Abstract

Surface plasmon polaritons (SPPs) give an opportunity to break the diffraction limit and design nanoscale optical components, however their practical implementation is hindered by high ohmic losses in a metal. Here, we propose a novel approach for efficient SPP amplification under electrical pumping in a deep-subwavelength metal-insulator-semiconductor waveguiding geometry and numerically demonstrate full compensation for the SPP propagation losses in the infrared at an exceptionally low pump current density of 0.8 kA/cm2. This value is an order of magnitude lower than in the previous studies owing to the thin insulator layer between a metal and a semiconductor, which allows injection of minority carriers and blocks majority carriers reducing the leakage current to nearly zero. The presented results provide insight into lossless SPP guiding and development of future high dense nanophotonic and optoelectronic circuits.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically pumped hybrid plasmonic waveguide

Thamani Wijesinghe, Malin Premaratne, and Govind P. Agrawal
Opt. Express 22(3) 2681-2694 (2014)

Design and simulation of an electrically pumped Schottky-junction-based plasmonic amplifier

Abdolber Mallah Livani and Hassan Kaatuzian
Appl. Opt. 54(9) 2164-2173 (2015)

Electrically-pumped plasmonic lasers based on low-loss hybrid SPP waveguide

Yu Li and Wei-Ping Huang
Opt. Express 23(19) 24843-24849 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).
    [Crossref] [PubMed]
  2. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15, 4474–4484 (2007).
    [Crossref] [PubMed]
  3. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
    [Crossref]
  4. S. Kena-Cohen, P. N. Stavrinou, D. D. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13, 1323–1329 (2013).
    [Crossref] [PubMed]
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref] [PubMed]
  6. R. Flynn, C. Kim, I. Vurgaftman, M. Kim, J. Meyer, A. Mäkinen, K. Bussmann, L. Cheng, F.-S. Choa, and J. Long, “A room-temperature semiconductor spaser operating near 1.5 µ m,” Opt. Express 19, 8954–8961 (2011).
    [Crossref] [PubMed]
  7. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
    [Crossref] [PubMed]
  8. D. Y. Fedyanin and A. V. Arsenin, “Semiconductor surface plasmon amplifier based on a Schottky barrier diode,” in AIP Conference Proceedings1291 (2010), pp. 112–114.
  9. D. Y. Fedyanin and A. V. Arsenin, “Surface plasmon polariton amplification in metal-semiconductor structures,” Opt. Express 19, 12524–12531 (2011).
    [Crossref] [PubMed]
  10. D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron. 48, 73–78 (2012).
    [Crossref]
  11. D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
    [Crossref] [PubMed]
  12. D. Costantini, “Compact generation and amplification of surface plasmon polaritons at telecom wavelengths,” Ph.D. thesis, University Paris Sud, ParisXI (2013).
  13. C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
    [Crossref]
  14. D. Y. Fedyanin, “Toward an electrically pumped spaser,” Opt. Lett. 37, 404–406 (2012).
    [Crossref] [PubMed]
  15. M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, and et al., “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
    [Crossref] [PubMed]
  16. G. Wade, C. Wheeler, and R. Hunsperger, “Inherent properties of a tunnel-injection laser,” Proc. IEEE 53, 98–99 (1965).
    [Crossref]
  17. H. Panish and M. Casey, Heterostructure Lasers: Part A: Fundamental Principles (Academic Press, 1978).
  18. T. Wijesinghe, M. Premaratne, and G. P. Agrawal, “Electrically pumped hybrid plasmonic waveguide,” Opt. Express 22, 2681–2694 (2014). The results obtained in this reference assume free passage of carriers through the insulator layer with the injection velocity equal to the thermal velocity. This contradicts to the established theories of carrier transport in MIS structures [20,21]. Due to the high potential barriers at the metal-insulator and semiconductor-insulator interfaces, the thermionic injection cannot be actually efficient, while the dominating transport mechanism is due to tunneling.
    [Crossref] [PubMed]
  19. M. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16, 1141–1150 (1973).
    [Crossref]
  20. R. Stratton, “Volt-current characteristics for tunneling through insulating films,” J. Phys. Chem. Solids 23, 1177–1190 (1962).
    [Crossref]
  21. H. Card and E. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes,” J. Phys. D: Appl. Phys. 4, 1589 (1971).
    [Crossref]
  22. Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
    [Crossref]
  23. J. Robertson and B. Falabretti, “Band offsets of high k gate oxides on III-V semiconductors,” J. Appl. Phys. 100, 014111 (2006).
    [Crossref]
  24. D. Wheeler, “High-k InAs metal-oxide-semiconductor capacitors formed by atomic layer deposition,” Ph.D. thesis, University of Notre Dame, Notre Dame, Indiana (2009).
  25. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
  26. V. Abakumov, V. I. Perel, and I. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier, 1991).
  27. H. Card, “On the direct currents through interface states in metal-semiconductor contacts,” Solid-State Electron. 18, 881–883 (1975).
    [Crossref]
  28. I. Lundström and C. Svensson, “Tunneling to traps in insulators,” J. Appl. Phys. 43, 5045–5047 (1972).
    [Crossref]
  29. M. Noguchi, K. Hirakawa, and T. Ikoma, “Intrinsic electron accumulation layers on reconstructed clean InAs (100) surfaces,” Phys. Rev. Lett. 66, 2243 (1991).
    [Crossref] [PubMed]
  30. M. G. Betti, G. Bertoni, V. Corradini, V. De Renzi, and C. Mariani, “Metal-induced gap states at InAs (110) surface,” Surf. Sci. 454, 539–542 (2000).
    [Crossref]
  31. W. Mönch, Semiconductor Surfaces and Interfaces (Springer Science & Business Media, 2001).
    [Crossref]
  32. D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
    [Crossref]
  33. C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
    [Crossref]
  34. C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
    [Crossref]
  35. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [Crossref]
  36. T. Bright, J. Watjen, Z. Zhang, C. Muratore, and A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films 520, 6793–6802 (2012).
    [Crossref]
  37. Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28, 1261–1268 (1992).
    [Crossref]
  38. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008).
    [Crossref] [PubMed]
  39. H. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
    [Crossref]
  40. C.-H. Chang and J.-G. Hwu, “Characteristics and reliability of hafnium oxide dielectric stacks with room temperature grown interfacial anodic oxide,” IEEE Trans. Device Mater. Rel. 9, 215–221 (2009).
    [Crossref]
  41. J. Rimmer, J. Langer, M. Missous, J. Evans, I. Poole, A. Peaker, and K. Singer, “Minority-carrier confinement by doping barriers,” Mater. Sci. Eng. B 9, 375–378 (1991).
    [Crossref]
  42. M. Ordal, L. Long, R. Bell, S. Bell, R. Bell, R. Alexander, and C. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [Crossref] [PubMed]
  43. A. Lenham and D. Treherne, “Applicability of the anomalous skin-effect theory to the optical constants of Cu, Ag, and Au in the infrared,” J. Opt. Soc. Am. 56, 683–685 (1966).
    [Crossref]
  44. M. Aydaraliev, N. Zotova, S. Karandashov, B. Matveev, G. Talalakin, and et al., “Low-threshold long-wave lasers (λ = 3.0–3.6µ m) based on III–V alloys,” Semicond. Sci. Technol. 8, 1575 (1993).
    [Crossref]
  45. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
    [Crossref] [PubMed]
  46. J. Robertson, “High k dielectrics for future CMOS devices,” ECS Trans. 19, 579–591 (2009).
    [Crossref]
  47. O. Madelung, Semiconductors: Group IV elements and III–V compounds (Springer Verlag, 1991), Vol. 1.
    [Crossref]
  48. P. Landsberg and C. Klimpke, “Surface recombination effects in an improved theory of a p-type MIS solar cell,” Solid-State Electron. 23, 1139–1145 (1980).
    [Crossref]
  49. K. Ng and H. Card, “A comparison of majority- and minority-carrier silicon MIS solar cells,” IEEE Trans. Electron. Dev. 27, 716–724 (1980).
    [Crossref]
  50. V. Abakumov and I. Iassievich, “Cross section for the recombination of an electron on a positively charged center in a semiconductor,” Sov. Phys. JETP 71, 657–664 (1976).
  51. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (John Wiley & Sons, 2009), vol. 28.
    [Crossref]
  52. L. A. Coldren, S.W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012).
    [Crossref]

