Abstract

The members of viperidae crotalinae (pit viper) family have special pit organs to detect infrared radiation in normal room conditions, whereas most artificial uncooled infrared focal plane arrays (FPAs) operate only in a vacuum chamber. Dissection shows that the pit membrane is a unique substrate-free structure. The temperature rise advantage of this pit organ was verified in comparison with an assumed substrate pit organ (as an artificial FPA structure). Inspired by the pit viper, we introduced this structure to infrared FPA, replacing the conventional substrate FPA. The substrate-free FPA was fabricated by micro-elctromechanical systems (MEMS) process and placed into an infrared imaging system to obtain thermal images of the human body in atmosphere and vacuum working conditions. We show that the infrared capability of the substrate-free pit organ was achieved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed infrared imaging by an uncooled optomechanical focal plane array

Yun Feng, Yuejin Zhao, Liquan Dong, Ming Liu, Xueyan Li, Wei Ma, Xiaomei Yu, Lingqin Kong, and Xiaohua Liu
Appl. Opt. 54(34) 10189-10195 (2015)

Optical readout method based on a narrow-strip filter for microcantilever array sensing

Cheng Gong, Mei Hui, Liquan Dong, Yuejin Zhao, Xiaomei Yu, and Xiaohua Liu
Opt. Lett. 37(7) 1187-1189 (2012)

Two-color thermal detector with thermal chopping for infrared focal-plane arrays

Vladimir N. Leonov and Donald P. Butler
Appl. Opt. 40(16) 2601-2610 (2001)

