Abstract

Using two-photon (Franson) interferometry, we measure the entanglement of photon pairs generated from an optically-pumped silicon photonic device consisting of a few coupled microring resonators. The pair-source chip operates at room temperature, and the InGaAs single-photon avalanche detectors (SPADs) are thermo-electrically cooled to 234K. Such a device can be integrated with other components for practical entangled photon-pair generation at telecommunications wavelengths.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity

Jing Suo, Shuai Dong, Wei Zhang, Yidong Huang, and Jiangde Peng
Opt. Express 23(4) 3985-3995 (2015)

High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli
Opt. Express 24(25) 28731-28738 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
    [Crossref]
  2. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737 (2000).
    [Crossref] [PubMed]
  3. H. Lee, P. Kok, and J. P. Dowling, “A quantum rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
    [Crossref]
  4. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
    [Crossref]
  5. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
    [Crossref] [PubMed]
  6. J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
    [Crossref] [PubMed]
  7. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
    [Crossref] [PubMed]
  8. S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
    [Crossref] [PubMed]
  9. R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, “Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 µ m from a silicon coupled-resonator optical waveguide,” Opt. Lett. 38, 2969–2971 (2013).
    [Crossref] [PubMed]
  10. N. Matsuda, H. Takesue, K. Shimizu, Y. Tokura, E. Kuramochi, and M. Notomi, “Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides,” Opt. Express 21, 8596–8604 (2013).
    [Crossref] [PubMed]
  11. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
    [Crossref]
  12. M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
    [Crossref]
  13. W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Ultra-bright photon-pair generation on a silicon chip,” in “Frontiers in Optics,” pp. FW6C (2012).
  14. M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
    [Crossref] [PubMed]
  15. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
    [Crossref]
  16. H. Takesue, N. Matsuda, E. Kuramochi, and M. Notomi, “Entangled photons from on-chip slow light,” Sci. Rep. 4, 3913 (2014).
    [Crossref] [PubMed]
  17. R. Wakabayashi, M. Fujiwara, K.-i. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
    [Crossref] [PubMed]
  18. J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
    [Crossref] [PubMed]
  19. J. R. Ong and S. Mookherjea, “Quantum light generation on a silicon chip using waveguides and resonators,” Opt. Express 21, 5171–5181 (2013).
    [Crossref] [PubMed]
  20. R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
    [Crossref] [PubMed]
  21. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18, 26505–26516 (2010).
    [Crossref] [PubMed]
  22. J. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
    [Crossref] [PubMed]
  23. P. Kwiat, A. Steinberg, and R. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
    [Crossref] [PubMed]
  24. A. Tosi, M. Sanzaro, N. Calandri, A. Ruggeri, and F. Acerbi, “Low dark count rate and low timing jitter In-GaAs/InP single-photon avalanche diode,” in 44th European Conference on Solid State Device Research Conference (ESSDERC), pp. 82–85 (2014).
  25. R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
    [Crossref]
  26. J. F. Clauser and A. Shimony, “Bell’s theorem. experimental tests and implications,” Rep. Prog. Phys. 41, 1881 (1978).
    [Crossref]
  27. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, D. K. Gifford, and S. Mookherjea, “Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides,” Opt. Lett. 35, 3030–3032 (2010).
    [Crossref] [PubMed]

2015 (3)

2014 (2)

H. Takesue, N. Matsuda, E. Kuramochi, and M. Notomi, “Entangled photons from on-chip slow light,” Sci. Rep. 4, 3913 (2014).
[Crossref] [PubMed]

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (1)

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

2010 (2)

2009 (1)

2006 (1)

2005 (1)

2004 (1)

2002 (2)

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

H. Lee, P. Kok, and J. P. Dowling, “A quantum rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
[Crossref]

2000 (1)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

1999 (2)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

1993 (1)

P. Kwiat, A. Steinberg, and R. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

1989 (1)

J. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

1978 (1)

J. F. Clauser and A. Shimony, “Bell’s theorem. experimental tests and implications,” Rep. Prog. Phys. 41, 1881 (1978).
[Crossref]

Acerbi, F.

