Abstract

The purpose of this study was to describe the design and characterization of a new opto-mechanical artificial eye (OMAE) with accommodative ability. The OMAE design is based on a second-pass configuration where a small source of light is used at the artificial retina plane. A lens whose focal length can be changed electronically was used to add the accommodation capability. The changes in the OMAE’s aberrations with the lens focal length, which effectively changes the accommodative state of the OMAE, were measured with a commercial aberrometer. Changes in power and aberrations with room temperature were also measured. The OMAE’s higher-order aberrations (HOAs) were similar to the ones of the human eye, including the rate at which fourth-order spherical aberration decreased with accommodation. The OMAE design proposed here is simple, and it can be implemented in an optical system to mimic the optics of the human eye.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Opto-mechanical design of a dispersive artificial eye

Mark F. Coughlan, Toshifumi Mihashi, and Alexander V. Goncharov
Appl. Opt. 56(15) 4338-4346 (2017)

Cubic optical elements for an accommodative intraocular lens

Aleksey N. Simonov, Gleb Vdovin, and Michiel C. Rombach
Opt. Express 14(17) 7757-7775 (2006)

Modeling the mechanism of compensation of aberrations in the human eye for accommodation and aging

Juan Tabernero, Esther Berrio, and Pablo Artal
J. Opt. Soc. Am. A 28(9) 1889-1895 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. E. Norrby, “Standardized methods for assessing the imaging quality of intraocular lenses,” Appl. Opt. 34(31), 7327–7333 (1995).
    [Crossref] [PubMed]
  2. P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
    [Crossref] [PubMed]
  3. A. Barcik, J. Nowak, D. Siedlecki, M. Zając, and J. Zarówny, “Physical model of human eye with implantable intraocular lenses,” Proc. SPIE 7141, 71411A (2008).
    [Crossref]
  4. C. E. Campbell, “Wavefront measurements of diffractive and refractive multifocal intraocular lenses in an artificial eye,” J. Refract. Surg. 24(3), 308–311 (2008).
    [PubMed]
  5. R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Physical human model eye and methods of its use to analyse optical performance of soft contact lenses,” Opt. Express 18(16), 16868–16882 (2010).
    [Crossref] [PubMed]
  6. R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Optical performance of multifocal soft contact lenses via a single-pass method,” Optom. Vis. Sci. 89(8), 1107–1118 (2012).
    [Crossref] [PubMed]
  7. D. Loshin and G. Fry, “Aberrations of spherocylindrical spectacle lenses,” Am. J. Optom. Physiol. Opt. 53(3), 124–136 (1976).
    [Crossref] [PubMed]
  8. D. A. Heath, G. L. McCormack, and W. H. Vaughan, “Mapping of ophthalmic lens distortions with a pinhole camera,” Am. J. Optom. Physiol. Opt. 64(10), 731–733 (1987).
    [Crossref] [PubMed]
  9. C. Zhou, W. Wang, K. Yang, X. Chai, and Q. Ren, “Measurement and comparison of the optical performance of an ophthalmic lens based on a Hartmann-Shack wavefront sensor in real viewing conditions,” Appl. Opt. 47(34), 6434–6441 (2008).
    [Crossref] [PubMed]
  10. L. A. Carvalho, J. C. Castro, and L. A. Carvalho, “Measuring higher order optical aberrations of the human eye: techniques and applications,” Braz. J. Med. Biol. Res. 35(11), 1395–1406 (2002).
    [Crossref] [PubMed]
  11. N. Sredar, H. Queener, C. Li, C. Ting, H. Hofer, and J. Porter, “Wavefront sensorless confocal adaptive optics scanning laser ophthalmoscopy in the human eye,” J. Vis. 10(15), 58 (2010).
    [Crossref]
  12. S. Chiesa and J. C. Dainty, “Calibration and performance of a pyramid wavefront sensor for the eye,” J. Mod. Opt. 59(16), 1415–1427 (2012).
    [Crossref]
  13. N. R. Dodaro and D. P. Maxwell., “An eye for an eye. A simplified model for teaching,” Arch. Ophthalmol. 113(6), 824–826 (1995).
    [Crossref] [PubMed]
  14. L. Donovan, G. Brian, and R. du Toit, “A device to aid the teaching of retinoscopy in low-resource countries,” Br. J. Ophthalmol. 92(2), 294 (2008).
    [Crossref] [PubMed]
  15. International Organization for Standardization, “ISO 11979-2:2014. Ophthalmic implants - Intraocular lenses - Part 2: Optical properties and test methods,” (2014).
  16. International Organization for Standardization, “ISO 11979-3:2012. Ophthalmic implants - Intraocular lenses - Part 3: Mechanical properties and test methods,” (2012).
  17. E. Moreno-Barriuso and R. Navarro, “Laser Ray Tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17(6), 974–985 (2000).
    [Crossref] [PubMed]
  18. E. J. Fernández and P. Artal, “Dynamic eye model for adaptive optics testing,” Appl. Opt. 46(28), 6971–6977 (2007).
    [Crossref] [PubMed]
  19. R. A. Applegate, L. N. Thibos, M. D. Twa, and E. J. Sarver, “Importance of fixation, pupil center, and reference axis in ocular wavefront sensing, videokeratography, and retinal image quality,” J. Cataract Refract. Surg. 35(1), 139–152 (2009).
    [Crossref] [PubMed]
  20. P. G. Gobbi, F. Fasce, S. Bozza, G. Calori, and R. Brancato, “Far and near visual acuity with multifocal intraocular lenses in an optomechanical eye model with imaging capability,” J. Cataract Refract. Surg. 33(6), 1082–1094 (2007).
    [Crossref] [PubMed]
  21. A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
    [Crossref] [PubMed]
  22. N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15(4), 441–459 (1973).
    [Crossref] [PubMed]
  23. A. J. Lang, V. Lakshminarayanan, and V. Portney, “Phenomenological model for interpreting the clinical significance of the in vitro optical transfer function,” J. Opt. Soc. Am. A 10(7), 1600–1610 (1993).
    [Crossref] [PubMed]
  24. M. S. Millán Garcia-Varela, F. Alba Bueno, and F. Vega Lerín, Experiment design for through-focus testing of intraocular lenses” in Proc. SPIE 8785, 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, 8785CP.M. F. Martins Costa, ed. (SPIE, 2013).
  25. J. S. Pepose, D. Wang, and G. E. Altmann, “Comparison of through-focus image sharpness across five presbyopia-correcting intraocular lenses,” Am. J. Ophthalmol. 154(1), 20–28 (2012).
    [Crossref] [PubMed]
  26. M. Sheehan, A. Goncharov, and C. Dainty, “Design of a versatile clinical aberrometer” in Proc. SPIE 5962, Optical Design and Engineering II, 59620M.L. Mazuray and R. Wartmann, eds. (SPIE, 2005).
  27. A. G. Optotune, “Fast Electrically Tunable Lens. EL-10-30-Series Datasheet,” http://www.optotune.com/images/products/Optotune%20EL-10-30.pdf .
  28. M. Curtis and F. Farago, Handbook of Dimensional Measurement (Industrial Press, 2013).
  29. N. Visser, T. T. Berendschot, F. Verbakel, A. N. Tan, J. de Brabander, and R. M. Nuijts, “Evaluation of the comparability and repeatability of four wavefront aberrometers,” Invest. Ophthalmol. Vis. Sci. 52(3), 1302–1311 (2011).
    [Crossref] [PubMed]
  30. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
    [Crossref] [PubMed]
  31. P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
    [Crossref] [PubMed]
  32. P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, “Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image,” Vision Res. 35(17), 2415–2429 (1995).
    [Crossref] [PubMed]
  33. P. B. Kruger, N. López-Gil, and L. R. Stark, “Accommodation and the Stiles-Crawford effect: theory and a case study,” Ophthalmic Physiol. Opt. 21(5), 339–351 (2001).
    [Crossref] [PubMed]
  34. N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
    [Crossref] [PubMed]
  35. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
  36. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000).
  37. T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg. 32(12), 2064–2074 (2006).
    [Crossref] [PubMed]
  38. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
    [Crossref] [PubMed]
  39. N. López-Gil and V. Fernández-Sánchez, “The change of spherical aberration during accommodation and its effect on the accommodation response,” J. Vis. 10(13), 12 (2010).
    [Crossref] [PubMed]
  40. N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
    [Crossref] [PubMed]