References

  • View by:
  • |
  • |
  • |

  1. G. K. Noble and A. Schmidt, “The structure and function of the facial and labial pits of snakes,” Proc. Am. Philos. Soc. 77(3), 263–288 (1937).
  2. T. H. Bullock and R. B. Cowles, “Physiology of an infrared receptor: the facial pit of pit vipers,” Science 115(2994), 541–543 (1952).
    [Crossref] [PubMed]
  3. T. H. Bullock and F. P. Diecke, “Properties of an infra-red receptor,” J. Physiol. 134(1), 47–87 (1956).
    [Crossref] [PubMed]
  4. P. H. Hartline, L. Kass, and M. S. Loop, “Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes,” Science 199(4334), 1225–1229 (1978).
    [Crossref] [PubMed]
  5. E. A. Newman and P. H. Hartline, “Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum,” Science 213(4509), 789–791 (1981).
    [Crossref] [PubMed]
  6. E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
    [Crossref] [PubMed]
  7. Q. Chen, H. Deng, S. E. Brauth, L. Ding, and Y. Tang, “Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses,” PLoS One 7(5), e34989 (2012).
    [Crossref] [PubMed]
  8. T. Kohl, S. E. Colayori, G. Westhoff, G. S. Bakken, and B. A. Young, “Directional sensitivity in the thermal response of the facial pit in western diamondback rattlesnakes (Crotalus atrox),” J. Exp. Biol. 215(15), 2630–2636 (2012).
    [Crossref] [PubMed]
  9. T. Kohl, M. S. Bothe, H. Luksch, H. Straka, and G. Westhoff, “Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox),” J. Comp. Neurol. 522(18), 3943–3959 (2014).
    [Crossref] [PubMed]
  10. G. S. Bakken, S. E. Colayori, and T. Duong, “Analytical methods for the geometric optics of thermal vision illustrated with four species of pitvipers,” J. Exp. Biol. 215(15), 2621–2629 (2012).
    [Crossref] [PubMed]
  11. V. Cadena, D. V. Andrade, R. P. Bovo, and G. J. Tattersall, “Evaporative respiratory cooling augments pit organ thermal detection in rattlesnakes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199(12), 1093–1104 (2013).
    [Crossref] [PubMed]
  12. C. C. Hsieh, C. Y. Wu, F. W. Jih, and T. P. Sun, “Focal-plane-arrays and CMOS readout techniques of infrared imaging systems,” IEEE T. Circ. Syst. Vid. 7(4), 594–605 (1997).
    [Crossref]
  13. Y. Feng, Y. Zhao, M. Liu, L. Dong, X. Yu, L. Kong, W. Ma, and X. Liu, “Image quality improvement by the structured light illumination method in an optical readout cantilever array infrared imaging system,” Opt. Lett. 40(7), 1390–1393 (2015).
    [Crossref] [PubMed]
  14. P. G. Datskos, N. V. Lavrik, S. R. Hunter, S. Rajic, and D. Grbovic, “Infrared imaging using arrays of SiO2 micromechanical detectors,” Opt. Lett. 37(19), 3966–3968 (2012).
    [Crossref] [PubMed]
  15. S. Huang, H. Tao, I. K. Lin, and X. Zhang, “Development of double-cantilever infrared detectors: fabrication, curvature control and demonstration of thermal detection,” Sens. Actuators, A 145, 231–240 (2008).
  16. A. B. Sichert, P. Friedel, and J. L. van Hemmen, “Snake’s perspective on heat: reconstruction of input using an imperfect detection system,” Phys. Rev. Lett. 97(6), 068105 (2006).
    [Crossref] [PubMed]
  17. V. Gorbunov, N. Fuchigami, M. Stone, M. Grace, and V. V. Tsukruk, “Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors,” Biomacromolecules 3(1), 106–115 (2002).
    [Crossref] [PubMed]
  18. F. Amemiya, T. Ushiki, R. C. Goris, Y. Atobe, and T. Kusunoki, “Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings,” Anat. Rec. 246(1), 135–146 (1996).
    [Crossref] [PubMed]
  19. T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, and X. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105(3), 034505 (2009).
    [Crossref]
  20. G. C. Holst, Testing and Evaluation of Infrared Imaging Systems, 2nd ed. (JCD Publishing, 1998).
  21. T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, J. Qian, and X. Wu, “Thermal and mechanical characterizations of a substrate-free focal plane array,” Chin. Phys. B 19(1), 010701 (2010).
    [Crossref]
  22. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
    [Crossref]
  23. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
    [Crossref]
  24. H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
    [Crossref] [PubMed]
  25. J. Fu, H. Shang, H. Shi, Z. Li, O. Yi, D. Chen, and Q. Zhang, “Design optimization and performance analysis of deformed optical readout focal plane array,” J. Micromech. Microeng. 25(6), 065012 (2015).
    [Crossref]
  26. Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32(6), 594–596 (2007).
    [Crossref] [PubMed]
  27. Z. Zhang, T. Cheng, Q. Zhang, L. Mao, J. Gao, and X. Wu, “Sample manuscript for an optical readout infrared imaging system based on polarization to eliminate stray light,” J. Appl. Phys. 114(9), 093106 (2013).
    [Crossref]
  28. P. W. Kruse, “Chapter 2: principles of uncooled infrared focal plane array,” Semiconduct. Semimet. 47, 17–42 (1997).
  29. T. Cheng, Q. Zhang, X. Wu, D. Chen, and B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEEE Electron Device Lett. 29(11), 1218–1221 (2008).
    [Crossref]
  30. Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).
  31. H. Y. Wong, Heat Transfer for Engineers (Longman, 1977).
  32. P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characteriza- tion of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
    [Crossref]
  33. Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, “The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system,” J. Appl. Phys. 102(11), 113524 (2007).
    [Crossref]

2015 (2)

Y. Feng, Y. Zhao, M. Liu, L. Dong, X. Yu, L. Kong, W. Ma, and X. Liu, “Image quality improvement by the structured light illumination method in an optical readout cantilever array infrared imaging system,” Opt. Lett. 40(7), 1390–1393 (2015).
[Crossref] [PubMed]

J. Fu, H. Shang, H. Shi, Z. Li, O. Yi, D. Chen, and Q. Zhang, “Design optimization and performance analysis of deformed optical readout focal plane array,” J. Micromech. Microeng. 25(6), 065012 (2015).
[Crossref]

2014 (1)

T. Kohl, M. S. Bothe, H. Luksch, H. Straka, and G. Westhoff, “Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox),” J. Comp. Neurol. 522(18), 3943–3959 (2014).
[Crossref] [PubMed]

2013 (2)

V. Cadena, D. V. Andrade, R. P. Bovo, and G. J. Tattersall, “Evaporative respiratory cooling augments pit organ thermal detection in rattlesnakes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199(12), 1093–1104 (2013).
[Crossref] [PubMed]

Z. Zhang, T. Cheng, Q. Zhang, L. Mao, J. Gao, and X. Wu, “Sample manuscript for an optical readout infrared imaging system based on polarization to eliminate stray light,” J. Appl. Phys. 114(9), 093106 (2013).
[Crossref]

2012 (4)