A. Tosi, M. Sanzaro, N. Calandri, A. Ruggeri, and F. Acerbi, “Low dark count rate and low timing jitter In-GaAs/InP single-photon avalanche diode,” in 44th European Conference on Solid State Device Research Conference (ESSDERC), pp. 82–85 (2014).

Agha, I.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Alibart, O.

Aoki, T.

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

Assefa, S.

Azzini, S.

Baets, R.

Bajoni, D.

Bogaerts, W.

Bonneau, D.

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

Calandri, N.

A. Tosi, M. Sanzaro, N. Calandri, A. Ruggeri, and F. Acerbi, “Low dark count rate and low timing jitter In-GaAs/InP single-photon avalanche diode,” in 44th European Conference on Solid State Device Research Conference (ESSDERC), pp. 82–85 (2014).

Chen, J.

Chiao, R.

P. Kwiat, A. Steinberg, and R. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

Clark, A. S.

Clauser, J. F.

J. F. Clauser and A. Shimony, “Bell’s theorem. experimental tests and implications,” Rep. Prog. Phys. 41, 1881 (1978).
[Crossref]

Clemmen, S.

Collins, M. J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Cooper, M. L.

Davanço, M.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Dong, S.

Dorenbos, S. N.

Dowling, J. P.

H. Lee, P. Kok, and J. P. Dowling, “A quantum rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
[Crossref]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

Eggleton, B. J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Emplit, P.

Engin, E.

Ezaki, M.

Foster, M. A.

Franson, J.

J. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

Fujiwara, M.

Fulconis, J.

Gaeta, A. L.

Galli, M.

Gifford, D. K.

Gisin, N.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

Grassani, D.

Green, W. M.

Gupta, G.

Hadfield, R.

He, J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Huang, Y.

Huy, K. P.

Iizuka, N.

Jiang, W. C.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Ultra-bright photon-pair generation on a silicon chip,” in “Frontiers in Optics,” pp. FW6C (2012).

Kok, P.

H. Lee, P. Kok, and J. P. Dowling, “A quantum rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
[Crossref]

Krauss, T.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Kumar, P.

Kumar, R.

Kuramochi, E.

Kwiat, P.

P. Kwiat, A. Steinberg, and R. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

Lee, H.

H. Lee, P. Kok, and J. P. Dowling, “A quantum rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
[Crossref]

Lee, K. F.

Li, X.

Lin, Q.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Ultra-bright photon-pair generation on a silicon chip,” in “Frontiers in Optics,” pp. FW6C (2012).

Lipson, M.

Liscidini, M.

Lu, X.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Ultra-bright photon-pair generation on a silicon chip,” in “Frontiers in Optics,” pp. FW6C (2012).

Massar, S.

Matsuda, N.

Mookherjea, S.

Nambu, Y.

Natarajan, C. M.

Notomi, M.

O’Brien, J. L.

Ohira, K.

Ong, J. R.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref] [PubMed]

R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, “Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 µ m from a silicon coupled-resonator optical waveguide,” Opt. Lett. 38, 2969–2971 (2013).
[Crossref] [PubMed]

J. R. Ong and S. Mookherjea, “Quantum light generation on a silicon chip using waveguides and resonators,” Opt. Express 21, 5171–5181 (2013).
[Crossref] [PubMed]

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Painter, O.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Ultra-bright photon-pair generation on a silicon chip,” in “Frontiers in Optics,” pp. FW6C (2012).

Peng, J.

Rarity, J.

Reardon, C.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Recchio, J.

Rey, I. H.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Ruggeri, A.