2013 (1)

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

2012 (3)

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Optical performance of multifocal soft contact lenses via a single-pass method,” Optom. Vis. Sci. 89(8), 1107–1118 (2012).
[Crossref] [PubMed]

S. Chiesa and J. C. Dainty, “Calibration and performance of a pyramid wavefront sensor for the eye,” J. Mod. Opt. 59(16), 1415–1427 (2012).
[Crossref]

J. S. Pepose, D. Wang, and G. E. Altmann, “Comparison of through-focus image sharpness across five presbyopia-correcting intraocular lenses,” Am. J. Ophthalmol. 154(1), 20–28 (2012).
[Crossref] [PubMed]

2011 (1)

N. Visser, T. T. Berendschot, F. Verbakel, A. N. Tan, J. de Brabander, and R. M. Nuijts, “Evaluation of the comparability and repeatability of four wavefront aberrometers,” Invest. Ophthalmol. Vis. Sci. 52(3), 1302–1311 (2011).
[Crossref] [PubMed]

2010 (3)

N. Sredar, H. Queener, C. Li, C. Ting, H. Hofer, and J. Porter, “Wavefront sensorless confocal adaptive optics scanning laser ophthalmoscopy in the human eye,” J. Vis. 10(15), 58 (2010).
[Crossref]

