Abstract

Comprehensive analysis of kinetic and fluid dynamic processes in flowing-gas diode-pumped alkali vapor amplifiers is reported. Taking into account effects of the temperature, the amplified spontaneous emission, the saturation power, the excitation of the alkali atoms to high electronic levels and the ionization, a detailed physical model is established to simulate the output performance of flowing-gas diode-pumped alkali vapor amplifiers. Influences of the flow velocity and the pump power on the amplified power are calculated and analyzed. Comparisons between single and double amplifier, longitudinal and transverse flow are made. Results show that end-pumped cascaded amplifier can provide higher output power under the same total pump power and the cell length, while output powers achieved by single- and double-end pumped, double-side pumped amplifiers with longitudinal or transverse flow have a complicated but valuable relation. Thus the model is extremely helpful for designing high-power flowing-gas diode-pumped alkali vapor amplifiers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers

Boris D. Barmashenko and Salman Rosenwaks
J. Opt. Soc. Am. B 30(5) 1118-1126 (2013)

Modeling of a diode four-side symmetrically pumped alkali vapor amplifier

Binglin Shen, Bailiang Pan, Jian Jiao, and Chunsheng Xia
Opt. Express 23(5) 5941-5953 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Han, Y. Wang, H. Cai, G. An, W. Zhang, L. Xue, H. Wang, J. Zhou, Z. Jiang, and M. Gao, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part II),” Opt. Express 23(7), 9508–9515 (2015).
    [Crossref] [PubMed]
  2. B. V. Zhdanov and R. J. Knize, “Diode pumped alkali lasers,” Proc. SPIE 8187, 818707 (2011).
    [Crossref]
  3. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [Crossref] [PubMed]
  4. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
    [Crossref] [PubMed]
  5. T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
    [Crossref]
  6. B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
    [Crossref]
  7. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
    [Crossref]
  8. G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
    [Crossref]
  9. D. A. Hostutler and W. L. Klennert, “Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier,” Opt. Express 16(11), 8050–8053 (2008).
    [Crossref] [PubMed]
  10. B. V. Zhdanov and R. J. Knize, “Efficient diode pumped cesium vapor amplifier,” Opt. Commun. 281(15-16), 4068–4070 (2008).
    [Crossref]
  11. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode-pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F (2010).
    [Crossref]
  12. B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
    [Crossref]
  13. J. Yang, B. Pan, Y. Yang, J. Luo, and A. Qian, “Modeling of a diode side pumped cesium vapor laser MOPA system,” IEEE J. Quantum Electron. 50(3), 123–128 (2014).
    [Crossref]
  14. Z. Yang, H. Wang, Q. Lu, W. Hua, and X. Xu, “Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission,” Opt. Express 19(23), 23118–23131 (2011).
    [Crossref] [PubMed]
  15. B. Shen, B. Pan, J. Jiao, and C. Xia, “Modeling of a diode four-side symmetrically pumped alkali vapor amplifier,” Opt. Express 23(5), 5941–5953 (2015).
    [Crossref] [PubMed]
  16. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
    [Crossref] [PubMed]
  17. B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
    [Crossref]
  18. B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
    [Crossref]
  19. B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
    [Crossref]
  20. S. Rosenwaks, B. D. Barmashenko, and K. Waichman, “Semi-analytical and 3D CFD DPAL modeling: Feasibility of supersonic operation,” Proc. SPIE 8962, 896209 (2014).
    [Crossref]
  21. B. D. Barmashenko, S. Rosenwaks, and K. Waichman, “Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling,” Proc. SPIE 8962, 89620C (2014).
    [Crossref]
  22. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
    [Crossref]
  23. G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1–2), 45–56 (2010).
    [Crossref]
  24. G. D. Hager and G. P. Perram, “A three-level model for alkali metal vapor lasers. Part II: broadband optical pumping,” Appl. Phys. B 112(4), 507–520 (2013).
    [Crossref]
  25. A. E. Siegman, Lasers (University Science Books, 1986), Ch. 7.
  26. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  27. M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
    [Crossref] [PubMed]
  28. J. Yang, B. Shen, A. Qian, J. Jiao, and B. Pan, “Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method,” IEEE J. Quantum Electron. 50(12), 1029–1034 (2014).
    [Crossref]

2015 (3)

2014 (7)

