Abstract

Zinc oxide (ZnO) particles are characterised as a tracer for temperature measurements in turbulent flows, in the context of the thermographic particle image velocimetry technique. Flow measurements are used to compare the temperature precision of ZnO to that obtained using a well-characterised thermographic phosphor, BAM:Eu2+, under the same conditions. For this two-colour, ratio-based technique the strongly temperature-dependent redshift of the luminescence emission of ZnO offers improved temperature sensitivity, and so at room temperature a threefold increase in the temperature precision is achieved. A dependence of the intensity ratio on the laser fluence is identified, and additional measurements with different laser pulse durations are used to independently show that there is also a dependence on the laser excitation irradiance, irrespective of fluence. A simple method to correct for these effects is demonstrated and sources of error are analysed in detail. Temperature images in a Re = 2000 jet of air heated to 363 K with a precision of 4 K (1.1%) are presented. The sensitivity of ZnO increases across the tested temperature range 300-500 K, so that at 500 K, using a seeding density of 2 x 1011 particles/m3, a precision of 3 K (0.6%) is feasible. This new phosphor extends the capabilities of this versatile technique toward the study of flows with small temperature variations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles

Benoit Fond, Christopher Abram, Andrew L Heyes, Andreas M Kempf, and Frank Beyrau
Opt. Express 20(20) 22118-22133 (2012)

Thermographic laser Doppler velocimetry using the phase-shifted luminescence of BAM:Eu2+ phosphor particles for thermometry

Anthony O. Ojo, Benoit Fond, Christopher Abram, Berend G. M. Van Wachem, Andrew L. Heyes, and Frank Beyrau
Opt. Express 25(10) 11833-11843 (2017)

Investigation of the tin-doped phosphor (Sr,Mg)3(PO4)2:Sn2+ for fluid temperature measurements

Benoît Fond, Christopher Abram, Miriam Pougin, and Frank Beyrau
Opt. Mater. Express 9(2) 802-818 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20(20), 22118–22133 (2012).
    [Crossref] [PubMed]
  2. . Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008)
    [Crossref]
  3. S. Someya, Y. Okura, M. Uchida, Y. Sato, and K. Okamoto, “Combined velocity and temperature imaging of gas flow in an engine cylinder,” Opt. Lett. 37(23), 4964–4966 (2012).
    [Crossref] [PubMed]
  4. N.J. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6, 2013–01–0562 (2013).
    [Crossref]
  5. C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
    [Crossref]
  6. R. Hasegawa, I. Sakata, H. Yanagihara, G. Särner, M. Richter, M. Aldén, and B. Johansson, “Two-dimensional temperature measurements in engine combustion using phosphor thermometry,” SAE Paper, 2007–01–1883 (2007).
    [Crossref]
  7. D. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B 106(2), 435–444 (2012).
    [Crossref]
  8. J. Jordan and D. A. Rothamer, “Pr:YAG temperature imaging in gas-phase flows,” Appl. Phys. B 110(3), 285–291 (2013).
    [Crossref]
  9. M. Lawrence, H. Zhao, and L. Ganippa, “Gas phase thermometry of hot turbulent jets using laser induced phosphorescence,” Opt. Express 21(10), 12260–12281 (2013).
    [Crossref] [PubMed]
  10. J. P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten, and L. P. H. de Goey, “Gas-phase thermometry in a high-pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” Appl. Phys. B 111(3), 469–481 (2013).
    [Crossref]
  11. G. Jovicic, L. Zigan, S. Will, and A. Leipertz, “Phosphor thermometry in turbulent hot gas flows applying Dy:YAG and Dy:Er:YAG particles,” Meas. Sci. Technol. 26, 9pp (2015).
  12. G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett. 33(12), 1327–1329 (2008).
    [Crossref] [PubMed]
  13. G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19, 10pp (2008).
  14. B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
    [Crossref]
  15. P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide (review),” Opt. Spectrosc. 111(5), 776–785 (2011).
    [Crossref]
  16. W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC, 2007) 2nd Ed.
  17. Z. S. Liu, X. P. Jing, H. W. Song, and L. B. Fan, “The relationships between UV emission and green emission in ZnO phosphor,” Wuli Huaxue Xuebao 22, 1383–1387 (2006).
  18. L. Schneider, S. Halm, G. Bacher, A. Roy, and F. E. Kruis, “Photoluminescence spectroscopy of single crystalline ZnO-nanoparticles from the gas phase,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 3(4), 1014–1017 (2006).
  19. B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B 118(3), 393–399 (2015).
    [Crossref]
  20. B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for Thermographic Particle Image Velocimetry,” manuscript submitted to Appl. Phys. B-Lasers O. (2015).
  21. J. H. Frank, S. A. Kaiser, and M. B. Long, “Multiscalar imaging in partially premixed jet flames with argon dilution,” Combust. Flame 143(4), 507–523 (2005).
    [Crossref]
  22. S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14(22), 10171–10180 (2006).
    [Crossref] [PubMed]
  23. C. Klingshirn, “ZnO: material, physics and applications,” ChemPhysChem 8(6), 782–803 (2007).
    [Crossref] [PubMed]