G. S. Bakken, S. E. Colayori, and T. Duong, “Analytical methods for the geometric optics of thermal vision illustrated with four species of pitvipers,” J. Exp. Biol. 215(15), 2621–2629 (2012).
[Crossref] [PubMed]

P. G. Datskos, N. V. Lavrik, S. R. Hunter, S. Rajic, and D. Grbovic, “Infrared imaging using arrays of SiO2 micromechanical detectors,” Opt. Lett. 37(19), 3966–3968 (2012).
[Crossref] [PubMed]

Q. Chen, H. Deng, S. E. Brauth, L. Ding, and Y. Tang, “Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses,” PLoS One 7(5), e34989 (2012).
[Crossref] [PubMed]

T. Kohl, S. E. Colayori, G. Westhoff, G. S. Bakken, and B. A. Young, “Directional sensitivity in the thermal response of the facial pit in western diamondback rattlesnakes (Crotalus atrox),” J. Exp. Biol. 215(15), 2630–2636 (2012).
[Crossref] [PubMed]

2010 (2)

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, J. Qian, and X. Wu, “Thermal and mechanical characterizations of a substrate-free focal plane array,” Chin. Phys. B 19(1), 010701 (2010).
[Crossref]

2009 (3)

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, and X. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105(3), 034505 (2009).
[Crossref]

H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
[Crossref] [PubMed]

2008 (2)

T. Cheng, Q. Zhang, X. Wu, D. Chen, and B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEEE Electron Device Lett. 29(11), 1218–1221 (2008).
[Crossref]

S. Huang, H. Tao, I. K. Lin, and X. Zhang, “Development of double-cantilever infrared detectors: fabrication, curvature control and demonstration of thermal detection,” Sens. Actuators, A 145, 231–240 (2008).

2007 (2)

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32(6), 594–596 (2007).
[Crossref] [PubMed]

Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, “The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system,” J. Appl. Phys. 102(11), 113524 (2007).
[Crossref]

2006 (2)

Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).

A. B. Sichert, P. Friedel, and J. L. van Hemmen, “Snake’s perspective on heat: reconstruction of input using an imperfect detection system,” Phys. Rev. Lett. 97(6), 068105 (2006).
[Crossref] [PubMed]

2002 (2)

V. Gorbunov, N. Fuchigami, M. Stone, M. Grace, and V. V. Tsukruk, “Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors,” Biomacromolecules 3(1), 106–115 (2002).
[Crossref] [PubMed]

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

1997 (2)

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characteriza- tion of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

C. C. Hsieh, C. Y. Wu, F. W. Jih, and T. P. Sun, “Focal-plane-arrays and CMOS readout techniques of infrared imaging systems,” IEEE T. Circ. Syst. Vid. 7(4), 594–605 (1997).
[Crossref]

1996 (1)

F. Amemiya, T. Ushiki, R. C. Goris, Y. Atobe, and T. Kusunoki, “Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings,” Anat. Rec. 246(1), 135–146 (1996).
[Crossref] [PubMed]

1981 (1)

E. A. Newman and P. H. Hartline, “Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum,” Science 213(4509), 789–791 (1981).
[Crossref] [PubMed]

1978 (1)

P. H. Hartline, L. Kass, and M. S. Loop, “Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes,” Science 199(4334), 1225–1229 (1978).
[Crossref] [PubMed]

1956 (1)

T. H. Bullock and F. P. Diecke, “Properties of an infra-red receptor,” J. Physiol. 134(1), 47–87 (1956).
[Crossref] [PubMed]

1952 (1)

T. H. Bullock and R. B. Cowles, “Physiology of an infrared receptor: the facial pit of pit vipers,” Science 115(2994), 541–543 (1952).
[Crossref] [PubMed]

1937 (1)

G. K. Noble and A. Schmidt, “The structure and function of the facial and labial pits of snakes,” Proc. Am. Philos. Soc. 77(3), 263–288 (1937).

Amemiya, F.

F. Amemiya, T. Ushiki, R. C. Goris, Y. Atobe, and T. Kusunoki, “Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings,” Anat. Rec. 246(1), 135–146 (1996).
[Crossref] [PubMed]

Andersson, J. Y.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characteriza- tion of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Andrade, D. V.

V. Cadena, D. V. Andrade, R. P. Bovo, and G. J. Tattersall, “Evaporative respiratory cooling augments pit organ thermal detection in rattlesnakes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199(12), 1093–1104 (2013).
[Crossref] [PubMed]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Atobe, Y.