J. Yang, B. Shen, A. Qian, J. Jiao, and B. Pan, “Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method,” IEEE J. Quantum Electron. 50(12), 1029–1034 (2014).
[Crossref]

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

S. Rosenwaks, B. D. Barmashenko, and K. Waichman, “Semi-analytical and 3D CFD DPAL modeling: Feasibility of supersonic operation,” Proc. SPIE 8962, 896209 (2014).
[Crossref]

B. D. Barmashenko, S. Rosenwaks, and K. Waichman, “Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling,” Proc. SPIE 8962, 89620C (2014).
[Crossref]

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
[Crossref]

J. Yang, B. Pan, Y. Yang, J. Luo, and A. Qian, “Modeling of a diode side pumped cesium vapor laser MOPA system,” IEEE J. Quantum Electron. 50(3), 123–128 (2014).
[Crossref]

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

2013 (3)

B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level model for alkali metal vapor lasers. Part II: broadband optical pumping,” Appl. Phys. B 112(4), 507–520 (2013).
[Crossref]

2012 (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

2011 (4)

2010 (2)

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode-pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F (2010).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1–2), 45–56 (2010).
[Crossref]

2008 (3)

2007 (1)

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

2005 (1)

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

2004 (1)

2003 (1)

An, G.

Barmashenko, B. D.

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
[Crossref]

S. Rosenwaks, B. D. Barmashenko, and K. Waichman, “Semi-analytical and 3D CFD DPAL modeling: Feasibility of supersonic operation,” Proc. SPIE 8962, 896209 (2014).
[Crossref]

B. D. Barmashenko, S. Rosenwaks, and K. Waichman, “Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling,” Proc. SPIE 8962, 89620C (2014).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
[Crossref]

Beach, R. J.

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Boyadjian, G.

Cai, H.

Dubinskii, M. A.

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Ehrenreich, T.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Eroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Flusche, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Gao, M.

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Hager, G. D.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level model for alkali metal vapor lasers. Part II: broadband optical pumping,” Appl. Phys. B 112(4), 507–520 (2013).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1–2), 45–56 (2010).
[Crossref]

Haiducek, J. D.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Han, J.

Havko, A.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Hostutler, D. A.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

D. A. Hostutler and W. L. Klennert, “Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier,” Opt. Express 16(11), 8050–8053 (2008).
[Crossref] [PubMed]

Hua, W.

Jiang, Z.

Jiao, J.

B. Shen, B. Pan, J. Jiao, and C. Xia, “Modeling of a diode four-side symmetrically pumped alkali vapor amplifier,” Opt. Express 23(5), 5941–5953 (2015).
[Crossref] [PubMed]

J. Yang, B. Shen, A. Qian, J. Jiao, and B. Pan, “Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method,” IEEE J. Quantum Electron. 50(12), 1029–1034 (2014).
[Crossref]

Kanz, V. K.

Klennert, W. L.

Knize, R. J.

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Diode pumped alkali lasers,” Proc. SPIE 8187, 818707 (2011).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode-pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F (2010).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Efficient diode pumped cesium vapor amplifier,” Opt. Commun. 281(15-16), 4068–4070 (2008).
[Crossref]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[Crossref] [PubMed]

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Koval, N.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Krupke, W. F.

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Lilly, T. C.

Lu, Q.

Luo, J.

J. Yang, B. Pan, Y. Yang, J. Luo, and A. Qian, “Modeling of a diode side pumped cesium vapor laser MOPA system,” IEEE J. Quantum Electron. 50(3), 123–128 (2014).
[Crossref]

Madden, T. J.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Maes, C.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Meeker, T.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Merkle, L. D.

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Oliker, B. Q.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Pan, B.

B. Shen, B. Pan, J. Jiao, and C. Xia, “Modeling of a diode four-side symmetrically pumped alkali vapor amplifier,” Opt. Express 23(5), 5941–5953 (2015).
[Crossref] [PubMed]

J. Yang, B. Shen, A. Qian, J. Jiao, and B. Pan, “Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method,” IEEE J. Quantum Electron. 50(12), 1029–1034 (2014).
[Crossref]

J. Yang, B. Pan, Y. Yang, J. Luo, and A. Qian, “Modeling of a diode side pumped cesium vapor laser MOPA system,” IEEE J. Quantum Electron. 50(3), 123–128 (2014).
[Crossref]

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Payne, S. A.