A. Tosi, M. Sanzaro, N. Calandri, A. Ruggeri, and F. Acerbi, “Low dark count rate and low timing jitter In-GaAs/InP single-photon avalanche diode,” in 44th European Conference on Solid State Device Research Conference (ESSDERC), pp. 82–85 (2014).

Russell, P.

Sanzaro, M.

A. Tosi, M. Sanzaro, N. Calandri, A. Ruggeri, and F. Acerbi, “Low dark count rate and low timing jitter In-GaAs/InP single-photon avalanche diode,” in 44th European Conference on Solid State Device Research Conference (ESSDERC), pp. 82–85 (2014).

Sasaki, M.

Savanier, M.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref] [PubMed]

Schmidt, B. S.

Schneider, M. A.

Shahnia, S.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Sharping, J.

Sharping, J. E.

Shehata, A. B.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Shimizu, K.

Shimony, A.

J. F. Clauser and A. Shimony, “Bell’s theorem. experimental tests and implications,” Rep. Prog. Phys. 41, 1881 (1978).
[Crossref]

Sipe, J.

Sorel, M.

Srinivasan, K.

R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, “Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 µ m from a silicon coupled-resonator optical waveguide,” Opt. Lett. 38, 2969–2971 (2013).
[Crossref] [PubMed]

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Steel, M.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Steinberg, A.

P. Kwiat, A. Steinberg, and R. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

Strain, M. J.

Suo, J.

Suzuki, N.

Takesue, H.

Tanner, M.

Tanzilli, S.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Thew, R. T.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

Thompson, M. G.

Tittel, W.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

Tokura, Y.

Tosi, A.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

A. Tosi, M. Sanzaro, N. Calandri, A. Ruggeri, and F. Acerbi, “Low dark count rate and low timing jitter In-GaAs/InP single-photon avalanche diode,” in 44th European Conference on Solid State Device Research Conference (ESSDERC), pp. 82–85 (2014).

Turner, A. C.

Vlasov, Y. A.

Vo, T. D.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Voss, P.

Wadsworth, W.

Wakabayashi, R.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

Xia, F.

Xiong, C.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

Yoshida, H.

Yoshino, K.-i.

Zbinden, H.

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

Zhang, J.

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Ultra-bright photon-pair generation on a silicon chip,” in “Frontiers in Optics,” pp. FW6C (2012).

Zhang, W.

Zwiller, V.

Appl. Phys. Lett. (1)

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

J. Mod. Opt. (1)

H. Lee, P. Kok, and J. P. Dowling, “A quantum rosetta stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002).
[Crossref]

Nat. Commun. (2)

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. Krauss, M. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
[Crossref] [PubMed]

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref] [PubMed]

Opt. Express (10)

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref] [PubMed]

J. Fulconis, O. Alibart, W. Wadsworth, P. Russell, and J. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[Crossref] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388–12393 (2006).
[Crossref] [PubMed]

S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558–16570 (2009).
[Crossref] [PubMed]

M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18, 26505–26516 (2010).
[Crossref] [PubMed]

J. R. Ong and S. Mookherjea, “Quantum light generation on a silicon chip using waveguides and resonators,” Opt. Express 21, 5171–5181 (2013).
[Crossref] [PubMed]

N. Matsuda, H. Takesue, K. Shimizu, Y. Tokura, E. Kuramochi, and M. Notomi, “Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides,” Opt. Express 21, 8596–8604 (2013).
[Crossref] [PubMed]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. Tanner, R. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

R. Wakabayashi, M. Fujiwara, K.-i. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from si micro-ring resonator,” Opt. Express 23, 1103–1113 (2015).
[Crossref] [PubMed]

J. Suo, S. Dong, W. Zhang, Y. Huang, and J. Peng, “Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity,” Opt. Express 23, 3985–3995 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (3)

P. Kwiat, A. Steinberg, and R. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472 (1993).
[Crossref] [PubMed]

R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, “Experimental investigation of the robustness of partially entangled qubits over 11 km,” Phys. Rev. A 66, 062304 (2002).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[Crossref]

