Abstract

Large space telescopes made of deployable and lightweight structures suffer from aberrations caused by thermal deformations, gravitational release, and alignment errors which occur during the deployment procedure. An active optics system would allow on-site correction of wave-front errors, and ease the requirements on thermal and mechanical stability of the optical train. In the course of a project funded by the European Space Agency we have developed and manufactured a unimorph deformable mirror based on piezoelectric actuation. The mirror is able to work in space environment and is designed to correct for large aberrations of low order with high surface fidelity. This paper discusses design, manufacturing and performance results of the deformable mirror.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Unimorph deformable mirror for space telescopes: environmental testing

Peter Rausch, Sven Verpoort, and Ulrich Wittrock
Opt. Express 24(2) 1528-1542 (2016)

Unimorph mirror for adaptive optics in space telescopes

David Alaluf, Renaud Bastaits, Kainan Wang, Mihaita Horodinca, Grégory Martic, Bilal Mokrani, and André Preumont
Appl. Opt. 57(14) 3629-3638 (2018)

Development of a unimorph deformable mirror with water cooling

Zhengxiong Zhu, Yan Li, Junjie Chen, Jianqiang Ma, and Jiaru Chu
Opt. Express 25(24) 29916-29926 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Coulter, “Technology development for the Next-Generation Space Telescope: an overview,” Proc. SPIE 3356, 106–113 (1998).
    [Crossref]
  2. S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
    [Crossref]
  3. J. W. Hardy, J. E. Lefebvre, and C. L. Koliopoulos, “Real-time atmospheric compensation,” J. Opt. Soc. Am. 67(3), 360–369 (1977).
    [Crossref]
  4. G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34(16), 2968–2972 (1995).
    [Crossref] [PubMed]
  5. S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49(31), 123034 (2010).
    [Crossref]
  6. S. Verpoort, P. Rausch, and U. Wittrock, “Novel unimorph deformable mirror for space applications,” in Proceedings of the 9th International Conference on Space Optics (ICSO),Ajaccio, Corse (2012).
  7. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, 1970).
  8. D. Damjanovic, “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,” Rep. Prog. Phys. 61(9), 1267–1324 (1998).
    [Crossref]
  9. J. Ma, Y. Liu, T. He, B. Li, and J. Chu, “Double drive modes unimorph deformable mirror for low-cost adaptive optics,” Appl. Opt. 50(29), 5647–5654 (2011).
    [Crossref] [PubMed]
  10. R. Bastaits, D. Alaluf, M. Horodinca, I. Romanescu, I. Burda, G. Martic, G. Rodrigues, and A. Preumont, “Segmented bimorph mirrors for adaptive optics: segment design and experiment,” Appl. Opt. 53(29), 6635–6642 (2014).
    [Crossref] [PubMed]
  11. G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).
    [Crossref]
  12. H. Cao and A. G. Evans, “Nonlinear deformation of ferroelectric ceramics,” J. Am. Ceram. Soc. 76(4), 890–896 (1993).
    [Crossref]
  13. F. Lowrie, M. Cain, M. Stewart, and M. Gee, “Time dependent behavior of piezo-electric materials,” National Physics Laboratory Management Ltd., Teddington, Middlesex, UK, NPL Rep. SMMT (A) 151 (1999).
  14. R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10(6), 265–279 (1998).
    [Crossref]
  15. J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, Vol. XI, Chap. 1 (Academic, 1992).

2014 (1)

2012 (1)

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

2011 (1)

2010 (1)

S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49(31), 123034 (2010).
[Crossref]

2007 (1)

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).
[Crossref]

1998 (3)

D. Damjanovic, “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,” Rep. Prog. Phys. 61(9), 1267–1324 (1998).
[Crossref]

D. Coulter, “Technology development for the Next-Generation Space Telescope: an overview,” Proc. SPIE 3356, 106–113 (1998).
[Crossref]

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10(6), 265–279 (1998).
[Crossref]

1995 (1)

1993 (1)

H. Cao and A. G. Evans, “Nonlinear deformation of ferroelectric ceramics,” J. Am. Ceram. Soc. 76(4), 890–896 (1993).
[Crossref]

1977 (1)

Alaluf, D.

Bastaits, R.

Berthe, L.

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10(6), 265–279 (1998).
[Crossref]

Burda, I.

Burgy, F.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).
[Crossref]

Cao, H.

H. Cao and A. G. Evans, “Nonlinear deformation of ferroelectric ceramics,” J. Am. Ceram. Soc. 76(4), 890–896 (1993).
[Crossref]

Cheriaux, G.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).
[Crossref]

Chu, J.

Coulter, D.

D. Coulter, “Technology development for the Next-Generation Space Telescope: an overview,” Proc. SPIE 3356, 106–113 (1998).
[Crossref]

Damjanovic, D.

D. Damjanovic, “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,” Rep. Prog. Phys. 61(9), 1267–1324 (1998).
[Crossref]

Evans, A. G.

H. Cao and A. G. Evans, “Nonlinear deformation of ferroelectric ceramics,” J. Am. Ceram. Soc. 76(4), 890–896 (1993).
[Crossref]

Fabbro, R.

