Abstract

We measure the absorption recovery time, the ground- and excited-state absorption cross sections of a Cr4+:YAG crystal at 640 nm for the first time. A pump-probe measurement reveals the existence of two recovery times of 26 ns and 5.6 μs. By a Z-scan experiment, the ground- and excited-state absorption cross sections are estimated to be 1.70 − 1.75 × 10−17 and 0.95 – 1.00 × 10−17cm2, respectively. The adequacy of the proposed model and the accuracy of the estimated parameters of the saturable absorber are verified by reproducing the experimentally obtained performance of a passively Q-switched Pr3+:YLF laser with the Cr4+:YAG saturable absorber from rate equation analysis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
50-kHz, 50-ns UV pulse generation by diode-pumped frequency doubling Pr3+:YLF Q-switch laser with a Cr4+:YAG saturable absorber

Hiroki Tanaka, Ryosuke Kariyama, Kodai Iijima, and Fumihiko Kannari
Appl. Opt. 55(23) 6193-6198 (2016)

Pr3+:YLF mode-locked laser at 640  nm directly pumped by InGaN-diode lasers

Kodai Iijima, Ryosuke Kariyama, Hiroki Tanaka, and Fumihiko Kannari
Appl. Opt. 55(28) 7782-7787 (2016)

Diode-pumped doubly passively Q-switched Cr,Nd:YAG/KTP green laser with GaAs saturable absorber

Guiqiu Li, Shengzhi Zhao, Kejian Yang, Dechun Li, and Hongzhi Yang
Opt. Express 14(11) 4713-4720 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007).
    [Crossref] [PubMed]
  2. A. Richter, N. Pavel, E. Heumann, G. Huber, D. Parisi, A. Toncelli, M. Tonelli, A. Diening, and W. Seelert, “Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting Praseodymium lasers,” Opt. Express 14, 3282–3287 (2006).
    [Crossref] [PubMed]
  3. K. Hashimoto and F. Kannari, “High-power GaN diode-pumped continuous wave Pr3+-doped LiYF4 laser,” Opt. Lett. 32, 2493–2495 (2007).
    [Crossref] [PubMed]
  4. T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
    [Crossref]
  5. T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
    [Crossref]
  6. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39, 3193–3196 (2014).
    [Crossref] [PubMed]
  7. P. W. Metz, K. Hasse, D. Parisi, N.-O. Hansen, C. Krnkel, M. Tonelli, and G. Huber, “Continuous-wave Pr3+:BaY2F8 and Pr3+:LiYF4 lasers in the cyan-blue spectral region,” Opt. Lett. 39, 5158–5161 (2014).
    [Crossref] [PubMed]
  8. Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).
  9. J. Kojou, R. Abe, R. Kariyama, H. Tanaka, A. Sakurai, and F. Kannari, “InGaN diode pumped actively Q -switched intracavity frequency doubling Pr:LiYF4 261 nm laser,” Appl. Opt. 53, 2030–2036 (2014).
    [Crossref] [PubMed]
  10. R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6, 032703 (2013).
    [Crossref]
  11. H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, “Visible-NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode,” Opt. Express 17, 20227–20232 (2009).
    [Crossref] [PubMed]
  12. Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
    [Crossref]
  13. D.-T. Marzahl, F. Reichert, B. Stumpf, P. W. Metz, C. Kränkel, and G. Huber, “Spectroscopic Properties and Laser Operation of Sm,Mg:SrAl12O19,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM3F.2.
  14. G. Bolognesi, D. Parisi, D. Calonico, G. A. Costanzo, F. Levi, P. W. Metz, C. Kränkel, G. Huber, and M. Tonelli, “Yellow laser performance of Dy3+ in co-doped Dy,Tb:LiLuF4,” Opt. Lett. 39, 6628–6631 (2014).
    [Crossref] [PubMed]
  15. F. Reichert, F. Moglia, P. W. Metz, A. Arcangeli, D. Marzahl, S. Veronesi, D. Parisi, M. Fechner, M. Tonelli, and G. Huber, “Prospects of Holmium-doped fluorides as gain media for visible solid state lasers,” Opt. Mater. Express 5, 88–101 (2015).
    [Crossref]
  16. R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24, 333–344 (2003).
    [Crossref]
  17. H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
    [Crossref]
  18. H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
    [Crossref]
  19. Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
    [Crossref]
  20. G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
    [Crossref]
  21. A. Okhrimchuk and A. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61, 988–995 (2000).
    [Crossref]
  22. H. Ridderbusch and T. Graf, “Absorption in Cr4+:YAG Crystals,” IEEE J. Quantum Electron. 43, 168–173 (2007).
    [Crossref]
  23. V. V. Zelenogorskii and E. A. Khazanov, “Influence of the photoelastic effect on the thermal lens in a YLF crystal,” Quantum Electron. 40, 40–44 (2010).
    [Crossref]
  24. A. Richter, Laser Parameters and Performance of Pr3+-Doped Fluorides Operating in the Visible Spectral Region (Cuvillier Verlag, 2008), Chap. 3.