2014 (2)

2013 (4)

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
[Crossref]

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).
[Crossref] [PubMed]

S. Kena-Cohen, P. N. Stavrinou, D. D. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13, 1323–1329 (2013).
[Crossref] [PubMed]

2012 (4)

D. Y. Fedyanin, “Toward an electrically pumped spaser,” Opt. Lett. 37, 404–406 (2012).
[Crossref] [PubMed]

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron. 48, 73–78 (2012).
[Crossref]

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

T. Bright, J. Watjen, Z. Zhang, C. Muratore, and A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films 520, 6793–6802 (2012).
[Crossref]

2011 (4)

2009 (5)

J. Robertson, “High k dielectrics for future CMOS devices,” ECS Trans. 19, 579–591 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, and et al., “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref] [PubMed]

C.-H. Chang and J.-G. Hwu, “Characteristics and reliability of hafnium oxide dielectric stacks with room temperature grown interfacial anodic oxide,” IEEE Trans. Device Mater. Rel. 9, 215–221 (2009).
[Crossref]

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

2008 (2)

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (1)

J. Robertson and B. Falabretti, “Band offsets of high k gate oxides on III-V semiconductors,” J. Appl. Phys. 100, 014111 (2006).
[Crossref]

2000 (1)

M. G. Betti, G. Bertoni, V. Corradini, V. De Renzi, and C. Mariani, “Metal-induced gap states at InAs (110) surface,” Surf. Sci. 454, 539–542 (2000).
[Crossref]

1993 (1)

M. Aydaraliev, N. Zotova, S. Karandashov, B. Matveev, G. Talalakin, and et al., “Low-threshold long-wave lasers (λ = 3.0–3.6µ m) based on III–V alloys,” Semicond. Sci. Technol. 8, 1575 (1993).
[Crossref]

1992 (1)

Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28, 1261–1268 (1992).
[Crossref]

1991 (2)

J. Rimmer, J. Langer, M. Missous, J. Evans, I. Poole, A. Peaker, and K. Singer, “Minority-carrier confinement by doping barriers,” Mater. Sci. Eng. B 9, 375–378 (1991).
[Crossref]

M. Noguchi, K. Hirakawa, and T. Ikoma, “Intrinsic electron accumulation layers on reconstructed clean InAs (100) surfaces,” Phys. Rev. Lett. 66, 2243 (1991).
[Crossref] [PubMed]

1983 (1)

1980 (2)

P. Landsberg and C. Klimpke, “Surface recombination effects in an improved theory of a p-type MIS solar cell,” Solid-State Electron. 23, 1139–1145 (1980).
[Crossref]

K. Ng and H. Card, “A comparison of majority- and minority-carrier silicon MIS solar cells,” IEEE Trans. Electron. Dev. 27, 716–724 (1980).
[Crossref]

1976 (2)

V. Abakumov and I. Iassievich, “Cross section for the recombination of an electron on a positively charged center in a semiconductor,” Sov. Phys. JETP 71, 657–664 (1976).

H. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
[Crossref]

1975 (1)

H. Card, “On the direct currents through interface states in metal-semiconductor contacts,” Solid-State Electron. 18, 881–883 (1975).
[Crossref]

1973 (1)

M. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16, 1141–1150 (1973).
[Crossref]

1972 (1)

I. Lundström and C. Svensson, “Tunneling to traps in insulators,” J. Appl. Phys. 43, 5045–5047 (1972).
[Crossref]

1971 (1)

H. Card and E. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes,” J. Phys. D: Appl. Phys. 4, 1589 (1971).
[Crossref]

1966 (1)

1965 (2)

I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
[Crossref]

G. Wade, C. Wheeler, and R. Hunsperger, “Inherent properties of a tunnel-injection laser,” Proc. IEEE 53, 98–99 (1965).
[Crossref]

1962 (1)

R. Stratton, “Volt-current characteristics for tunneling through insulating films,” J. Phys. Chem. Solids 23, 1177–1190 (1962).
[Crossref]

Abakumov, V.

V. Abakumov and I. Iassievich, “Cross section for the recombination of an electron on a positively charged center in a semiconductor,” Sov. Phys. JETP 71, 657–664 (1976).

V. Abakumov, V. I. Perel, and I. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier, 1991).

Adachi, S.

S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (John Wiley & Sons, 2009), vol. 28.
[Crossref]

Agrawal, G. P.

Alexander, R.

Arsenin, A. V.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

D. Y. Fedyanin and A. V. Arsenin, “Surface plasmon polariton amplification in metal-semiconductor structures,” Opt. Express 19, 12524–12531 (2011).
[Crossref] [PubMed]

D. Y. Fedyanin and A. V. Arsenin, “Semiconductor surface plasmon amplifier based on a Schottky barrier diode,” in AIP Conference Proceedings1291 (2010), pp. 112–114.

Astromskas, G.

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Atwater, H. A.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).
[Crossref] [PubMed]

Aydaraliev, M.

M. Aydaraliev, N. Zotova, S. Karandashov, B. Matveev, G. Talalakin, and et al., “Low-threshold long-wave lasers (λ = 3.0–3.6µ m) based on III–V alloys,” Semicond. Sci. Technol. 8, 1575 (1993).
[Crossref]

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Bell, R.

Bell, S.

Bertoni, G.

M. G. Betti, G. Bertoni, V. Corradini, V. De Renzi, and C. Mariani, “Metal-induced gap states at InAs (110) surface,” Surf. Sci. 454, 539–542 (2000).
[Crossref]

Betti, M. G.

M. G. Betti, G. Bertoni, V. Corradini, V. De Renzi, and C. Mariani, “Metal-induced gap states at InAs (110) surface,” Surf. Sci. 454, 539–542 (2000).
[Crossref]

Bhuwalka, K.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Bousseksou, A.

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron. 48, 73–78 (2012).
[Crossref]

Bowers, J. E.

Bradley, D. D.

S. Kena-Cohen, P. N. Stavrinou, D. D. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13, 1323–1329 (2013).
[Crossref] [PubMed]

Bright, T.

T. Bright, J. Watjen, Z. Zhang, C. Muratore, and A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films 520, 6793–6802 (2012).
[Crossref]

Burgos, S. P.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).
[Crossref] [PubMed]

Bussmann, K.

Card, H.

K. Ng and H. Card, “A comparison of majority- and minority-carrier silicon MIS solar cells,” IEEE Trans. Electron. Dev. 27, 716–724 (1980).
[Crossref]

H. Card, “On the direct currents through interface states in metal-semiconductor contacts,” Solid-State Electron. 18, 881–883 (1975).
[Crossref]

H. Card and E. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes,” J. Phys. D: Appl. Phys. 4, 1589 (1971).
[Crossref]

Casey, H.

H. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
[Crossref]

Casey, M.

H. Panish and M. Casey, Heterostructure Lasers: Part A: Fundamental Principles (Academic Press, 1978).

Chang, C.-H.

C.-H. Chang and J.-G. Hwu, “Characteristics and reliability of hafnium oxide dielectric stacks with room temperature grown interfacial anodic oxide,” IEEE Trans. Device Mater. Rel. 9, 215–221 (2009).
[Crossref]

Chang, Y.

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

Chang, Y. C.

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

Chen, W. X.

C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
[Crossref]

Cheng, K. Y.

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

Cheng, L.

Choa, F.-S.

Cohen, O.

Coldren, L. A.

L. A. Coldren, S.W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012).
[Crossref]

Colombelli, R.

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron. 48, 73–78 (2012).
[Crossref]

Contreras-Guerrero, R.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Conway, J. A.

Corradini, V.

M. G. Betti, G. Bertoni, V. Corradini, V. De Renzi, and C. Mariani, “Metal-induced gap states at InAs (110) surface,” Surf. Sci. 454, 539–542 (2000).
[Crossref]

Corzine, S.W.

L. A. Coldren, S.W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012).
[Crossref]

Costantini, D.

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron. 48, 73–78 (2012).
[Crossref]

D. Costantini, “Compact generation and amplification of surface plasmon polaritons at telecom wavelengths,” Ph.D. thesis, University Paris Sud, ParisXI (2013).

Dagens, B.

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron. 48, 73–78 (2012).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

De Renzi, V.

M. G. Betti, G. Bertoni, V. Corradini, V. De Renzi, and C. Mariani, “Metal-induced gap states at InAs (110) surface,” Surf. Sci. 454, 539–542 (2000).
[Crossref]

Diaz, C.H.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Doornbos, G.

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Droopad, R.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Edirisooriya, M.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Evans, J.

J. Rimmer, J. Langer, M. Missous, J. Evans, I. Poole, A. Peaker, and K. Singer, “Minority-carrier confinement by doping barriers,” Mater. Sci. Eng. B 9, 375–378 (1991).
[Crossref]

Falabretti, B.

J. Robertson and B. Falabretti, “Band offsets of high k gate oxides on III-V semiconductors,” J. Appl. Phys. 100, 014111 (2006).
[Crossref]

Fang, A. W.