2015 (1)

B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B 118(3), 393–399 (2015).
[Crossref]

2013 (4)

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

J. Jordan and D. A. Rothamer, “Pr:YAG temperature imaging in gas-phase flows,” Appl. Phys. B 110(3), 285–291 (2013).
[Crossref]

M. Lawrence, H. Zhao, and L. Ganippa, “Gas phase thermometry of hot turbulent jets using laser induced phosphorescence,” Opt. Express 21(10), 12260–12281 (2013).
[Crossref] [PubMed]

J. P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten, and L. P. H. de Goey, “Gas-phase thermometry in a high-pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” Appl. Phys. B 111(3), 469–481 (2013).
[Crossref]

2012 (3)

2011 (2)

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[Crossref]

P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide (review),” Opt. Spectrosc. 111(5), 776–785 (2011).
[Crossref]

2008 (2)

. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008)
[Crossref]

G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett. 33(12), 1327–1329 (2008).
[Crossref] [PubMed]

2007 (1)

C. Klingshirn, “ZnO: material, physics and applications,” ChemPhysChem 8(6), 782–803 (2007).
[Crossref] [PubMed]

2006 (3)

Z. S. Liu, X. P. Jing, H. W. Song, and L. B. Fan, “The relationships between UV emission and green emission in ZnO phosphor,” Wuli Huaxue Xuebao 22, 1383–1387 (2006).

L. Schneider, S. Halm, G. Bacher, A. Roy, and F. E. Kruis, “Photoluminescence spectroscopy of single crystalline ZnO-nanoparticles from the gas phase,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 3(4), 1014–1017 (2006).

S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14(22), 10171–10180 (2006).
[Crossref] [PubMed]

2005 (1)

J. H. Frank, S. A. Kaiser, and M. B. Long, “Multiscalar imaging in partially premixed jet flames with argon dilution,” Combust. Flame 143(4), 507–523 (2005).
[Crossref]

Abram, C.

B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B 118(3), 393–399 (2015).
[Crossref]

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20(20), 22118–22133 (2012).
[Crossref] [PubMed]

Aldén, M.

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[Crossref]

G. Särner, M. Richter, and M. Aldén, “Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence,” Opt. Lett. 33(12), 1327–1329 (2008).
[Crossref] [PubMed]

. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008)
[Crossref]

Bacher, G.

L. Schneider, S. Halm, G. Bacher, A. Roy, and F. E. Kruis, “Photoluminescence spectroscopy of single crystalline ZnO-nanoparticles from the gas phase,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 3(4), 1014–1017 (2006).

Beyrau, F.

B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B 118(3), 393–399 (2015).
[Crossref]

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20(20), 22118–22133 (2012).
[Crossref] [PubMed]

S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14(22), 10171–10180 (2006).
[Crossref] [PubMed]

Dam, N. J.

J. P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten, and L. P. H. de Goey, “Gas-phase thermometry in a high-pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” Appl. Phys. B 111(3), 469–481 (2013).
[Crossref]

de Goey, L. P. H.

J. P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten, and L. P. H. de Goey, “Gas-phase thermometry in a high-pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” Appl. Phys. B 111(3), 469–481 (2013).
[Crossref]

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[Crossref]

Fan, L. B.