F. Amemiya, T. Ushiki, R. C. Goris, Y. Atobe, and T. Kusunoki, “Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings,” Anat. Rec. 246(1), 135–146 (1996).
[Crossref] [PubMed]

Bakken, G. S.

G. S. Bakken, S. E. Colayori, and T. Duong, “Analytical methods for the geometric optics of thermal vision illustrated with four species of pitvipers,” J. Exp. Biol. 215(15), 2621–2629 (2012).
[Crossref] [PubMed]

T. Kohl, S. E. Colayori, G. Westhoff, G. S. Bakken, and B. A. Young, “Directional sensitivity in the thermal response of the facial pit in western diamondback rattlesnakes (Crotalus atrox),” J. Exp. Biol. 215(15), 2630–2636 (2012).
[Crossref] [PubMed]

Bothe, M. S.

T. Kohl, M. S. Bothe, H. Luksch, H. Straka, and G. Westhoff, “Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox),” J. Comp. Neurol. 522(18), 3943–3959 (2014).
[Crossref] [PubMed]

Bovo, R. P.

V. Cadena, D. V. Andrade, R. P. Bovo, and G. J. Tattersall, “Evaporative respiratory cooling augments pit organ thermal detection in rattlesnakes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199(12), 1093–1104 (2013).
[Crossref] [PubMed]

Brauth, S. E.

Q. Chen, H. Deng, S. E. Brauth, L. Ding, and Y. Tang, “Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses,” PLoS One 7(5), e34989 (2012).
[Crossref] [PubMed]

Bullock, T. H.

T. H. Bullock and F. P. Diecke, “Properties of an infra-red receptor,” J. Physiol. 134(1), 47–87 (1956).
[Crossref] [PubMed]

T. H. Bullock and R. B. Cowles, “Physiology of an infrared receptor: the facial pit of pit vipers,” Science 115(2994), 541–543 (1952).
[Crossref] [PubMed]

Cadena, V.

V. Cadena, D. V. Andrade, R. P. Bovo, and G. J. Tattersall, “Evaporative respiratory cooling augments pit organ thermal detection in rattlesnakes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199(12), 1093–1104 (2013).
[Crossref] [PubMed]

Chen, D.

J. Fu, H. Shang, H. Shi, Z. Li, O. Yi, D. Chen, and Q. Zhang, “Design optimization and performance analysis of deformed optical readout focal plane array,” J. Micromech. Microeng. 25(6), 065012 (2015).
[Crossref]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, J. Qian, and X. Wu, “Thermal and mechanical characterizations of a substrate-free focal plane array,” Chin. Phys. B 19(1), 010701 (2010).
[Crossref]

H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
[Crossref] [PubMed]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, and X. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105(3), 034505 (2009).
[Crossref]

T. Cheng, Q. Zhang, X. Wu, D. Chen, and B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEEE Electron Device Lett. 29(11), 1218–1221 (2008).
[Crossref]

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32(6), 594–596 (2007).
[Crossref] [PubMed]

Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, “The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system,” J. Appl. Phys. 102(11), 113524 (2007).
[Crossref]

Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).

Chen, Q.

Q. Chen, H. Deng, S. E. Brauth, L. Ding, and Y. Tang, “Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses,” PLoS One 7(5), e34989 (2012).
[Crossref] [PubMed]

Cheng, T.

Z. Zhang, T. Cheng, Q. Zhang, L. Mao, J. Gao, and X. Wu, “Sample manuscript for an optical readout infrared imaging system based on polarization to eliminate stray light,” J. Appl. Phys. 114(9), 093106 (2013).
[Crossref]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, J. Qian, and X. Wu, “Thermal and mechanical characterizations of a substrate-free focal plane array,” Chin. Phys. B 19(1), 010701 (2010).
[Crossref]

H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
[Crossref] [PubMed]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, and X. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105(3), 034505 (2009).
[Crossref]

T. Cheng, Q. Zhang, X. Wu, D. Chen, and B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEEE Electron Device Lett. 29(11), 1218–1221 (2008).
[Crossref]

Chesler, A. T.

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Colayori, S. E.