Fedyanin, D. Y.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

D. Y. Fedyanin, “Toward an electrically pumped spaser,” Opt. Lett. 37, 404–406 (2012).
[Crossref] [PubMed]

D. Y. Fedyanin and A. V. Arsenin, “Surface plasmon polariton amplification in metal-semiconductor structures,” Opt. Express 19, 12524–12531 (2011).
[Crossref] [PubMed]

D. Y. Fedyanin and A. V. Arsenin, “Semiconductor surface plasmon amplifier based on a Schottky barrier diode,” in AIP Conference Proceedings1291 (2010), pp. 112–114.

Fevrier, M.

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron. 48, 73–78 (2012).
[Crossref]

Flynn, R.

Fröberg, L.

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

Garmire, E. M.

Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28, 1261–1268 (1992).
[Crossref]

Geluk, E. J.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Green, M.

M. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16, 1141–1150 (1973).
[Crossref]

Hill, M. T.

Hirakawa, K.

M. Noguchi, K. Hirakawa, and T. Ikoma, “Intrinsic electron accumulation layers on reconstructed clean InAs (100) surfaces,” Phys. Rev. Lett. 66, 2243 (1991).
[Crossref] [PubMed]

Holland, M.

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

Holland, M.C.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Hong, M.

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

Hsieh, C.

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

Hsieh, C. H.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Hsu, W.C.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Huang, M.

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

Huang, M. L.

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

Hunsperger, R.

G. Wade, C. Wheeler, and R. Hunsperger, “Inherent properties of a tunnel-injection laser,” Proc. IEEE 53, 98–99 (1965).
[Crossref]

Hwu, J.-G.

C.-H. Chang and J.-G. Hwu, “Characteristics and reliability of hafnium oxide dielectric stacks with room temperature grown interfacial anodic oxide,” IEEE Trans. Device Mater. Rel. 9, 215–221 (2009).
[Crossref]

Iassievich, I.

V. Abakumov and I. Iassievich, “Cross section for the recombination of an electron on a positively charged center in a semiconductor,” Sov. Phys. JETP 71, 657–664 (1976).

Ichii, A.

Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28, 1261–1268 (1992).
[Crossref]

Ikoma, T.

M. Noguchi, K. Hirakawa, and T. Ikoma, “Intrinsic electron accumulation layers on reconstructed clean InAs (100) surfaces,” Phys. Rev. Lett. 66, 2243 (1991).
[Crossref] [PubMed]

Jones, R.

Karandashov, S.

M. Aydaraliev, N. Zotova, S. Karandashov, B. Matveev, G. Talalakin, and et al., “Low-threshold long-wave lasers (λ = 3.0–3.6µ m) based on III–V alloys,” Semicond. Sci. Technol. 8, 1575 (1993).
[Crossref]

Karouta, F.

Kena-Cohen, S.

S. Kena-Cohen, P. N. Stavrinou, D. D. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13, 1323–1329 (2013).
[Crossref] [PubMed]

Kim, C.

Kim, M.

Klimpke, C.

P. Landsberg and C. Klimpke, “Surface recombination effects in an improved theory of a p-type MIS solar cell,” Solid-State Electron. 23, 1139–1145 (1980).
[Crossref]

Krasavin, A. V.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

Kriesch, A.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).
[Crossref] [PubMed]

Kwo, J.

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

Landsberg, P.

P. Landsberg and C. Klimpke, “Surface recombination effects in an improved theory of a p-type MIS solar cell,” Solid-State Electron. 23, 1139–1145 (1980).
[Crossref]

Langer, J.

J. Rimmer, J. Langer, M. Missous, J. Evans, I. Poole, A. Peaker, and K. Singer, “Minority-carrier confinement by doping barriers,” Mater. Sci. Eng. B 9, 375–378 (1991).
[Crossref]

Lay, T. S.

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

Lee, K. Y.

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

Lee, Y. J.

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

Lenham, A.

Leong, E. S.

Liao, C. C.

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

Lin, C.

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

Lin, T. D.

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

Lind, E.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Lipson, M.

Long, J.

Long, L.

Lundström, I.

I. Lundström and C. Svensson, “Tunneling to traps in insulators,” J. Appl. Phys. 43, 5045–5047 (1972).
[Crossref]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Madelung, O.

O. Madelung, Semiconductors: Group IV elements and III–V compounds (Springer Verlag, 1991), Vol. 1.
[Crossref]

Maier, S. A.

S. Kena-Cohen, P. N. Stavrinou, D. D. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13, 1323–1329 (2013).
[Crossref] [PubMed]

Mäkinen, A.

Malitson, I.

Marell, M.

Mariani, C.

M. G. Betti, G. Bertoni, V. Corradini, V. De Renzi, and C. Mariani, “Metal-induced gap states at InAs (110) surface,” Surf. Sci. 454, 539–542 (2000).
[Crossref]

Mashanovitch, M. L.

L. A. Coldren, S.W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012).
[Crossref]

Matveev, B.

M. Aydaraliev, N. Zotova, S. Karandashov, B. Matveev, G. Talalakin, and et al., “Low-threshold long-wave lasers (λ = 3.0–3.6µ m) based on III–V alloys,” Semicond. Sci. Technol. 8, 1575 (1993).
[Crossref]

Meyer, J.

Mikkelsen, A.

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

Missous, M.

J. Rimmer, J. Langer, M. Missous, J. Evans, I. Poole, A. Peaker, and K. Singer, “Minority-carrier confinement by doping barriers,” Mater. Sci. Eng. B 9, 375–378 (1991).
[Crossref]

Mönch, W.

W. Mönch, Semiconductor Surfaces and Interfaces (Springer Science & Business Media, 2001).
[Crossref]

Muratore, C.