N. López-Gil and V. Fernández-Sánchez, “The change of spherical aberration during accommodation and its effect on the accommodation response,” J. Vis. 10(13), 12 (2010).
[Crossref] [PubMed]

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Physical human model eye and methods of its use to analyse optical performance of soft contact lenses,” Opt. Express 18(16), 16868–16882 (2010).
[Crossref] [PubMed]

2009 (1)

R. A. Applegate, L. N. Thibos, M. D. Twa, and E. J. Sarver, “Importance of fixation, pupil center, and reference axis in ocular wavefront sensing, videokeratography, and retinal image quality,” J. Cataract Refract. Surg. 35(1), 139–152 (2009).
[Crossref] [PubMed]

2008 (5)

A. Barcik, J. Nowak, D. Siedlecki, M. Zając, and J. Zarówny, “Physical model of human eye with implantable intraocular lenses,” Proc. SPIE 7141, 71411A (2008).
[Crossref]

C. E. Campbell, “Wavefront measurements of diffractive and refractive multifocal intraocular lenses in an artificial eye,” J. Refract. Surg. 24(3), 308–311 (2008).
[PubMed]

C. Zhou, W. Wang, K. Yang, X. Chai, and Q. Ren, “Measurement and comparison of the optical performance of an ophthalmic lens based on a Hartmann-Shack wavefront sensor in real viewing conditions,” Appl. Opt. 47(34), 6434–6441 (2008).
[Crossref] [PubMed]

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[Crossref] [PubMed]

L. Donovan, G. Brian, and R. du Toit, “A device to aid the teaching of retinoscopy in low-resource countries,” Br. J. Ophthalmol. 92(2), 294 (2008).
[Crossref] [PubMed]

2007 (3)

E. J. Fernández and P. Artal, “Dynamic eye model for adaptive optics testing,” Appl. Opt. 46(28), 6971–6977 (2007).
[Crossref] [PubMed]

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

P. G. Gobbi, F. Fasce, S. Bozza, G. Calori, and R. Brancato, “Far and near visual acuity with multifocal intraocular lenses in an optomechanical eye model with imaging capability,” J. Cataract Refract. Surg. 33(6), 1082–1094 (2007).
[Crossref] [PubMed]

2006 (2)

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[Crossref] [PubMed]

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg. 32(12), 2064–2074 (2006).
[Crossref] [PubMed]

2004 (2)

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

2002 (1)

L. A. Carvalho, J. C. Castro, and L. A. Carvalho, “Measuring higher order optical aberrations of the human eye: techniques and applications,” Braz. J. Med. Biol. Res. 35(11), 1395–1406 (2002).
[Crossref] [PubMed]

2001 (1)

P. B. Kruger, N. López-Gil, and L. R. Stark, “Accommodation and the Stiles-Crawford effect: theory and a case study,” Ophthalmic Physiol. Opt. 21(5), 339–351 (2001).
[Crossref] [PubMed]

2000 (1)

1995 (3)

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, “Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image,” Vision Res. 35(17), 2415–2429 (1995).
[Crossref] [PubMed]

N. E. Norrby, “Standardized methods for assessing the imaging quality of intraocular lenses,” Appl. Opt. 34(31), 7327–7333 (1995).
[Crossref] [PubMed]

N. R. Dodaro and D. P. Maxwell., “An eye for an eye. A simplified model for teaching,” Arch. Ophthalmol. 113(6), 824–826 (1995).
[Crossref] [PubMed]

1993 (1)

1987 (1)

D. A. Heath, G. L. McCormack, and W. H. Vaughan, “Mapping of ophthalmic lens distortions with a pinhole camera,” Am. J. Optom. Physiol. Opt. 64(10), 731–733 (1987).
[Crossref] [PubMed]

1986 (1)

P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref] [PubMed]

1976 (1)

D. Loshin and G. Fry, “Aberrations of spherocylindrical spectacle lenses,” Am. J. Optom. Physiol. Opt. 53(3), 124–136 (1976).
[Crossref] [PubMed]

1973 (1)

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15(4), 441–459 (1973).
[Crossref] [PubMed]

Aggarwala, K. R.

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, “Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image,” Vision Res. 35(17), 2415–2429 (1995).
[Crossref] [PubMed]

Altmann, G. E.

J. S. Pepose, D. Wang, and G. E. Altmann, “Comparison of through-focus image sharpness across five presbyopia-correcting intraocular lenses,” Am. J. Ophthalmol. 154(1), 20–28 (2012).
[Crossref] [PubMed]

Applegate, R. A.

R. A. Applegate, L. N. Thibos, M. D. Twa, and E. J. Sarver, “Importance of fixation, pupil center, and reference axis in ocular wavefront sensing, videokeratography, and retinal image quality,” J. Cataract Refract. Surg. 35(1), 139–152 (2009).
[Crossref] [PubMed]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Arianpour, A.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Artal, P.