T. Kohl, S. E. Colayori, G. Westhoff, G. S. Bakken, and B. A. Young, “Directional sensitivity in the thermal response of the facial pit in western diamondback rattlesnakes (Crotalus atrox),” J. Exp. Biol. 215(15), 2630–2636 (2012).
[Crossref] [PubMed]

G. S. Bakken, S. E. Colayori, and T. Duong, “Analytical methods for the geometric optics of thermal vision illustrated with four species of pitvipers,” J. Exp. Biol. 215(15), 2621–2629 (2012).
[Crossref] [PubMed]

Cordero-Morales, J. F.

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Cowles, R. B.

T. H. Bullock and R. B. Cowles, “Physiology of an infrared receptor: the facial pit of pit vipers,” Science 115(2994), 541–543 (1952).
[Crossref] [PubMed]

Datskos, P. G.

Deng, H.

Q. Chen, H. Deng, S. E. Brauth, L. Ding, and Y. Tang, “Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses,” PLoS One 7(5), e34989 (2012).
[Crossref] [PubMed]

Diecke, F. P.

T. H. Bullock and F. P. Diecke, “Properties of an infra-red receptor,” J. Physiol. 134(1), 47–87 (1956).
[Crossref] [PubMed]

Ding, L.

Q. Chen, H. Deng, S. E. Brauth, L. Ding, and Y. Tang, “Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses,” PLoS One 7(5), e34989 (2012).
[Crossref] [PubMed]

Dong, F.

Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).

Dong, L.

Duong, T.

G. S. Bakken, S. E. Colayori, and T. Duong, “Analytical methods for the geometric optics of thermal vision illustrated with four species of pitvipers,” J. Exp. Biol. 215(15), 2621–2629 (2012).
[Crossref] [PubMed]

Eriksson, P.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characteriza- tion of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Feng, Y.

Friedel, P.

A. B. Sichert, P. Friedel, and J. L. van Hemmen, “Snake’s perspective on heat: reconstruction of input using an imperfect detection system,” Phys. Rev. Lett. 97(6), 068105 (2006).
[Crossref] [PubMed]

Fu, J.

J. Fu, H. Shang, H. Shi, Z. Li, O. Yi, D. Chen, and Q. Zhang, “Design optimization and performance analysis of deformed optical readout focal plane array,” J. Micromech. Microeng. 25(6), 065012 (2015).
[Crossref]

Fuchigami, N.

V. Gorbunov, N. Fuchigami, M. Stone, M. Grace, and V. V. Tsukruk, “Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors,” Biomacromolecules 3(1), 106–115 (2002).
[Crossref] [PubMed]

Gao, J.

Z. Zhang, T. Cheng, Q. Zhang, L. Mao, J. Gao, and X. Wu, “Sample manuscript for an optical readout infrared imaging system based on polarization to eliminate stray light,” J. Appl. Phys. 114(9), 093106 (2013).
[Crossref]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, J. Qian, and X. Wu, “Thermal and mechanical characterizations of a substrate-free focal plane array,” Chin. Phys. B 19(1), 010701 (2010).
[Crossref]

H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
[Crossref] [PubMed]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, and X. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105(3), 034505 (2009).
[Crossref]

Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, “The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system,” J. Appl. Phys. 102(11), 113524 (2007).
[Crossref]

Gorbunov, V.

V. Gorbunov, N. Fuchigami, M. Stone, M. Grace, and V. V. Tsukruk, “Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors,” Biomacromolecules 3(1), 106–115 (2002).
[Crossref] [PubMed]

Goris, R. C.

F. Amemiya, T. Ushiki, R. C. Goris, Y. Atobe, and T. Kusunoki, “Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings,” Anat. Rec. 246(1), 135–146 (1996).
[Crossref] [PubMed]

Grace, M.

V. Gorbunov, N. Fuchigami, M. Stone, M. Grace, and V. V. Tsukruk, “Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors,” Biomacromolecules 3(1), 106–115 (2002).
[Crossref] [PubMed]

Gracheva, E. O.

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Grbovic, D.

Guo, Z.

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32(6), 594–596 (2007).
[Crossref] [PubMed]

Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).

Hartline, P. H.

E. A. Newman and P. H. Hartline, “Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum,” Science 213(4509), 789–791 (1981).
[Crossref] [PubMed]

P. H. Hartline, L. Kass, and M. S. Loop, “Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes,” Science 199(4334), 1225–1229 (1978).
[Crossref] [PubMed]

Hollopeter, G.

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Horowitz, R.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Hsieh, C. C.