2015 (1)

2014 (5)

2013 (2)

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6, 032703 (2013).
[Crossref]

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

2011 (2)

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
[Crossref]

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

2010 (1)

V. V. Zelenogorskii and E. A. Khazanov, “Influence of the photoelastic effect on the thermal lens in a YLF crystal,” Quantum Electron. 40, 40–44 (2010).
[Crossref]

2009 (1)

2007 (3)

2006 (1)

2003 (1)

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24, 333–344 (2003).
[Crossref]

2000 (1)

A. Okhrimchuk and A. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61, 988–995 (2000).
[Crossref]

1999 (1)

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[Crossref]

1995 (1)

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[Crossref]

1994 (1)

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[Crossref]

1992 (1)

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[Crossref]

Abe, R.

J. Kojou, R. Abe, R. Kariyama, H. Tanaka, A. Sakurai, and F. Kannari, “InGaN diode pumped actively Q -switched intracavity frequency doubling Pr:LiYF4 261 nm laser,” Appl. Opt. 53, 2030–2036 (2014).
[Crossref] [PubMed]

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6, 032703 (2013).
[Crossref]

Arcangeli, A.

Bass, M.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[Crossref]

Bolognesi, G.

Burshtein, Z.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24, 333–344 (2003).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[Crossref]

Cai, Z.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Calonico, D.

Camy, P.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Costanzo, G. A.

Dennis, W. M.

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[Crossref]

Diening, A.

Doualan, J.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Eilers, H.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[Crossref]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[Crossref]

Fechner, M.

Feldman, R.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24, 333–344 (2003).
[Crossref]

Fujimoto, Y.

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Graf, T.

H. Ridderbusch and T. Graf, “Absorption in Cr4+:YAG Crystals,” IEEE J. Quantum Electron. 43, 168–173 (2007).
[Crossref]

Gün, T.

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
[Crossref]

Hansen, N.-O.

Hara, I.

Hashimoto, K.

Hasse, K.

Heumann, E.

Hoffman, K. R.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[Crossref]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[Crossref]

Hömmerich, U.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[Crossref]

Huang, S.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Huber, G.

F. Reichert, F. Moglia, P. W. Metz, A. Arcangeli, D. Marzahl, S. Veronesi, D. Parisi, M. Fechner, M. Tonelli, and G. Huber, “Prospects of Holmium-doped fluorides as gain media for visible solid state lasers,” Opt. Mater. Express 5, 88–101 (2015).
[Crossref]

G. Bolognesi, D. Parisi, D. Calonico, G. A. Costanzo, F. Levi, P. W. Metz, C. Kränkel, G. Huber, and M. Tonelli, “Yellow laser performance of Dy3+ in co-doped Dy,Tb:LiLuF4,” Opt. Lett. 39, 6628–6631 (2014).
[Crossref] [PubMed]