Z. S. Liu, X. P. Jing, H. W. Song, and L. B. Fan, “The relationships between UV emission and green emission in ZnO phosphor,” Wuli Huaxue Xuebao 22, 1383–1387 (2006).

Fond, B.

B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B 118(3), 393–399 (2015).
[Crossref]

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20(20), 22118–22133 (2012).
[Crossref] [PubMed]

Frank, J. H.

J. H. Frank, S. A. Kaiser, and M. B. Long, “Multiscalar imaging in partially premixed jet flames with argon dilution,” Combust. Flame 143(4), 507–523 (2005).
[Crossref]

Ganippa, L.

Halm, S.

L. Schneider, S. Halm, G. Bacher, A. Roy, and F. E. Kruis, “Photoluminescence spectroscopy of single crystalline ZnO-nanoparticles from the gas phase,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 3(4), 1014–1017 (2006).

Heyes, A. L.

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

B. Fond, C. Abram, A. L. Heyes, A. M. Kempf, and F. Beyrau, “Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles,” Opt. Express 20(20), 22118–22133 (2012).
[Crossref] [PubMed]

Jing, X. P.

Z. S. Liu, X. P. Jing, H. W. Song, and L. B. Fan, “The relationships between UV emission and green emission in ZnO phosphor,” Wuli Huaxue Xuebao 22, 1383–1387 (2006).

Jordan, J.

J. Jordan and D. A. Rothamer, “Pr:YAG temperature imaging in gas-phase flows,” Appl. Phys. B 110(3), 285–291 (2013).
[Crossref]

D. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B 106(2), 435–444 (2012).
[Crossref]

Kaiser, S. A.

J. H. Frank, S. A. Kaiser, and M. B. Long, “Multiscalar imaging in partially premixed jet flames with argon dilution,” Combust. Flame 143(4), 507–523 (2005).
[Crossref]

Kempf, A. M.

Khodyuk, I. V.

P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide (review),” Opt. Spectrosc. 111(5), 776–785 (2011).
[Crossref]

Klingshirn, C.

C. Klingshirn, “ZnO: material, physics and applications,” ChemPhysChem 8(6), 782–803 (2007).
[Crossref] [PubMed]

Konnov, A. A.

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[Crossref]

Kruis, F. E.

L. Schneider, S. Halm, G. Bacher, A. Roy, and F. E. Kruis, “Photoluminescence spectroscopy of single crystalline ZnO-nanoparticles from the gas phase,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 3(4), 1014–1017 (2006).

Lawrence, M.

Leipertz, A.

Li, B.

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[Crossref]

Li, Z. S.

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[Crossref]

Linden, J.

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[Crossref]

Linne, M. A.

. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008)
[Crossref]

Liu, Z. S.

Z. S. Liu, X. P. Jing, H. W. Song, and L. B. Fan, “The relationships between UV emission and green emission in ZnO phosphor,” Wuli Huaxue Xuebao 22, 1383–1387 (2006).

Löffler, M.

Long, M. B.

J. H. Frank, S. A. Kaiser, and M. B. Long, “Multiscalar imaging in partially premixed jet flames with argon dilution,” Combust. Flame 143(4), 507–523 (2005).
[Crossref]

Luijten, C. C. M.

J. P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten, and L. P. H. de Goey, “Gas-phase thermometry in a high-pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” Appl. Phys. B 111(3), 469–481 (2013).
[Crossref]

Okamoto, K.

Okura, Y.

Omrane, .

. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008)
[Crossref]

Petersson, P.

. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008)
[Crossref]

Pfadler, S.

Richter, M.

Rodnyi, P. A.

P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide (review),” Opt. Spectrosc. 111(5), 776–785 (2011).
[Crossref]

Rothamer, D. A.

J. Jordan and D. A. Rothamer, “Pr:YAG temperature imaging in gas-phase flows,” Appl. Phys. B 110(3), 285–291 (2013).
[Crossref]

D. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B 106(2), 435–444 (2012).
[Crossref]

Roy, A.

L. Schneider, S. Halm, G. Bacher, A. Roy, and F. E. Kruis, “Photoluminescence spectroscopy of single crystalline ZnO-nanoparticles from the gas phase,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 3(4), 1014–1017 (2006).

Särner, G.

Sato, Y.

Schneider, L.