Perram, G. P.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level model for alkali metal vapor lasers. Part II: broadband optical pumping,” Appl. Phys. B 112(4), 507–520 (2013).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1–2), 45–56 (2010).
[Crossref]

Phipps, S. P.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Pitz, G. A.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Qian, A.

J. Yang, B. Pan, Y. Yang, J. Luo, and A. Qian, “Modeling of a diode side pumped cesium vapor laser MOPA system,” IEEE J. Quantum Electron. 50(3), 123–128 (2014).
[Crossref]

J. Yang, B. Shen, A. Qian, J. Jiao, and B. Pan, “Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method,” IEEE J. Quantum Electron. 50(12), 1029–1034 (2014).
[Crossref]

Rosenwaks, S.

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
[Crossref]

S. Rosenwaks, B. D. Barmashenko, and K. Waichman, “Semi-analytical and 3D CFD DPAL modeling: Feasibility of supersonic operation,” Proc. SPIE 8962, 896209 (2014).
[Crossref]

B. D. Barmashenko, S. Rosenwaks, and K. Waichman, “Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling,” Proc. SPIE 8962, 89620C (2014).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
[Crossref]

Rudolph, W.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Shaffer, M. K.

Shen, B.

B. Shen, B. Pan, J. Jiao, and C. Xia, “Modeling of a diode four-side symmetrically pumped alkali vapor amplifier,” Opt. Express 23(5), 5941–5953 (2015).
[Crossref] [PubMed]

J. Yang, B. Shen, A. Qian, J. Jiao, and B. Pan, “Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method,” IEEE J. Quantum Electron. 50(12), 1029–1034 (2014).
[Crossref]

Stooke, A.

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Tafoya, T. B.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

Takekoshi, T.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Voci, A.

Waichman, K.

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
[Crossref]

B. D. Barmashenko, S. Rosenwaks, and K. Waichman, “Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling,” Proc. SPIE 8962, 89620C (2014).
[Crossref]

S. Rosenwaks, B. D. Barmashenko, and K. Waichman, “Semi-analytical and 3D CFD DPAL modeling: Feasibility of supersonic operation,” Proc. SPIE 8962, 896209 (2014).
[Crossref]

Wang, H.

Wang, Y.

Worker, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Xia, C.

Xu, X.

Xue, L.

Yang, J.

J. Yang, B. Pan, Y. Yang, J. Luo, and A. Qian, “Modeling of a diode side pumped cesium vapor laser MOPA system,” IEEE J. Quantum Electron. 50(3), 123–128 (2014).
[Crossref]

J. Yang, B. Shen, A. Qian, J. Jiao, and B. Pan, “Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method,” IEEE J. Quantum Electron. 50(12), 1029–1034 (2014).
[Crossref]

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Yang, Y.

J. Yang, B. Pan, Y. Yang, J. Luo, and A. Qian, “Modeling of a diode side pumped cesium vapor laser MOPA system,” IEEE J. Quantum Electron. 50(3), 123–128 (2014).
[Crossref]

Yang, Z.

Young, J. W.

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

Zhang, W.

Zhdanov, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Zhdanov, B. V.

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Diode pumped alkali lasers,” Proc. SPIE 8187, 818707 (2011).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode-pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F (2010).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Efficient diode pumped cesium vapor amplifier,” Opt. Commun. 281(15-16), 4068–4070 (2008).
[Crossref]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33(5), 414–415 (2008).
[Crossref] [PubMed]

Zhou, J.

Zhu, Q.

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

Appl. Phys. B (2)

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1–2), 45–56 (2010).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level model for alkali metal vapor lasers. Part II: broadband optical pumping,” Appl. Phys. B 112(4), 507–520 (2013).
[Crossref]

Appl. Phys. Lett. (1)

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
[Crossref]

Electron. Lett. (1)

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Yang, B. Pan, Y. Yang, J. Luo, and A. Qian, “Modeling of a diode side pumped cesium vapor laser MOPA system,” IEEE J. Quantum Electron. 50(3), 123–128 (2014).
[Crossref]

J. Yang, B. Shen, A. Qian, J. Jiao, and B. Pan, “Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method,” IEEE J. Quantum Electron. 50(12), 1029–1034 (2014).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (3)