T. Bright, J. Watjen, Z. Zhang, C. Muratore, and A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films 520, 6793–6802 (2012).
[Crossref]

Ng, K.

K. Ng and H. Card, “A comparison of majority- and minority-carrier silicon MIS solar cells,” IEEE Trans. Electron. Dev. 27, 716–724 (1980).
[Crossref]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

Niu, B.

C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
[Crossref]

Noguchi, M.

M. Noguchi, K. Hirakawa, and T. Ikoma, “Intrinsic electron accumulation layers on reconstructed clean InAs (100) surfaces,” Phys. Rev. Lett. 66, 2243 (1991).
[Crossref] [PubMed]

Oei, Y.-S.

Ordal, M.

Oulton, R. F.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Oxland, R.

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Painter, O.

Pan, J. Q.

C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
[Crossref]

Paniccia, M. J.

Panish, H.

H. Panish and M. Casey, Heterostructure Lasers: Part A: Fundamental Principles (Academic Press, 1978).

Park, H.

Passlack, M.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Peaker, A.

J. Rimmer, J. Langer, M. Missous, J. Evans, I. Poole, A. Peaker, and K. Singer, “Minority-carrier confinement by doping barriers,” Mater. Sci. Eng. B 9, 375–378 (1991).
[Crossref]

Perel, V. I.

V. Abakumov, V. I. Perel, and I. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier, 1991).

Peschel, U.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).
[Crossref] [PubMed]

Pfeifer, H.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).
[Crossref] [PubMed]

Ploss, D.

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).
[Crossref] [PubMed]

Poole, I.

J. Rimmer, J. Langer, M. Missous, J. Evans, I. Poole, A. Peaker, and K. Singer, “Minority-carrier confinement by doping barriers,” Mater. Sci. Eng. B 9, 375–378 (1991).
[Crossref]

Premaratne, M.

Preston, K.

Qu, H. J.

C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
[Crossref]

Raday, O.

Ramvall, P.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Ran, G. Z.

C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
[Crossref]

Rhoderick, E.

H. Card and E. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes,” J. Phys. D: Appl. Phys. 4, 1589 (1971).
[Crossref]

Rimmer, J.

J. Rimmer, J. Langer, M. Missous, J. Evans, I. Poole, A. Peaker, and K. Singer, “Minority-carrier confinement by doping barriers,” Mater. Sci. Eng. B 9, 375–378 (1991).
[Crossref]

Robertson, J.

J. Robertson, “High k dielectrics for future CMOS devices,” ECS Trans. 19, 579–591 (2009).
[Crossref]

J. Robertson and B. Falabretti, “Band offsets of high k gate oxides on III-V semiconductors,” J. Appl. Phys. 100, 014111 (2006).
[Crossref]

Robinson, J. T.

Rojas-Ramirez, J.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Sahni, S.

Seabaugh, A.

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

Shewchun, J.

M. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16, 1141–1150 (1973).
[Crossref]

Singer, K.

J. Rimmer, J. Langer, M. Missous, J. Evans, I. Poole, A. Peaker, and K. Singer, “Minority-carrier confinement by doping barriers,” Mater. Sci. Eng. B 9, 375–378 (1991).
[Crossref]

Smalbrugge, B.

Sonnet, A.

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

Sorger, V. J.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Stavrinou, P. N.

S. Kena-Cohen, P. N. Stavrinou, D. D. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13, 1323–1329 (2013).
[Crossref] [PubMed]

Stern, F.

H. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
[Crossref]

Stockman, M. I.

Stratton, R.

R. Stratton, “Volt-current characteristics for tunneling through insulating films,” J. Phys. Chem. Solids 23, 1177–1190 (1962).
[Crossref]

Sun, M.

Svensson, C.

I. Lundström and C. Svensson, “Tunneling to traps in insulators,” J. Appl. Phys. 43, 5045–5047 (1972).
[Crossref]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

Szkopek, T.

Talalakin, G.

M. Aydaraliev, N. Zotova, S. Karandashov, B. Matveev, G. Talalakin, and et al., “Low-threshold long-wave lasers (λ = 3.0–3.6µ m) based on III–V alloys,” Semicond. Sci. Technol. 8, 1575 (1993).
[Crossref]

Thelander, C.

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

Treherne, D.

Tsou, Y.

Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28, 1261–1268 (1992).
[Crossref]

van Veldhoven, P. J.

Vellianitis, G.

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Voevodin, A.

T. Bright, J. Watjen, Z. Zhang, C. Muratore, and A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films 520, 6793–6802 (2012).
[Crossref]

Vogel, E.

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

Vurgaftman, I.

Wade, G.

G. Wade, C. Wheeler, and R. Hunsperger, “Inherent properties of a tunnel-injection laser,” Proc. IEEE 53, 98–99 (1965).
[Crossref]

Wang, C.

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
[Crossref]

Wang, S.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Wang, W.

C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
[Crossref]

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Ward, C.

Watjen, J.

T. Bright, J. Watjen, Z. Zhang, C. Muratore, and A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films 520, 6793–6802 (2012).
[Crossref]

Wernersson, L.-E.

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

Weststrate, K.-J.

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

Wheeler, C.

G. Wade, C. Wheeler, and R. Hunsperger, “Inherent properties of a tunnel-injection laser,” Proc. IEEE 53, 98–99 (1965).
[Crossref]

Wheeler, D.

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

D. Wheeler, “High-k InAs metal-oxide-semiconductor capacitors formed by atomic layer deposition,” Ph.D. thesis, University of Notre Dame, Notre Dame, Indiana (2009).

Wijesinghe, T.

Yassievich, I.

V. Abakumov, V. I. Perel, and I. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier, 1991).

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Yu, H. Y.

C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
[Crossref]

Zayats, A. V.

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zhang, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zhang, Z.