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39, 3193–3196 (2014).
[Crossref] [PubMed]

P. W. Metz, K. Hasse, D. Parisi, N.-O. Hansen, C. Krnkel, M. Tonelli, and G. Huber, “Continuous-wave Pr3+:BaY2F8 and Pr3+:LiYF4 lasers in the cyan-blue spectral region,” Opt. Lett. 39, 5158–5161 (2014).
[Crossref] [PubMed]

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
[Crossref]

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007).
[Crossref] [PubMed]

A. Richter, N. Pavel, E. Heumann, G. Huber, D. Parisi, A. Toncelli, M. Tonelli, A. Diening, and W. Seelert, “Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting Praseodymium lasers,” Opt. Express 14, 3282–3287 (2006).
[Crossref] [PubMed]

D.-T. Marzahl, F. Reichert, B. Stumpf, P. W. Metz, C. Kränkel, and G. Huber, “Spectroscopic Properties and Laser Operation of Sm,Mg:SrAl12O19,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM3F.2.

Ishii, O.

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Jacobsen, S. M.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[Crossref]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[Crossref]

Jia, W.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[Crossref]

Kalisky, Y.

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[Crossref]

Kannari, F.

Kariyama, R.

Kasuga, K.

Khazanov, E. A.

V. V. Zelenogorskii and E. A. Khazanov, “Influence of the photoelastic effect on the thermal lens in a YLF crystal,” Quantum Electron. 40, 40–44 (2010).
[Crossref]

Kojou, J.

J. Kojou, R. Abe, R. Kariyama, H. Tanaka, A. Sakurai, and F. Kannari, “InGaN diode pumped actively Q -switched intracavity frequency doubling Pr:LiYF4 261 nm laser,” Appl. Opt. 53, 2030–2036 (2014).
[Crossref] [PubMed]

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6, 032703 (2013).
[Crossref]

Kränkel, C.

Krnkel, C.

Kubota, Y.

Levi, F.

Lim, J. H.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[Crossref]

Liu, Z.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Marzahl, D.

Marzahl, D.-T.

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D.-T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39, 3193–3196 (2014).
[Crossref] [PubMed]

D.-T. Marzahl, F. Reichert, B. Stumpf, P. W. Metz, C. Kränkel, and G. Huber, “Spectroscopic Properties and Laser Operation of Sm,Mg:SrAl12O19,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM3F.2.

Masuda, K.

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6, 032703 (2013).
[Crossref]

Metz, P.

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36, 1002–1004 (2011).
[Crossref]

Metz, P. W.

Moglia, F.

Moncorgé, R.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Müller, S.

Nakanishi, J.

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Okamoto, H.

Okhrimchuk, A.

A. Okhrimchuk and A. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61, 988–995 (2000).
[Crossref]

Ostroumov, V.

Parisi, D.

Pavel, N.

Reichert, F.

Richter, A.

Ridderbusch, H.

H. Ridderbusch and T. Graf, “Absorption in Cr4+:YAG Crystals,” IEEE J. Quantum Electron. 43, 168–173 (2007).
[Crossref]

Sakurai, A.

Seelert, W.

Shestakov, A.

A. Okhrimchuk and A. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61, 988–995 (2000).
[Crossref]

Shimony, Y.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24, 333–344 (2003).
[Crossref]

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[Crossref]

Stumpf, B.

D.-T. Marzahl, F. Reichert, B. Stumpf, P. W. Metz, C. Kränkel, and G. Huber, “Spectroscopic Properties and Laser Operation of Sm,Mg:SrAl12O19,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM3F.2.

Tanaka, H.

Toncelli, A.

Tonelli, M.

Van Stryland, E.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[Crossref]

Veronesi, S.

Wang, F.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Weichman, L.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[Crossref]

Xiao, G.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[Crossref]

Xu, B.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Xu, H.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Yamada, T.