L. Schneider, S. Halm, G. Bacher, A. Roy, and F. E. Kruis, “Photoluminescence spectroscopy of single crystalline ZnO-nanoparticles from the gas phase,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 3(4), 1014–1017 (2006).

Someya, S.

Song, H. W.

Z. S. Liu, X. P. Jing, H. W. Song, and L. B. Fan, “The relationships between UV emission and green emission in ZnO phosphor,” Wuli Huaxue Xuebao 22, 1383–1387 (2006).

Uchida, M.

van Lipzig, J. P. J.

J. P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten, and L. P. H. de Goey, “Gas-phase thermometry in a high-pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” Appl. Phys. B 111(3), 469–481 (2013).
[Crossref]

Yu, M.

J. P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten, and L. P. H. de Goey, “Gas-phase thermometry in a high-pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” Appl. Phys. B 111(3), 469–481 (2013).
[Crossref]

Zhao, H.

Appl. Phys. B (6)

D. A. Rothamer and J. Jordan, “Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors,” Appl. Phys. B 106(2), 435–444 (2012).
[Crossref]

J. Jordan and D. A. Rothamer, “Pr:YAG temperature imaging in gas-phase flows,” Appl. Phys. B 110(3), 285–291 (2013).
[Crossref]

. Omrane, P. Petersson, M. Aldén, and M. A. Linne, “Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors,” Appl. Phys. B 92(1), 99–102 (2008)
[Crossref]

J. P. J. van Lipzig, M. Yu, N. J. Dam, C. C. M. Luijten, and L. P. H. de Goey, “Gas-phase thermometry in a high-pressure cell using BaMgAl10O17:Eu as a thermographic phosphor,” Appl. Phys. B 111(3), 469–481 (2013).
[Crossref]

C. Abram, B. Fond, A. L. Heyes, and F. Beyrau, “High-speed planar thermometry and velocimetry using thermographic phosphor particles,” Appl. Phys. B 111(2), 155–160 (2013).
[Crossref]

B. Fond, C. Abram, and F. Beyrau, “On the characterisation of tracer particles for thermographic particle image velocimetry,” Appl. Phys. B 118(3), 393–399 (2015).
[Crossref]

ChemPhysChem (1)

C. Klingshirn, “ZnO: material, physics and applications,” ChemPhysChem 8(6), 782–803 (2007).
[Crossref] [PubMed]

Combust. Flame (1)

J. H. Frank, S. A. Kaiser, and M. B. Long, “Multiscalar imaging in partially premixed jet flames with argon dilution,” Combust. Flame 143(4), 507–523 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Spectrosc. (1)

P. A. Rodnyi and I. V. Khodyuk, “Optical and luminescence properties of zinc oxide (review),” Opt. Spectrosc. 111(5), 776–785 (2011).
[Crossref]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

L. Schneider, S. Halm, G. Bacher, A. Roy, and F. E. Kruis, “Photoluminescence spectroscopy of single crystalline ZnO-nanoparticles from the gas phase,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 3(4), 1014–1017 (2006).

Proc. Combust. Inst. (1)

B. Li, J. Linden, Z. S. Li, A. A. Konnov, M. Aldén, and L. P. H. de Goey, “Accurate measurements of laminar burning velocity using the heat flux method and thermographic phosphor technique,” Proc. Combust. Inst. 33(1), 939–946 (2011).
[Crossref]

Wuli Huaxue Xuebao (1)

Z. S. Liu, X. P. Jing, H. W. Song, and L. B. Fan, “The relationships between UV emission and green emission in ZnO phosphor,” Wuli Huaxue Xuebao 22, 1383–1387 (2006).

Other (6)

W. M. Yen, S. Shionoya, and H. Yamamoto, Phosphor Handbook (CRC, 2007) 2nd Ed.

B. Fond, C. Abram, and F. Beyrau, “Characterisation of the luminescence properties of BAM:Eu2+ particles as a tracer for Thermographic Particle Image Velocimetry,” manuscript submitted to Appl. Phys. B-Lasers O. (2015).