T. Bright, J. Watjen, Z. Zhang, C. Muratore, and A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films 520, 6793–6802 (2012).
[Crossref]

Zhu, Y.

Zotova, N.

M. Aydaraliev, N. Zotova, S. Karandashov, B. Matveev, G. Talalakin, and et al., “Low-threshold long-wave lasers (λ = 3.0–3.6µ m) based on III–V alloys,” Semicond. Sci. Technol. 8, 1575 (1993).
[Crossref]

AIP Adv. (1)

C. Wang, G. Doornbos, G. Astromskas, G. Vellianitis, R. Oxland, M. Holland, M. Huang, C. Lin, C. Hsieh, Y. Chang, and et al., “High-k dielectrics on (100) and (110) n-InAs: physical and electrical characterizations,” AIP Adv. 4, 047108 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

C. Wang, S. Wang, G. Doornbos, G. Astromskas, K. Bhuwalka, R. Contreras-Guerrero, M. Edirisooriya, J. Rojas-Ramirez, G. Vellianitis, R. Oxland, M.C. Holland, C. H. Hsieh, P. Ramvall, E. Lind, W.C. Hsu, L.-E. Wernersson, R. Droopad, M. Passlack, and C.H. Diaz, “InAs hole inversion and bandgap interface state density of 2 × 1011 cm2eV−1 at HfO2/InAs interfaces,” Appl. Phys. Lett. 103, 143510 (2013).
[Crossref]

Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters,” Appl. Phys. Lett. 92, 072901 (2008).
[Crossref]

C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112 (2013).
[Crossref]

ECS Trans. (1)

J. Robertson, “High k dielectrics for future CMOS devices,” ECS Trans. 19, 579–591 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28, 1261–1268 (1992).
[Crossref]

D. Costantini, A. Bousseksou, M. Fevrier, B. Dagens, and R. Colombelli, “Loss and gain measurements of tensile strained quantum well diode lasers for plasmonic devices at telecom wavelengths,” IEEE J. Quantum Electron. 48, 73–78 (2012).
[Crossref]

IEEE Trans. Device Mater. Rel. (1)

C.-H. Chang and J.-G. Hwu, “Characteristics and reliability of hafnium oxide dielectric stacks with room temperature grown interfacial anodic oxide,” IEEE Trans. Device Mater. Rel. 9, 215–221 (2009).
[Crossref]

IEEE Trans. Electron. Dev. (1)

K. Ng and H. Card, “A comparison of majority- and minority-carrier silicon MIS solar cells,” IEEE Trans. Electron. Dev. 27, 716–724 (1980).
[Crossref]

J. Appl. Phys. (3)

H. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys. 47, 631–643 (1976).
[Crossref]

J. Robertson and B. Falabretti, “Band offsets of high k gate oxides on III-V semiconductors,” J. Appl. Phys. 100, 014111 (2006).
[Crossref]

I. Lundström and C. Svensson, “Tunneling to traps in insulators,” J. Appl. Phys. 43, 5045–5047 (1972).
[Crossref]

J. Opt. Soc. Am. (2)

J. Phys. Chem. Solids (1)

R. Stratton, “Volt-current characteristics for tunneling through insulating films,” J. Phys. Chem. Solids 23, 1177–1190 (1962).
[Crossref]

J. Phys. D: Appl. Phys. (1)

H. Card and E. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes,” J. Phys. D: Appl. Phys. 4, 1589 (1971).
[Crossref]

Mater. Sci. Eng. B (1)

J. Rimmer, J. Langer, M. Missous, J. Evans, I. Poole, A. Peaker, and K. Singer, “Minority-carrier confinement by doping barriers,” Mater. Sci. Eng. B 9, 375–378 (1991).
[Crossref]

Microelectron. Eng. (1)

D. Wheeler, L.-E. Wernersson, L. Fröberg, C. Thelander, A. Mikkelsen, K.-J. Weststrate, A. Sonnet, E. Vogel, and A. Seabaugh, “Deposition of HfO2 on InAs by atomic-layer deposition,” Microelectron. Eng. 86, 1561–1563 (2009).
[Crossref]

Nano Lett. (3)

D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12, 2459–2463 (2012).
[Crossref] [PubMed]

S. Kena-Cohen, P. N. Stavrinou, D. D. Bradley, and S. A. Maier, “Confined surface plasmon-polariton amplifiers,” Nano Lett. 13, 1323–1329 (2013).
[Crossref] [PubMed]

A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, and U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13, 4539–4545 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (8)

R. Flynn, C. Kim, I. Vurgaftman, M. Kim, J. Meyer, A. Mäkinen, K. Bussmann, L. Cheng, F.-S. Choa, and J. Long, “A room-temperature semiconductor spaser operating near 1.5 µ m,” Opt. Express 19, 8954–8961 (2011).
[Crossref] [PubMed]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15, 2315–2322 (2007).
[Crossref] [PubMed]

D. Y. Fedyanin and A. V. Arsenin, “Surface plasmon polariton amplification in metal-semiconductor structures,” Opt. Express 19, 12524–12531 (2011).
[Crossref] [PubMed]

J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15, 4474–4484 (2007).
[Crossref] [PubMed]

M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, and et al., “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref] [PubMed]

T. Wijesinghe, M. Premaratne, and G. P. Agrawal, “Electrically pumped hybrid plasmonic waveguide,” Opt. Express 22, 2681–2694 (2014). The results obtained in this reference assume free passage of carriers through the insulator layer with the injection velocity equal to the thermal velocity. This contradicts to the established theories of carrier transport in MIS structures [20,21]. Due to the high potential barriers at the metal-insulator and semiconductor-insulator interfaces, the thermionic injection cannot be actually efficient, while the dominating transport mechanism is due to tunneling.
[Crossref] [PubMed]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008).
[Crossref] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. Noguchi, K. Hirakawa, and T. Ikoma, “Intrinsic electron accumulation layers on reconstructed clean InAs (100) surfaces,” Phys. Rev. Lett. 66, 2243 (1991).
[Crossref] [PubMed]