B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun. 284(7), 1963–1966 (2011).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Efficient diode pumped cesium vapor amplifier,” Opt. Commun. 281(15-16), 4068–4070 (2008).
[Crossref]

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270(2), 353–355 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Proc. SPIE (6)

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

S. Rosenwaks, B. D. Barmashenko, and K. Waichman, “Semi-analytical and 3D CFD DPAL modeling: Feasibility of supersonic operation,” Proc. SPIE 8962, 896209 (2014).
[Crossref]

B. D. Barmashenko, S. Rosenwaks, and K. Waichman, “Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling,” Proc. SPIE 8962, 89620C (2014).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Diode pumped alkali lasers,” Proc. SPIE 8187, 818707 (2011).
[Crossref]

G. A. Pitz, G. D. Hager, T. B. Tafoya, J. W. Young, G. P. Perram, and D. A. Hostutler, “An experimental high pressure line shape study of the rubidium D1 and D2 transitions with the noble gases, methane, and ethane,” Proc. SPIE 8962, 896208 (2014).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode-pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE 7581, 75810F (2010).
[Crossref]

Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Other (1)

A. E. Siegman, Lasers (University Science Books, 1986), Ch. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagrams of the alkali vapor laser MOPA systems: (a) end-pumped single amplifier; (b) end-pumped double amplifier; (c) double-side pumped amplifier.
Fig. 2
Fig. 2 Energy levels of the alkali atom (X) showing transitions studied in this work.
Fig. 3
Fig. 3 Dependence of P l and T on u for flowing-gas DPAL MOPA system.
Fig. 4
Fig. 4 Output power and population densities of the end-pumped amplifier as functions of the pump intensity.
Fig. 5
Fig. 5 Different output powers of the single- and double-stage amplifier for two values of pump power with u=10 m/s .
Fig. 6
Fig. 6 Output power as function of pump power for amplifiers with single-end pumped, double-end pumped or double-side pumped configuration, longitudinal or transverse flow.

Tables (1)

Tables Icon

Table 1 Kinetic Processes in Diode-pumped Alkali Vapor Amplifiers

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

d n 2 dt = W 21 + W 32 W ase S 21 Q 21 i=4 i=6 ( I 2i +2P o 2i +P n 2i S i2 ) ,
  d n 3 dt = W 13 W 32 S 31 Q 31 i=4 i=6 ( I 3i +2P o 3i +P n 3i S i3 ) ,
  d n i dt = j=2,3 ( I ji +P o ji P n ji S ij )P h i + b i R 2 + ,
d n X + dt = i=4 i=6 P h i + j=2,3 i=4 i=6 P n ji R + ,
d n X 2 + dt = R + R 2 + ,
n 1 =N i=2 8 n i ,
N= N w T w T .
P(λ)=Pp ln2 π 2 Δ λ p exp[ 4ln2 Δ v p 2 ( c λ c λ p ) 2 ],
W 13 = I p * {1exp[( n 1 1 2 n 3 ) σ D2 (λ)L]}dλ ,
W 21 = I l * P l P s P s ,
P l = η mode t P s exp[( n 2 n 1 ) σ D1 L]exp( P l P s P sat ),
P s =ηt P sl ,
P sat = h v l π ω s 2 A 21 / σ D1 ,
I l * = ηt P sl h v l V l ,
I p * = ηtP(λ) h v p V p ,
I ji = I l * {1exp[( n j g j g i n i ) σ ji,l L}+ I p * {1exp[( n j g j g i n i ) σ ji,p L]},
R heat ={ 2πL k e (T T w ) ln(R/ ω s ) , u=0 π ω s 2 u n w N A T w T C p (T')dT'+2π ω s k(T)Nu(T T w ), u>0, longitudinal flow 2 ω s Lu n w N A T w T C p (T')dT'+2π ω s k(T)Nu(T T w ), u>0, transverse flow ,
Nu= RePr/π ,
Re={ ρuL/μ, longitudinal flow ρuπ ω s /μ, transverse flow ,
Pr=Cp(T)μ/k(T),
C p (T)= P He P He + P M C pHe (T)+ P M P He + P M C pM (T),
K(T)= P He P He + P M K He (T)+ P M P He + P M K M (T),
P therm = V L W 32 ΔE+π ω s 2 L[ h ν l Q 21 +h ν p Q 31 + R 2 + E i ],
R heat = P therm .

Metrics