Phys. Rev. Lett. (3)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737 (2000).
[Crossref] [PubMed]

J. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205 (1989).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

J. F. Clauser and A. Shimony, “Bell’s theorem. experimental tests and implications,” Rep. Prog. Phys. 41, 1881 (1978).
[Crossref]

Sci. Rep. (1)

H. Takesue, N. Matsuda, E. Kuramochi, and M. Notomi, “Entangled photons from on-chip slow light,” Sci. Rep. 4, 3913 (2014).
[Crossref] [PubMed]

Other (2)

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Ultra-bright photon-pair generation on a silicon chip,” in “Frontiers in Optics,” pp. FW6C (2012).

A. Tosi, M. Sanzaro, N. Calandri, A. Ruggeri, and F. Acerbi, “Low dark count rate and low timing jitter In-GaAs/InP single-photon avalanche diode,” in 44th European Conference on Solid State Device Research Conference (ESSDERC), pp. 82–85 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photon pair generation using diode-pumped SFWM and entanglement characterization measurement through Franson interferometry. Two separate Mach-Zehnder interferometers (MZIs) are constructed, and separately stabilized using feedback based on transmission of the classical pump light. EDFA = Erbium doped fiber amplifier, FPC = Fiber polarization controller, EOM = Electro-optic modulator, ASE = Amplified spontaneous emission, DAQ = Data-acquisition card, SPAD = Single photon avalanche photo diode, TEC = Thermo-electric cooler, TCSPC = Time-correlated single photon counting. Blue lines refer to polarization-maintaining single-mode fiber and green lines to non-polarization-maintaining single-mode fiber.

Fig. 2
Fig. 2

Full Franson Interferometer: (a) Singles from SPAD 1 (Signal) and SPAD 2 (Idler). (b) Output of the TCSPC for three gate configurations (corresponding to the SL, SS+LL and LS events) for two different interferometer phases (Φ = Φ0 and Φ = Φ0 + 180°). Each bin represented here is of 400 ps in width and the measurement time was 900 seconds for each events.

Fig. 3
Fig. 3

Two photon interference pattern of |Ψ〉 for two different pump wavelengths: 1561.64 (a) nm, (b) 1561.86 nm. These wavelengths correspond to adjacent transmission resonances within a single passband of the device. Red circle = experimental coincidence data, Black solid curve = Fit to the experimental data, Black dashed line = Average accidentals, Black circle = Individual accidentals.

Fig. 4
Fig. 4

Photon pair generation using diode-pumped SFWM and entanglement characterization measurement through a folded Franson interferometry. Notice the simpler apparatus for stabilizing the interferometer, compared to Fig. 1.

Fig. 5
Fig. 5

Folded Franson Interferometer: (a) Singles from SPAD 1 (Signal) and SPAD 2 (Idler). (b) Output of the TCSPC for three gate configurations (corresponding to the SL, SS+LL and LS events) for two different interferometer phases (Φ = Φ0 and Φ = Φ0 + 180°). Each bin represented here is of 300 ps in width and the measurement time was 900 seconds for each events.

Fig. 6
Fig. 6

Two photon interference pattern of |Ψ〉 for four different pump wavelengths: (a) 1555.66 nm, (b) 1555.99, (c) 1556.21 nm, and (d) 1556.39 nm. These wavelengths correspond to transmission resonances within a single passband of the device. Red circle = experimental coincidence data, Black solid curve = Fit to the experimental data, Black dashed line = Average accidentals, Black circle = Individual accidentals.

Fig. 7
Fig. 7

Classical transmission for 11 ring CROW. Signal, Idler, and Pump passbands are shown in green (left), blue (right), and red (center), respectively. The most prominent central five peaks are labeled as P1 – P5. P1, P3, P4, and P5 are used in the measurement. (a) Chip used for Full Franson measurement. (b) Chip used for folded Franson measurement

Metrics