Bakaraju, R. C.

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Optical performance of multifocal soft contact lenses via a single-pass method,” Optom. Vis. Sci. 89(8), 1107–1118 (2012).
[Crossref] [PubMed]

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Physical human model eye and methods of its use to analyse optical performance of soft contact lenses,” Opt. Express 18(16), 16868–16882 (2010).
[Crossref] [PubMed]

Barcik, A.

A. Barcik, J. Nowak, D. Siedlecki, M. Zając, and J. Zarówny, “Physical model of human eye with implantable intraocular lenses,” Proc. SPIE 7141, 71411A (2008).
[Crossref]

Barnett, J. K.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[Crossref] [PubMed]

Berendschot, T. T.

N. Visser, T. T. Berendschot, F. Verbakel, A. N. Tan, J. de Brabander, and R. M. Nuijts, “Evaluation of the comparability and repeatability of four wavefront aberrometers,” Invest. Ophthalmol. Vis. Sci. 52(3), 1302–1311 (2011).
[Crossref] [PubMed]

Bozza, S.

P. G. Gobbi, F. Fasce, S. Bozza, G. Calori, and R. Brancato, “Far and near visual acuity with multifocal intraocular lenses in an optomechanical eye model with imaging capability,” J. Cataract Refract. Surg. 33(6), 1082–1094 (2007).
[Crossref] [PubMed]

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[Crossref] [PubMed]

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Brancato, R.

P. G. Gobbi, F. Fasce, S. Bozza, G. Calori, and R. Brancato, “Far and near visual acuity with multifocal intraocular lenses in an optomechanical eye model with imaging capability,” J. Cataract Refract. Surg. 33(6), 1082–1094 (2007).
[Crossref] [PubMed]

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[Crossref] [PubMed]

Brian, G.

L. Donovan, G. Brian, and R. du Toit, “A device to aid the teaching of retinoscopy in low-resource countries,” Br. J. Ophthalmol. 92(2), 294 (2008).
[Crossref] [PubMed]

Brown, N.

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15(4), 441–459 (1973).
[Crossref] [PubMed]

Calori, G.

P. G. Gobbi, F. Fasce, S. Bozza, G. Calori, and R. Brancato, “Far and near visual acuity with multifocal intraocular lenses in an optomechanical eye model with imaging capability,” J. Cataract Refract. Surg. 33(6), 1082–1094 (2007).
[Crossref] [PubMed]

Campbell, C. E.

C. E. Campbell, “Wavefront measurements of diffractive and refractive multifocal intraocular lenses in an artificial eye,” J. Refract. Surg. 24(3), 308–311 (2008).
[PubMed]

Carvalho, L. A.

L. A. Carvalho, J. C. Castro, and L. A. Carvalho, “Measuring higher order optical aberrations of the human eye: techniques and applications,” Braz. J. Med. Biol. Res. 35(11), 1395–1406 (2002).
[Crossref] [PubMed]

L. A. Carvalho, J. C. Castro, and L. A. Carvalho, “Measuring higher order optical aberrations of the human eye: techniques and applications,” Braz. J. Med. Biol. Res. 35(11), 1395–1406 (2002).
[Crossref] [PubMed]

Castro, J. C.

L. A. Carvalho, J. C. Castro, and L. A. Carvalho, “Measuring higher order optical aberrations of the human eye: techniques and applications,” Braz. J. Med. Biol. Res. 35(11), 1395–1406 (2002).
[Crossref] [PubMed]

Chai, X.

Cheng, H.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[Crossref] [PubMed]

Chiesa, S.

S. Chiesa and J. C. Dainty, “Calibration and performance of a pyramid wavefront sensor for the eye,” J. Mod. Opt. 59(16), 1415–1427 (2012).
[Crossref]

Dainty, J. C.

S. Chiesa and J. C. Dainty, “Calibration and performance of a pyramid wavefront sensor for the eye,” J. Mod. Opt. 59(16), 1415–1427 (2012).
[Crossref]

de Brabander, J.

N. Visser, T. T. Berendschot, F. Verbakel, A. N. Tan, J. de Brabander, and R. M. Nuijts, “Evaluation of the comparability and repeatability of four wavefront aberrometers,” Invest. Ophthalmol. Vis. Sci. 52(3), 1302–1311 (2011).
[Crossref] [PubMed]

Dodaro, N. R.

N. R. Dodaro and D. P. Maxwell., “An eye for an eye. A simplified model for teaching,” Arch. Ophthalmol. 113(6), 824–826 (1995).
[Crossref] [PubMed]

Donovan, L.

L. Donovan, G. Brian, and R. du Toit, “A device to aid the teaching of retinoscopy in low-resource countries,” Br. J. Ophthalmol. 92(2), 294 (2008).
[Crossref] [PubMed]

du Toit, R.