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10(6), 265–279 (1998).
[Crossref]

Guillemard, C.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).
[Crossref]

Hardy, J. W.

He, T.

Horodinca, M.

Koliopoulos, C. L.

Lefebvre, J. E.

Li, B.

Liu, Y.

Lurçon, J.-M.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).
[Crossref]

Ma, J.

Martic, G.

Peyre, P.

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10(6), 265–279 (1998).
[Crossref]

Preumont, A.

Rausch, P.

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

S. Verpoort, P. Rausch, and U. Wittrock, “Novel unimorph deformable mirror for space applications,” in Proceedings of the 9th International Conference on Space Optics (ICSO),Ajaccio, Corse (2012).

Rodrigues, G.

Romanescu, I.

Rousseau, J.-P.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).
[Crossref]

Sarro, P. M.

Scherpereel, X.

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10(6), 265–279 (1998).
[Crossref]

Sinquin, J.-C.

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).
[Crossref]

Vdovin, G.

Verpoort, S.

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49(31), 123034 (2010).
[Crossref]

S. Verpoort, P. Rausch, and U. Wittrock, “Novel unimorph deformable mirror for space applications,” in Proceedings of the 9th International Conference on Space Optics (ICSO),Ajaccio, Corse (2012).

Wittrock, U.

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49(31), 123034 (2010).
[Crossref]

S. Verpoort, P. Rausch, and U. Wittrock, “Novel unimorph deformable mirror for space applications,” in Proceedings of the 9th International Conference on Space Optics (ICSO),Ajaccio, Corse (2012).

Appl. Opt. (4)

J. Am. Ceram. Soc. (1)

H. Cao and A. G. Evans, “Nonlinear deformation of ferroelectric ceramics,” J. Am. Ceram. Soc. 76(4), 890–896 (1993).
[Crossref]

J. Laser Appl. (1)

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, “Physics and applications of laser-shock processing,” J. Laser Appl. 10(6), 265–279 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

Proc. SPIE (3)

D. Coulter, “Technology development for the Next-Generation Space Telescope: an overview,” Proc. SPIE 3356, 106–113 (1998).
[Crossref]

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

G. Cheriaux, J.-P. Rousseau, F. Burgy, J.-C. Sinquin, J.-M. Lurçon, and C. Guillemard, “Monomorph large aperture adaptive optics for high peak-power femtosecond lasers,” Proc. SPIE 6584, 658405 (2007).
[Crossref]

Rep. Prog. Phys. (1)

D. Damjanovic, “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,” Rep. Prog. Phys. 61(9), 1267–1324 (1998).
[Crossref]

Other (4)

S. Verpoort, P. Rausch, and U. Wittrock, “Novel unimorph deformable mirror for space applications,” in Proceedings of the 9th International Conference on Space Optics (ICSO),Ajaccio, Corse (2012).

L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, 1970).

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, Vol. XI, Chap. 1 (Academic, 1992).

F. Lowrie, M. Cain, M. Stewart, and M. Gee, “Time dependent behavior of piezo-electric materials,” National Physics Laboratory Management Ltd., Teddington, Middlesex, UK, NPL Rep. SMMT (A) 151 (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Top: 3D-view of the main mirror structure along with a cross-sectional view. P P : Piezoelectric polarization. Bottom: Cross-sectional view drawn true to scale.
Fig. 2
Fig. 2 (a) Initial surface deformation of an early version of our deformable mirror, comprised of high- and low-order deformations. The peak-to-valley deviation from best sphere is 4.76 µm, the RMS surface deviation is 0.81 µm. (b) Surface of the same mirror in actively controlled state with a surface deviation of 0.04 µm RMS. The high-order deformation is clearly seen.
Fig. 3
Fig. 3 Numerically calculated surface deviation from flat simulating different strains due to domain reorientation.(a) Positive strain in the area of the mirror electrodes. (b) Negative strain in the area of the mirror electrodes.
Fig. 4
Fig. 4 From left to right: residual surface deviation from best sphere of three successively manufactured deformable mirrors. (a) First mirror generation, manufactured in 01/2013 exhibiting a residual deviation from best sphere of 40 nm RMS. (b) second mirror generation, manufactured in 12/2013. The improved handling of the piezoelectric disc allowed for a residual deviation of 17 nm RMS. (c) Current mirror generation as of 09/2014. The residual deviation from best sphere is 19 nm RMS. The distinct electrode print-through is no longer visible.
Fig. 5
Fig. 5 Detailed view of the two versions of the three-arm piezo structure with the back side electrode pattern.(a) Spiral arm design (b) Bridge design. The insets show the junctions between the central disc and one of the arms in detail.
Fig. 6
Fig. 6 Deformable mirror assembly.(a) Exploded view. (b) Fully assembled mirror. (c) Front side and (d) back side of the mounted three arm structure.
Fig. 7
Fig. 7 Comparison of numerically calculated and measured Zernike amplitudes. Each measured amplitude is either voltage or Maréchal limited

Metrics