N.J. Neal, J. Jordan, and D. Rothamer, “Simultaneous measurements of in-cylinder temperature and velocity distribution in a small-bore diesel engine using thermographic phosphors,” SAE Int. J. Engines 6, 2013–01–0562 (2013).
[Crossref]

R. Hasegawa, I. Sakata, H. Yanagihara, G. Särner, M. Richter, M. Aldén, and B. Johansson, “Two-dimensional temperature measurements in engine combustion using phosphor thermometry,” SAE Paper, 2007–01–1883 (2007).
[Crossref]

G. Jovicic, L. Zigan, S. Will, and A. Leipertz, “Phosphor thermometry in turbulent hot gas flows applying Dy:YAG and Dy:Er:YAG particles,” Meas. Sci. Technol. 26, 9pp (2015).

G. Särner, M. Richter, and M. Aldén, “Investigations of blue emitting phosphors for thermometry,” Meas. Sci. Technol. 19, 10pp (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 SEM images of ZnO powder (96479, Sigma-Aldrich).
Fig. 2
Fig. 2 Left: Normalised spectra of two different production lots of the same ZnO (1) (2), and ZnO:Zn, recorded at 296 K using a laser fluence of 2.5 mJ/cm2. Right: Normalised ZnO spectra recorded using a fluence of 5 mJ/cm2. The temperature interval between curves is 15 K. The transmission profiles (provided by the manufacturers) of the filters used in the gas-phase characterisation study are shown in colour: blue: 387-11 nm (notation CWL-FWHM) and red: 425-50 nm. These transmission profiles have been convoluted with the CCD quantum efficiency and reflection/transmission ratio of the beamsplitter, and normalised to the peak transmission of the 425-50 channel. The corrected profiles are used in section 3 to evaluate the gas-phase data.
Fig. 3
Fig. 3 Setup for phosphor characterisation and temperature imaging, including the particle counting system.
Fig. 4
Fig. 4 Unfiltered luminescence signal of seeded ZnO and BAM:Eu particles recorded using an excitation fluence of 50 mJ/cm2 at 296 K. Each datapoint represents the average intensity of a single sampled image.
Fig. 5
Fig. 5 Temperature calibration curves and sensitivity for ZnO and BAM:Eu. Calibration data for ZnO is derived from flow measurements in the heated gas; for BAM:Eu, intensity ratios were extracted from digitally-integrated luminescence spectra (from [5]). A fit (of the form a + bIRc, where a, b and c are constants and IR is the intensity ratio) to the datapoints is shown. The evaluated sensitivity (%/K), based on the fit of intensity ratio to temperature, is plotted in dashed lines and can be read on the right axis.
Fig. 6
Fig. 6 Left: Normalised single shot intensity ratio standard deviation against particle number density for ZnO and BAM:Eu for an excitation fluence of 50 mJ/cm2 at 296 K. Each datapoint is the intensity ratio standard deviation of a single sampled image. Right: Temperature precision. Results were evaluated from data on the left using the calibration curves for each phosphor from Fig. 5.
Fig. 7
Fig. 7 Normalised unfiltered luminescence signal per particle with increasing temperature. The error bar corresponds to the standard deviation of five repeated measurement sequences at 295 K.
Fig. 8
Fig. 8 Left: Evolution of luminescence signal (normalised to the signal in the saturated regime) with laser fluence, at 296 K. Each datapoint represents the average intensity of a single sampled image. Right: Dependence of the intensity ratio on the laser fluence, at 296 K. Each datapoint is the average intensity ratio of a single sampled image.
Fig. 9
Fig. 9 Temperature calibration points at fluences of 5, 10, 15 and 20 mJ/cm2, through which curves have been fitted to guide the eye. Left: absolute intensity ratio. Right: data normalised at 295 K.
Fig. 10
Fig. 10 Temperature fields in a turbulent jet (T = 363 K). Left: single shot. Right: average field compiled from 100 single shot images. Image size has been reduced to 20 mm in the x-direction.
Fig. 11
Fig. 11 Effect of the laser fluence on the intensity ratio for excitation using pulse durations of 10 ns and 170 ns.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ=φ( x,y,T,F )
φ( x,y,T,F )=α( x,y )β( T )χ( F( x,y ) )
φ n = φ( x,y,T,F ) φ( x,y, T ref ,F ) = α( x,y )β( T )χ( F( x,y ) ) α( x,y )β( T ref )χ( F( x,y ) ) = β( T ) β( T ref )

Metrics