L. Donovan, G. Brian, and R. du Toit, “A device to aid the teaching of retinoscopy in low-resource countries,” Br. J. Ophthalmol. 92(2), 294 (2008).
[Crossref] [PubMed]

Ehrmann, K.

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Optical performance of multifocal soft contact lenses via a single-pass method,” Optom. Vis. Sci. 89(8), 1107–1118 (2012).
[Crossref] [PubMed]

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Physical human model eye and methods of its use to analyse optical performance of soft contact lenses,” Opt. Express 18(16), 16868–16882 (2010).
[Crossref] [PubMed]

Falk, D.

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Optical performance of multifocal soft contact lenses via a single-pass method,” Optom. Vis. Sci. 89(8), 1107–1118 (2012).
[Crossref] [PubMed]

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Physical human model eye and methods of its use to analyse optical performance of soft contact lenses,” Opt. Express 18(16), 16868–16882 (2010).
[Crossref] [PubMed]

Fasce, F.

P. G. Gobbi, F. Fasce, S. Bozza, G. Calori, and R. Brancato, “Far and near visual acuity with multifocal intraocular lenses in an optomechanical eye model with imaging capability,” J. Cataract Refract. Surg. 33(6), 1082–1094 (2007).
[Crossref] [PubMed]

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[Crossref] [PubMed]

Fernández, E. J.

Fernández-Sánchez, V.

N. López-Gil and V. Fernández-Sánchez, “The change of spherical aberration during accommodation and its effect on the accommodation response,” J. Vis. 10(13), 12 (2010).
[Crossref] [PubMed]

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[Crossref] [PubMed]

Ford, J. E.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Fry, G.

D. Loshin and G. Fry, “Aberrations of spherocylindrical spectacle lenses,” Am. J. Optom. Physiol. Opt. 53(3), 124–136 (1976).
[Crossref] [PubMed]

Gobbi, P. G.

P. G. Gobbi, F. Fasce, S. Bozza, G. Calori, and R. Brancato, “Far and near visual acuity with multifocal intraocular lenses in an optomechanical eye model with imaging capability,” J. Cataract Refract. Surg. 33(6), 1082–1094 (2007).
[Crossref] [PubMed]

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[Crossref] [PubMed]

Heath, D. A.

D. A. Heath, G. L. McCormack, and W. H. Vaughan, “Mapping of ophthalmic lens distortions with a pinhole camera,” Am. J. Optom. Physiol. Opt. 64(10), 731–733 (1987).
[Crossref] [PubMed]

Ho, A.

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Optical performance of multifocal soft contact lenses via a single-pass method,” Optom. Vis. Sci. 89(8), 1107–1118 (2012).
[Crossref] [PubMed]

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Physical human model eye and methods of its use to analyse optical performance of soft contact lenses,” Opt. Express 18(16), 16868–16882 (2010).
[Crossref] [PubMed]

Hofer, H.

N. Sredar, H. Queener, C. Li, C. Ting, H. Hofer, and J. Porter, “Wavefront sensorless confocal adaptive optics scanning laser ophthalmoscopy in the human eye,” J. Vis. 10(15), 58 (2010).
[Crossref]

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Kasthurirangan, S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[Crossref] [PubMed]

Kruger, E. S.

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, “Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image,” Vision Res. 35(17), 2415–2429 (1995).
[Crossref] [PubMed]

Kruger, P. B.

P. B. Kruger, N. López-Gil, and L. R. Stark, “Accommodation and the Stiles-Crawford effect: theory and a case study,” Ophthalmic Physiol. Opt. 21(5), 339–351 (2001).
[Crossref] [PubMed]

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, “Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image,” Vision Res. 35(17), 2415–2429 (1995).
[Crossref] [PubMed]

P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref] [PubMed]

Lakshminarayanan, V.

Lang, A. J.

Lara, F.

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[Crossref] [PubMed]

Legras, R.

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[Crossref] [PubMed]

Li, C.

N. Sredar, H. Queener, C. Li, C. Ting, H. Hofer, and J. Porter, “Wavefront sensorless confocal adaptive optics scanning laser ophthalmoscopy in the human eye,” J. Vis. 10(15), 58 (2010).
[Crossref]

Lo, Y.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

López-Gil, N.

N. López-Gil and V. Fernández-Sánchez, “The change of spherical aberration during accommodation and its effect on the accommodation response,” J. Vis. 10(13), 12 (2010).
[Crossref] [PubMed]

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[Crossref] [PubMed]

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

P. B. Kruger, N. López-Gil, and L. R. Stark, “Accommodation and the Stiles-Crawford effect: theory and a case study,” Ophthalmic Physiol. Opt. 21(5), 339–351 (2001).
[Crossref] [PubMed]

Loshin, D.

D. Loshin and G. Fry, “Aberrations of spherocylindrical spectacle lenses,” Am. J. Optom. Physiol. Opt. 53(3), 124–136 (1976).
[Crossref] [PubMed]

Marsack, J. D.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[Crossref] [PubMed]

Mathews, S.