Proc. IEEE (1)

G. Wade, C. Wheeler, and R. Hunsperger, “Inherent properties of a tunnel-injection laser,” Proc. IEEE 53, 98–99 (1965).
[Crossref]

Semicond. Sci. Technol. (1)

M. Aydaraliev, N. Zotova, S. Karandashov, B. Matveev, G. Talalakin, and et al., “Low-threshold long-wave lasers (λ = 3.0–3.6µ m) based on III–V alloys,” Semicond. Sci. Technol. 8, 1575 (1993).
[Crossref]

Solid-State Electron. (3)

P. Landsberg and C. Klimpke, “Surface recombination effects in an improved theory of a p-type MIS solar cell,” Solid-State Electron. 23, 1139–1145 (1980).
[Crossref]

M. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16, 1141–1150 (1973).
[Crossref]

H. Card, “On the direct currents through interface states in metal-semiconductor contacts,” Solid-State Electron. 18, 881–883 (1975).
[Crossref]

Sov. Phys. JETP (1)

V. Abakumov and I. Iassievich, “Cross section for the recombination of an electron on a positively charged center in a semiconductor,” Sov. Phys. JETP 71, 657–664 (1976).

Surf. Sci. (1)

M. G. Betti, G. Bertoni, V. Corradini, V. De Renzi, and C. Mariani, “Metal-induced gap states at InAs (110) surface,” Surf. Sci. 454, 539–542 (2000).
[Crossref]

Thin Solid Films (1)

T. Bright, J. Watjen, Z. Zhang, C. Muratore, and A. Voevodin, “Optical properties of HfO2 thin films deposited by magnetron sputtering: From the visible to the far-infrared,” Thin Solid Films 520, 6793–6802 (2012).
[Crossref]

Other (10)

W. Mönch, Semiconductor Surfaces and Interfaces (Springer Science & Business Media, 2001).
[Crossref]

D. Wheeler, “High-k InAs metal-oxide-semiconductor capacitors formed by atomic layer deposition,” Ph.D. thesis, University of Notre Dame, Notre Dame, Indiana (2009).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

V. Abakumov, V. I. Perel, and I. Yassievich, Nonradiative Recombination in Semiconductors (Elsevier, 1991).

H. Panish and M. Casey, Heterostructure Lasers: Part A: Fundamental Principles (Academic Press, 1978).

D. Costantini, “Compact generation and amplification of surface plasmon polaritons at telecom wavelengths,” Ph.D. thesis, University Paris Sud, ParisXI (2013).

D. Y. Fedyanin and A. V. Arsenin, “Semiconductor surface plasmon amplifier based on a Schottky barrier diode,” in AIP Conference Proceedings1291 (2010), pp. 112–114.

S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (John Wiley & Sons, 2009), vol. 28.
[Crossref]

L. A. Coldren, S.W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012).
[Crossref]

O. Madelung, Semiconductors: Group IV elements and III–V compounds (Springer Verlag, 1991), Vol. 1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SPP amplification schemes based on a Schottky barrier diode [11] and tunnel MIS contact. Top panels: Energy band diagrams for the Schottky contact between gold and indium arsenide in equilibrium (a) and at high forward bias (b). The Schottky barrier height for electrons φBn at the Au/InAs contact is negative owing to the large density of surface states and, under high forward bias, electrons (minority carriers in p-type InAs) are freely injected in the bulk of the semiconductor. However, majority carriers (holes) also pass across the Au/InAs contact without any resistance, which results in a high leakage current. Bottom panels: Energy band diagrams for the tunnel Au/HfO2/InAs MIS structure in equilibrium (c) and at high forward bias (d). If the barrier height for holes χVI is substantially greater than that for electrons (φMI), the insulator layer can efficiently block majority carriers (holes), but be semi-transparent for minority carriers (electrons) escaping from the metal.

Fig. 2
Fig. 2

Schematic of a T-shaped hybrid plasmonic waveguide based on the Au/HfO2/InAs MIS structure, w is the waveguide width, di is the thickness of the low refractive index insulator layer between the metal and semiconductor, and H is the waveguide height. (b) Distribution of the normalized energy density per unit length of the waveguide for the fundamental TM00 mode at λ = 3.22 µm, H = 2.5 µm, w = 400 nm and di = 3 nm. The dielectric functions of the materials are as follows: ε Si O 2 = 2.00 [35], ε Hf O 2 = 3 . 84 [36], εInAs = 12.38 [37] and εAu = −545+38i [11].

Fig. 3
Fig. 3

SPP modal gain versus pump current for different densities of surface states at the HfO2/InAs interface. Blue, yellow and red regions show three regimes of the active plasmonic waveguide: at low injection currents, the electron concentration in InAs is quite small for population inversion; in the yellow region, the SPP propagation losses are partially compensated by optical gain in InAs; and at high injection currents, the material gain is significantly large for net SPP gain. The black circles highlight the breakdown condition for the HfO2 insulating layer Vi/di = 1 V/nm [40].

Fig. 4
Fig. 4

(a) Contributions of different tunneling processes to the injection current. (b) Material gain profile across the InAs rib at different bias voltages and spatial profile of the SPP electric field averaged over the waveguide width | E avg ( z ) | 2 = w / 2 w / 2 | E avg ( y , z ) | 2 d y / w. For both panels, the density of surface states equals 1013 cm−2eV−1.

Fig. 5
Fig. 5

Gain-current characteristic for the SPP mode of the T-shaped active hybrid plasmonic waveguide based on the Cu/HfO2/InAs MIS structure and relative contributions of different tunnelling processes to the total current. The density of surface states is equal to 5×1012 cm−2eV−1 and the dimensions of the waveguide are the same as in Fig. 2(b).