C. C. Hsieh, C. Y. Wu, F. W. Jih, and T. P. Sun, “Focal-plane-arrays and CMOS readout techniques of infrared imaging systems,” IEEE T. Circ. Syst. Vid. 7(4), 594–605 (1997).
[Crossref]

Huang, S.

S. Huang, H. Tao, I. K. Lin, and X. Zhang, “Development of double-cantilever infrared detectors: fabrication, curvature control and demonstration of thermal detection,” Sens. Actuators, A 145, 231–240 (2008).

Hunter, S. R.

Ingolia, N. T.

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Jiao, B.

H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
[Crossref] [PubMed]

T. Cheng, Q. Zhang, X. Wu, D. Chen, and B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEEE Electron Device Lett. 29(11), 1218–1221 (2008).
[Crossref]

Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, “The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system,” J. Appl. Phys. 102(11), 113524 (2007).
[Crossref]

Jih, F. W.

C. C. Hsieh, C. Y. Wu, F. W. Jih, and T. P. Sun, “Focal-plane-arrays and CMOS readout techniques of infrared imaging systems,” IEEE T. Circ. Syst. Vid. 7(4), 594–605 (1997).
[Crossref]

Julius, D.

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Kass, L.

P. H. Hartline, L. Kass, and M. S. Loop, “Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes,” Science 199(4334), 1225–1229 (1978).
[Crossref] [PubMed]

Kelly, Y. M.

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Kitching, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Kohl, T.

T. Kohl, M. S. Bothe, H. Luksch, H. Straka, and G. Westhoff, “Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox),” J. Comp. Neurol. 522(18), 3943–3959 (2014).
[Crossref] [PubMed]

T. Kohl, S. E. Colayori, G. Westhoff, G. S. Bakken, and B. A. Young, “Directional sensitivity in the thermal response of the facial pit in western diamondback rattlesnakes (Crotalus atrox),” J. Exp. Biol. 215(15), 2630–2636 (2012).
[Crossref] [PubMed]

Kong, L.

Kusunoki, T.

F. Amemiya, T. Ushiki, R. C. Goris, Y. Atobe, and T. Kusunoki, “Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings,” Anat. Rec. 246(1), 135–146 (1996).
[Crossref] [PubMed]

Lavrik, N. V.

Li, C.

Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).

Li, Z.

J. Fu, H. Shang, H. Shi, Z. Li, O. Yi, D. Chen, and Q. Zhang, “Design optimization and performance analysis of deformed optical readout focal plane array,” J. Micromech. Microeng. 25(6), 065012 (2015).
[Crossref]

Lin, I. K.

S. Huang, H. Tao, I. K. Lin, and X. Zhang, “Development of double-cantilever infrared detectors: fabrication, curvature control and demonstration of thermal detection,” Sens. Actuators, A 145, 231–240 (2008).

Liu, M.

Liu, X.

Loop, M. S.

P. H. Hartline, L. Kass, and M. S. Loop, “Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes,” Science 199(4334), 1225–1229 (1978).
[Crossref] [PubMed]

Luksch, H.

T. Kohl, M. S. Bothe, H. Luksch, H. Straka, and G. Westhoff, “Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox),” J. Comp. Neurol. 522(18), 3943–3959 (2014).
[Crossref] [PubMed]

Ma, W.

Majumdar, A.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Mao, L.

Z. Zhang, T. Cheng, Q. Zhang, L. Mao, J. Gao, and X. Wu, “Sample manuscript for an optical readout infrared imaging system based on polarization to eliminate stray light,” J. Appl. Phys. 114(9), 093106 (2013).
[Crossref]

H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
[Crossref] [PubMed]

Mao, M.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Miao, Z.

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32(6), 594–596 (2007).
[Crossref] [PubMed]

Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).

Newman, E. A.

E. A. Newman and P. H. Hartline, “Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum,” Science 213(4509), 789–791 (1981).
[Crossref] [PubMed]

Noble, G. K.

G. K. Noble and A. Schmidt, “The structure and function of the facial and labial pits of snakes,” Proc. Am. Philos. Soc. 77(3), 263–288 (1937).

Norton, P.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Perez, J. C.

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Qian, J.

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, J. Qian, and X. Wu, “Thermal and mechanical characterizations of a substrate-free focal plane array,” Chin. Phys. B 19(1), 010701 (2010).
[Crossref]

H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
[Crossref] [PubMed]

Rajic, S.