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, “Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image,” Vision Res. 35(17), 2415–2429 (1995).
[Crossref] [PubMed]

Maxwell, D. P.

N. R. Dodaro and D. P. Maxwell., “An eye for an eye. A simplified model for teaching,” Arch. Ophthalmol. 113(6), 824–826 (1995).
[Crossref] [PubMed]

McCormack, G. L.

D. A. Heath, G. L. McCormack, and W. H. Vaughan, “Mapping of ophthalmic lens distortions with a pinhole camera,” Am. J. Optom. Physiol. Opt. 64(10), 731–733 (1987).
[Crossref] [PubMed]

Montés-Micó, R.

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[Crossref] [PubMed]

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

Moreno-Barriuso, E.

Navarro, R.

Nguyen-Khoa, J. L.

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[Crossref] [PubMed]

Norrby, N. E.

Nowak, J.

A. Barcik, J. Nowak, D. Siedlecki, M. Zając, and J. Zarówny, “Physical model of human eye with implantable intraocular lenses,” Proc. SPIE 7141, 71411A (2008).
[Crossref]

Nuijts, R. M.

N. Visser, T. T. Berendschot, F. Verbakel, A. N. Tan, J. de Brabander, and R. M. Nuijts, “Evaluation of the comparability and repeatability of four wavefront aberrometers,” Invest. Ophthalmol. Vis. Sci. 52(3), 1302–1311 (2011).
[Crossref] [PubMed]

Papas, E.

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Optical performance of multifocal soft contact lenses via a single-pass method,” Optom. Vis. Sci. 89(8), 1107–1118 (2012).
[Crossref] [PubMed]

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Physical human model eye and methods of its use to analyse optical performance of soft contact lenses,” Opt. Express 18(16), 16868–16882 (2010).
[Crossref] [PubMed]

Pepose, J. S.

J. S. Pepose, D. Wang, and G. E. Altmann, “Comparison of through-focus image sharpness across five presbyopia-correcting intraocular lenses,” Am. J. Ophthalmol. 154(1), 20–28 (2012).
[Crossref] [PubMed]

Pola, J.

P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref] [PubMed]

Porter, J.

N. Sredar, H. Queener, C. Li, C. Ting, H. Hofer, and J. Porter, “Wavefront sensorless confocal adaptive optics scanning laser ophthalmoscopy in the human eye,” J. Vis. 10(15), 58 (2010).
[Crossref]

Portney, V.

Queener, H.

N. Sredar, H. Queener, C. Li, C. Ting, H. Hofer, and J. Porter, “Wavefront sensorless confocal adaptive optics scanning laser ophthalmoscopy in the human eye,” J. Vis. 10(15), 58 (2010).
[Crossref]

Ren, Q.

Roorda, A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[Crossref] [PubMed]

Salmon, T. O.

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg. 32(12), 2064–2074 (2006).
[Crossref] [PubMed]

Sarver, E. J.

R. A. Applegate, L. N. Thibos, M. D. Twa, and E. J. Sarver, “Importance of fixation, pupil center, and reference axis in ocular wavefront sensing, videokeratography, and retinal image quality,” J. Cataract Refract. Surg. 35(1), 139–152 (2009).
[Crossref] [PubMed]

Schanzlin, D. J.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Siedlecki, D.

A. Barcik, J. Nowak, D. Siedlecki, M. Zając, and J. Zarówny, “Physical model of human eye with implantable intraocular lenses,” Proc. SPIE 7141, 71411A (2008).
[Crossref]

Sredar, N.

N. Sredar, H. Queener, C. Li, C. Ting, H. Hofer, and J. Porter, “Wavefront sensorless confocal adaptive optics scanning laser ophthalmoscopy in the human eye,” J. Vis. 10(15), 58 (2010).
[Crossref]

Stamenov, I.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Stark, L. R.

P. B. Kruger, N. López-Gil, and L. R. Stark, “Accommodation and the Stiles-Crawford effect: theory and a case study,” Ophthalmic Physiol. Opt. 21(5), 339–351 (2001).
[Crossref] [PubMed]

Tan, A. N.

N. Visser, T. T. Berendschot, F. Verbakel, A. N. Tan, J. de Brabander, and R. M. Nuijts, “Evaluation of the comparability and repeatability of four wavefront aberrometers,” Invest. Ophthalmol. Vis. Sci. 52(3), 1302–1311 (2011).
[Crossref] [PubMed]

Thibos, L. N.

R. A. Applegate, L. N. Thibos, M. D. Twa, and E. J. Sarver, “Importance of fixation, pupil center, and reference axis in ocular wavefront sensing, videokeratography, and retinal image quality,” J. Cataract Refract. Surg. 35(1), 139–152 (2009).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Ting, C.

