ M 2 4 π n 2 eff I 0 J ,
θ NL ( z ) θ 0 ( z ) = 1 z f eff + 𝒪 ( z 2 f eff 2 ) ,

Metrics