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Yamazaki, M.

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Yan, Y.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Yang, S.

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[Crossref]

Yen, W. M.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[Crossref]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[Crossref]

Zelenogorskii, V. V.

V. V. Zelenogorskii and E. A. Khazanov, “Influence of the photoelastic effect on the thermal lens in a YLF crystal,” Quantum Electron. 40, 40–44 (2010).
[Crossref]

Zeng, C.

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Appl. Opt. (1)

Appl. Phys. Express (1)

R. Abe, J. Kojou, K. Masuda, and F. Kannari, “Cr4+-Doped Y3Al5O12 as a Saturable Absorber for a Q-Switched and Mode-Locked 639-nm Pr3+-Doped LiYF4 Laser,” Appl. Phys. Express 6, 032703 (2013).
[Crossref]

Appl. Phys. Lett. (2)

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99, 181103 (2011).
[Crossref]

H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61, 2958–2960 (1992).
[Crossref]

IEEE J. Quantum Electron. (4)

Z. Liu, Z. Cai, B. Xu, S. Huang, C. Zeng, Y. Yan, F. Wang, H. Xu, J. Doualan, P. Camy, and R. Moncorgé, “Continuous-Wave Laser Emission of Pr:LiYF4 at 695.8 nm,” IEEE J. Quantum Electron. 26, 675–677 (2014).

Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+:YAG as Passive Q-switch and Brewster Plate in a Pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[Crossref]

G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[Crossref]

H. Ridderbusch and T. Graf, “Absorption in Cr4+:YAG Crystals,” IEEE J. Quantum Electron. 43, 168–173 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. (1)

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater. 24, 333–344 (2003).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (2)

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[Crossref]

A. Okhrimchuk and A. Shestakov, “Absorption saturation mechanism for YAG:Cr4+ crystals,” Phys. Rev. B 61, 988–995 (2000).
[Crossref]

Prog. Quantum Electron. (1)

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Quantum Electron. (1)

V. V. Zelenogorskii and E. A. Khazanov, “Influence of the photoelastic effect on the thermal lens in a YLF crystal,” Quantum Electron. 40, 40–44 (2010).
[Crossref]

Other (2)

A. Richter, Laser Parameters and Performance of Pr3+-Doped Fluorides Operating in the Visible Spectral Region (Cuvillier Verlag, 2008), Chap. 3.

D.-T. Marzahl, F. Reichert, B. Stumpf, P. W. Metz, C. Kränkel, and G. Huber, “Spectroscopic Properties and Laser Operation of Sm,Mg:SrAl12O19,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM3F.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Conventional four-level system representing a slow saturable absorber.

Fig. 2
Fig. 2

Schematic view of pump-probe experiment to examine recovery time of Cr4+:YAG saturable absorber.

Fig. 3
Fig. 3

(a) PD voltage recorded over 20 μs. The inset is an analysis of the longer recovery time. (b) PD voltage enlarged up to 200 ns. The inset is an analysis of the shorter recovery time.

Fig. 4
Fig. 4

Proposed six-level model for Cr4+:YAG saturable absorber at 640 nm.

Fig. 5
Fig. 5

Schematic view of Z-scan measurement.

Fig. 6
Fig. 6

Normalized transmission with respect to position of Cr4+:YAG crystal (Z-scan curve). White circular symbols are experimentally measured results, and solid blue lines are numerically calculated results showing the best fit to the experimental plots. Z-scan curves of 1.3-mm-thick crystal measured with (a) 0.6 μJ and (b) 6.0 μJ pulses, and that of 2.4-mm-thick crystal measured with (c) 0.59 μJ and (d) 5.9 μJ pulses. The error-bars represent the uncertainty in the measurement mainly owing to the fluctuation of the Q-switched pulses.