N. Sredar, H. Queener, C. Li, C. Ting, H. Hofer, and J. Porter, “Wavefront sensorless confocal adaptive optics scanning laser ophthalmoscopy in the human eye,” J. Vis. 10(15), 58 (2010).
[Crossref]

Tremblay, E. J.

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

Twa, M. D.

R. A. Applegate, L. N. Thibos, M. D. Twa, and E. J. Sarver, “Importance of fixation, pupil center, and reference axis in ocular wavefront sensing, videokeratography, and retinal image quality,” J. Cataract Refract. Surg. 35(1), 139–152 (2009).
[Crossref] [PubMed]

van de Pol, C.

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg. 32(12), 2064–2074 (2006).
[Crossref] [PubMed]

Vaughan, W. H.

D. A. Heath, G. L. McCormack, and W. H. Vaughan, “Mapping of ophthalmic lens distortions with a pinhole camera,” Am. J. Optom. Physiol. Opt. 64(10), 731–733 (1987).
[Crossref] [PubMed]

Verbakel, F.

N. Visser, T. T. Berendschot, F. Verbakel, A. N. Tan, J. de Brabander, and R. M. Nuijts, “Evaluation of the comparability and repeatability of four wavefront aberrometers,” Invest. Ophthalmol. Vis. Sci. 52(3), 1302–1311 (2011).
[Crossref] [PubMed]

Vilupuru, A. S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[Crossref] [PubMed]

Visser, N.

N. Visser, T. T. Berendschot, F. Verbakel, A. N. Tan, J. de Brabander, and R. M. Nuijts, “Evaluation of the comparability and repeatability of four wavefront aberrometers,” Invest. Ophthalmol. Vis. Sci. 52(3), 1302–1311 (2011).
[Crossref] [PubMed]

Wang, D.

J. S. Pepose, D. Wang, and G. E. Altmann, “Comparison of through-focus image sharpness across five presbyopia-correcting intraocular lenses,” Am. J. Ophthalmol. 154(1), 20–28 (2012).
[Crossref] [PubMed]

Wang, W.

Yager, D.

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, “Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image,” Vision Res. 35(17), 2415–2429 (1995).
[Crossref] [PubMed]

Yang, K.

Zajac, M.

A. Barcik, J. Nowak, D. Siedlecki, M. Zając, and J. Zarówny, “Physical model of human eye with implantable intraocular lenses,” Proc. SPIE 7141, 71411A (2008).
[Crossref]

Zarówny, J.

A. Barcik, J. Nowak, D. Siedlecki, M. Zając, and J. Zarówny, “Physical model of human eye with implantable intraocular lenses,” Proc. SPIE 7141, 71411A (2008).
[Crossref]

Zhou, C.

Am. J. Ophthalmol. (1)

J. S. Pepose, D. Wang, and G. E. Altmann, “Comparison of through-focus image sharpness across five presbyopia-correcting intraocular lenses,” Am. J. Ophthalmol. 154(1), 20–28 (2012).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (2)

D. Loshin and G. Fry, “Aberrations of spherocylindrical spectacle lenses,” Am. J. Optom. Physiol. Opt. 53(3), 124–136 (1976).
[Crossref] [PubMed]

D. A. Heath, G. L. McCormack, and W. H. Vaughan, “Mapping of ophthalmic lens distortions with a pinhole camera,” Am. J. Optom. Physiol. Opt. 64(10), 731–733 (1987).
[Crossref] [PubMed]

Appl. Opt. (3)

Arch. Ophthalmol. (1)

N. R. Dodaro and D. P. Maxwell., “An eye for an eye. A simplified model for teaching,” Arch. Ophthalmol. 113(6), 824–826 (1995).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

L. Donovan, G. Brian, and R. du Toit, “A device to aid the teaching of retinoscopy in low-resource countries,” Br. J. Ophthalmol. 92(2), 294 (2008).
[Crossref] [PubMed]

Braz. J. Med. Biol. Res. (1)

L. A. Carvalho, J. C. Castro, and L. A. Carvalho, “Measuring higher order optical aberrations of the human eye: techniques and applications,” Braz. J. Med. Biol. Res. 35(11), 1395–1406 (2002).
[Crossref] [PubMed]

Exp. Eye Res. (1)

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15(4), 441–459 (1973).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

N. Visser, T. T. Berendschot, F. Verbakel, A. N. Tan, J. de Brabander, and R. M. Nuijts, “Evaluation of the comparability and repeatability of four wavefront aberrometers,” Invest. Ophthalmol. Vis. Sci. 52(3), 1302–1311 (2011).
[Crossref] [PubMed]

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (5)

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refract. Surg. 32(12), 2064–2074 (2006).
[Crossref] [PubMed]

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[Crossref] [PubMed]

R. A. Applegate, L. N. Thibos, M. D. Twa, and E. J. Sarver, “Importance of fixation, pupil center, and reference axis in ocular wavefront sensing, videokeratography, and retinal image quality,” J. Cataract Refract. Surg. 35(1), 139–152 (2009).
[Crossref] [PubMed]