Fig. 6
Fig. 6

(a) Illustration of three different components of the electron tunnel current: tunneling through the triangular barrier (I), tunneling through the trapezoid barrier (II), and tunneling through the trapezoid barrier followed by a short (~ 2 nm) section of the bandgap in the semiconductor (III). (b) Schematic illustration of carrier transport in the MIS structure under forward bias. Black arrows indicate the tunnel currents between the metal and the conduction band (Jt,cb) and between the metal and the valence band (Jt,vb). Color arrows show the processes related to the population and depopulation of surface states: capture and thermal emission of electrons (blue arrows), capture and thermal emission of holes (red arrows), direct tunneling from the metal to surface states (green arrows).

Fig. 7
Fig. 7

Gain spectra of InAs calculated using Stern’s model [see Eq. (30)] at different electron densities, the acceptor density is equal to 1018 cm−3 for all curves.

Fig. 8
Fig. 8

(a) SPP modal gain versus injection current density for three different thicknesses of the HfO2 layer of the Au/HfO2/InAs active hybrid plasmonic waveguide. Dashed curves correspond to the voltage range above the breakdown voltage of HfO2. (b) Current-voltage characteristics (color coding is the same as in panel (a)). (c, d) Contribution of different tunneling processes to the injection current for the 2.5-nm-thick (c) and 3.5-nm-thick (d) HfO2 layers. For all panels, the density of surface states is equal to 1013 cm−2eV−1.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

D cb D vd = exp [ 2 3 / 2 m i 1 / 2 d i h ( χ VI 1 / 2 φ MI 1 / 2 ) ] ,
n ( z ) J 0 , n e τ R D n exp ( z L D ) + n 0 ,
G = c ε 0 n In As w / 2 + w / 2 d y d i H d z g ( y , z ) | E ( y , z ) | 2 2 + d y + d z P z ( y , z ) 2 Im β psv .
J t , k = 4 π e ( 2 π ) 3 E c + d E [ f m ( E ) f k ( E ) ] 0 p , max p d p D k ( E , p ) .
D k ( E , p ) = exp [ 2 2 m i h z 1 z 2 E p 2 2 m i U k ( z ) d z ] .
ln D cb , I ( E , p ) = 4 2 m i 3 e F i [ φ MI + p 2 2 m i E ] 3 / 2 .
ln D cb , II ( E , p ) = 4 2 m i 3 e F i { [ φ MI + p 2 2 m i E ] 3 / 2 [ φ MI e V i + p 2 2 m i E ] 3 / 2 } .
ln D cb , III ( E , p ) = ln D II ( E , p ) 4 3 2 m e e F s [ E c | z = d i E + p 2 2 m e ] 3 / 2 .
J t , cb = 4 π e m i ( 2 π ) 3 E c + [ f m ( E ) f cb ( E ) ] S ( E ) d E ,
S ( E ) = E t , I D cb , I ( E , 0 ) [ 1 exp ( m e m i E E c E t , I ) ] ,
E t , I = e F i 2 [ 2 m i ( φ MI E ) ] 1 / 2 .
S ( E ) = E t , II D cb , II ( E , 0 ) [ 1 exp ( m e m i E E c E t , II ) ] ,
E t , II = e F i 2 2 m i ( [ φ MI E ] 1 / 2 [ φ MI E e V i ] 1 / 2 ) .
S ( E ) = E t , III D cb , III ( E , 0 ) [ 1 exp ( m e m i E E c E t , III ) ] ,
E t , III = { 2 2 m i ( | φ MI E | 1 / 2 | φ MI E e V i | 1 / 2 ) e F i + m i m e 2 [ 2 m e ( E E c ) ] 1 / 2 e F s } 1 .
ln D vb , I ( E , p ) = 4 2 m i 3 e F i { [ χ VI + p 2 2 m i E v | z = d i + E ] 3 / 2 [ χ VI e V i + p 2 2 m i E v | z = d i + E ] } 3 / 2 ,
ln D vb , II ( E , p ) = 4 2 m i 3 e F i [ χ VI + p 2 2 m i E v | z = d i + E ] 3 / 2 .
ε i V i / d i ε s E s = Q ss / ε 0 .
d 2 φ d x 2 = e ( N A p ) ε s ε 0 ,
E s = { 2 ε s ε 0 ζ p ζ p + e V s [ ( ε F ) N A ] d ε F } 1 / 2 ,
J 0 , n = J t , cb J sr , n ,
f ss ( E ) = v n + v p e ( F p E ) / k B T + v t ( E ) f m ( E ) v n [ e ( E F n ) / k B T + 1 ] + v p [ e ( F p E ) / k B T + 1 ] + v t ( E ) ,
σ n = 4 π 3 r T 3 l ε 1 .
v t ( E ) = τ 0 1 D ( E , 0 ) ,
τ 0 = m i 2 d i 2 m 0 κ 2 + k F 2 κ 2 k F [ 1 κ d i k F ( d i k F 2 κ ) ] 1 .
( x ) = e x 2 0 x e t 2 d t .
Q ss = e ρ ss E v E c [ 1 f ss ( E ) ] d E ,
J sr , n = 1 4 e v n n | z = d i σ n ρ ss E v E c { [ 1 f ss ( E ) ] f ss ( E ) e ( E F n ) / k B T } d E ,
J t , ss = e ρ ss E v E c v t ( E ) [ f m ( E ) f ss ( E ) ] d E .
g ( F n , F p ) = π e 2 n In As m 0 2 ε 0 | M b | 2 6 ω + ρ cb ( E ) ρ vb ( E ω ) | M env ( E , E ω ) | 2 [ f cb ( E , E n ) f vb ( E ω , F p ) ] d E .

Metrics