Fig. 7
Fig. 7

Experimental set-up of an InGaN blue LD pumped Pr3+:YLF laser passively Q-switched by a Cr4+:YAG saturable absorber oscillating at 640 nm. PBS: polarization beam splitter, HWP: half wave plate, DM: dichroic mirror, CM: concave mirror, OC: output coupler.

Fig. 8
Fig. 8

Output characteristics of the passively Q-switched laser with a (a) 1.3-mm- and (b) 2.4-mm-long Cr4+:YAG crystal. Black solid-lines with circular plots are experimental results, and three colored lines correspond to calculated results with different transition ratios γ to the excited-state, which has a lifetime of 26 ns.

Fig. 9
Fig. 9

Q-switch pulse width (FWHM) of the Q-switched laser with a (a) 1.3-mm- and (b) 2.4-mm-long Cr4+:YAG crystal with respect to the absorbed pump power. Three colored lines are calculated results with different transition ratios γ. The insets are pulse waveformes recorded with maximum absorbed pump power.

Fig. 10
Fig. 10

Pulse repetition frequency of the Q-switched laser with a (a) 1.3-mm- and (b) 2.4-mm-long Cr4+:YAG crystal with respect to the absorbed pump power. Three colored lines are calculated results with different transition ratios γ.

Tables (1)

Tables Icon

Table 1 Estimated parameters of 1.3-mm and 2.4-mm Cr4+:YAG crystals.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

T ( t ) = exp [ { σ gs ( n tot n es ( 1 ) ( 0 ) exp ( t τ 1 ) n es ( 2 ) ( 0 ) exp ( t τ 2 ) ) σ es ( n es ( 1 ) ( 0 ) exp ( t τ 1 ) + n es ( 2 ) ( 0 ) exp ( t τ 2 ) ) } l SA ] .
T ( t ) = exp [ { σ gs ( n tot n es ( 2 ) ( 0 ) exp ( t τ 2 ) ) σ es ( n es ( 2 ) ( 0 ) exp ( t τ 2 ) ) } l SA ] .
ln ( ln ( T ( t ) T 0 ) ) = t τ 2 + ln ( ln ( T ( 0 ) T 0 ) ) .
T 0 = exp ( σ gs n tot l SA ) .
T ( t ) = exp [ { σ gs ( n tot n es ( 1 ) ( 0 ) exp ( t τ 1 ) n es ( 2 ) ( 0 ) ) σ es ( n es ( 1 ) ( 0 ) exp ( t τ 1 ) + n es ( 2 ) ( 0 ) ) } l SA ] .
ln ( T ( t ) T 0 ) = ( σ gs σ es ) n es ( 1 ) ( 0 ) l s A exp ( t τ 1 ) + ( σ gs σ es ) n es ( 2 ) ( 0 ) l SA .
d I ( r , t , z ) d z = σ gs n gs ( r , t , z ) I ( r , t , z ) σ es n es ( r , t , z ) I ( r , t , z ) ,
d n gs ( r , t , z ) d t = σ gs I ( r , t , z ) h ν L n gs ( r , t , z ) + n es ( r , t , z ) τ ,
d n es ( r , t , z ) d t = d n gs ( r , t , z ) d t .
I ( r , t , z ) = I 0 exp { ( 2 r 2 w 2 + t 2 t p 2 ) } .
T = 0 F ( r , l SA ) 2 π r d r 0 F ( r , 0 ) 2 π r d r .
T sat = exp ( σ es n tot l SA ) .
d ϕ d t = c ϕ l c { σ st N l g σ gs n g l SA σ es n es 1 l SA σ es ( n tot n g n es 1 ) l SA } ϕ τ c + ξ N τ f ,
d N d t = c ϕ σ st N N τ f + N tot N N tot η P abs h v L V ,
d n g d t = σ gs c ϕ n g A g / A SA + n es 1 τ 1 + n tot n g n es 1 τ 2 ,
d n es 1 d t = γ σ gs c ϕ n g A g / A SA n es 1 τ 1 .

Metrics