P. G. Gobbi, F. Fasce, S. Bozza, G. Calori, and R. Brancato, “Far and near visual acuity with multifocal intraocular lenses in an optomechanical eye model with imaging capability,” J. Cataract Refract. Surg. 33(6), 1082–1094 (2007).
[Crossref] [PubMed]

J. Mod. Opt. (1)

S. Chiesa and J. C. Dainty, “Calibration and performance of a pyramid wavefront sensor for the eye,” J. Mod. Opt. 59(16), 1415–1427 (2012).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (2)

A. Arianpour, E. J. Tremblay, I. Stamenov, J. E. Ford, D. J. Schanzlin, and Y. Lo, “An optomechanical model eye for ophthalmological refractive studies,” J. Refract. Surg. 29(2), 126–132 (2013).
[Crossref] [PubMed]

C. E. Campbell, “Wavefront measurements of diffractive and refractive multifocal intraocular lenses in an artificial eye,” J. Refract. Surg. 24(3), 308–311 (2008).
[PubMed]

J. Vis. (4)

N. Sredar, H. Queener, C. Li, C. Ting, H. Hofer, and J. Porter, “Wavefront sensorless confocal adaptive optics scanning laser ophthalmoscopy in the human eye,” J. Vis. 10(15), 58 (2010).
[Crossref]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[Crossref] [PubMed]

N. López-Gil and V. Fernández-Sánchez, “The change of spherical aberration during accommodation and its effect on the accommodation response,” J. Vis. 10(13), 12 (2010).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

P. B. Kruger, N. López-Gil, and L. R. Stark, “Accommodation and the Stiles-Crawford effect: theory and a case study,” Ophthalmic Physiol. Opt. 21(5), 339–351 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Optom. Vis. Sci. (1)

R. C. Bakaraju, K. Ehrmann, D. Falk, A. Ho, and E. Papas, “Optical performance of multifocal soft contact lenses via a single-pass method,” Optom. Vis. Sci. 89(8), 1107–1118 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Barcik, J. Nowak, D. Siedlecki, M. Zając, and J. Zarówny, “Physical model of human eye with implantable intraocular lenses,” Proc. SPIE 7141, 71411A (2008).
[Crossref]

Vision Res. (2)

P. B. Kruger and J. Pola, “Stimuli for accommodation: blur, chromatic aberration and size,” Vision Res. 26(6), 957–971 (1986).
[Crossref] [PubMed]

P. B. Kruger, S. Mathews, K. R. Aggarwala, D. Yager, and E. S. Kruger, “Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image,” Vision Res. 35(17), 2415–2429 (1995).
[Crossref] [PubMed]

Other (8)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000).

M. S. Millán Garcia-Varela, F. Alba Bueno, and F. Vega Lerín, Experiment design for through-focus testing of intraocular lenses” in Proc. SPIE 8785, 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, 8785CP.M. F. Martins Costa, ed. (SPIE, 2013).

M. Sheehan, A. Goncharov, and C. Dainty, “Design of a versatile clinical aberrometer” in Proc. SPIE 5962, Optical Design and Engineering II, 59620M.L. Mazuray and R. Wartmann, eds. (SPIE, 2005).

A. G. Optotune, “Fast Electrically Tunable Lens. EL-10-30-Series Datasheet,” http://www.optotune.com/images/products/Optotune%20EL-10-30.pdf .

M. Curtis and F. Farago, Handbook of Dimensional Measurement (Industrial Press, 2013).

International Organization for Standardization, “ISO 11979-2:2014. Ophthalmic implants - Intraocular lenses - Part 2: Optical properties and test methods,” (2014).

International Organization for Standardization, “ISO 11979-3:2012. Ophthalmic implants - Intraocular lenses - Part 3: Mechanical properties and test methods,” (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Three-dimensional rendering of the OMAE designed.
Fig. 2
Fig. 2 Change in the OMAE’s refractive state with the electrical current applied to the variable lens. Maximum standard deviation value was 0.01 D. Dashed line shows the linear model that best describes the OMAE response, y=0.05x+6.20 , x being the electrical current applied to the tunable lens in mA, and y being the refractive state of the OMAE in D.
Fig. 3
Fig. 3 Changes in the OMAE’s higher-order aberrations with the electrical current applied to the variable lens: RMS for third-order trefoil (triangles); RMS for third-order coma (squares); and fourth-order spherical aberration (circles).
Fig. 4
Fig. 4 (a) Zernike defocus coefficient for a sinusoidal change of the electrical current applied (0.05 Hz temporal frequency). Solid lines show measurements and dashed lines show the expected theoretical response. (b) Zernike defocus coefficient for a square wave change of the electrical current applied (0.05 Hz temporal frequency). Solid lines show measurements and dashed lines show the expected upper and lower limits.

Metrics