Rogalski, A.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Sánchez, E. E.

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Schmidt, A.

G. K. Noble and A. Schmidt, “The structure and function of the facial and labial pits of snakes,” Proc. Am. Philos. Soc. 77(3), 263–288 (1937).

Shang, H.

J. Fu, H. Shang, H. Shi, Z. Li, O. Yi, D. Chen, and Q. Zhang, “Design optimization and performance analysis of deformed optical readout focal plane array,” J. Micromech. Microeng. 25(6), 065012 (2015).
[Crossref]

Shi, H.

J. Fu, H. Shang, H. Shi, Z. Li, O. Yi, D. Chen, and Q. Zhang, “Design optimization and performance analysis of deformed optical readout focal plane array,” J. Micromech. Microeng. 25(6), 065012 (2015).
[Crossref]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, J. Qian, and X. Wu, “Thermal and mechanical characterizations of a substrate-free focal plane array,” Chin. Phys. B 19(1), 010701 (2010).
[Crossref]

H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
[Crossref] [PubMed]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, and X. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105(3), 034505 (2009).
[Crossref]

Sichert, A. B.

A. B. Sichert, P. Friedel, and J. L. van Hemmen, “Snake’s perspective on heat: reconstruction of input using an imperfect detection system,” Phys. Rev. Lett. 97(6), 068105 (2006).
[Crossref] [PubMed]

Stemme, G.

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characteriza- tion of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

Stone, M.

V. Gorbunov, N. Fuchigami, M. Stone, M. Grace, and V. V. Tsukruk, “Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors,” Biomacromolecules 3(1), 106–115 (2002).
[Crossref] [PubMed]

Straka, H.

T. Kohl, M. S. Bothe, H. Luksch, H. Straka, and G. Westhoff, “Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox),” J. Comp. Neurol. 522(18), 3943–3959 (2014).
[Crossref] [PubMed]

Sun, T. P.

C. C. Hsieh, C. Y. Wu, F. W. Jih, and T. P. Sun, “Focal-plane-arrays and CMOS readout techniques of infrared imaging systems,” IEEE T. Circ. Syst. Vid. 7(4), 594–605 (1997).
[Crossref]

Tang, Y.

Q. Chen, H. Deng, S. E. Brauth, L. Ding, and Y. Tang, “Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses,” PLoS One 7(5), e34989 (2012).
[Crossref] [PubMed]

Tao, H.

S. Huang, H. Tao, I. K. Lin, and X. Zhang, “Development of double-cantilever infrared detectors: fabrication, curvature control and demonstration of thermal detection,” Sens. Actuators, A 145, 231–240 (2008).

Tattersall, G. J.

V. Cadena, D. V. Andrade, R. P. Bovo, and G. J. Tattersall, “Evaporative respiratory cooling augments pit organ thermal detection in rattlesnakes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199(12), 1093–1104 (2013).
[Crossref] [PubMed]

Tsukruk, V. V.

V. Gorbunov, N. Fuchigami, M. Stone, M. Grace, and V. V. Tsukruk, “Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors,” Biomacromolecules 3(1), 106–115 (2002).
[Crossref] [PubMed]

Ushiki, T.

F. Amemiya, T. Ushiki, R. C. Goris, Y. Atobe, and T. Kusunoki, “Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings,” Anat. Rec. 246(1), 135–146 (1996).
[Crossref] [PubMed]

van Hemmen, J. L.

A. B. Sichert, P. Friedel, and J. L. van Hemmen, “Snake’s perspective on heat: reconstruction of input using an imperfect detection system,” Phys. Rev. Lett. 97(6), 068105 (2006).
[Crossref] [PubMed]

Varesi, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Weissman, J. S.

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Westhoff, G.

T. Kohl, M. S. Bothe, H. Luksch, H. Straka, and G. Westhoff, “Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox),” J. Comp. Neurol. 522(18), 3943–3959 (2014).
[Crossref] [PubMed]

T. Kohl, S. E. Colayori, G. Westhoff, G. S. Bakken, and B. A. Young, “Directional sensitivity in the thermal response of the facial pit in western diamondback rattlesnakes (Crotalus atrox),” J. Exp. Biol. 215(15), 2630–2636 (2012).
[Crossref] [PubMed]

Wu, C. Y.

C. C. Hsieh, C. Y. Wu, F. W. Jih, and T. P. Sun, “Focal-plane-arrays and CMOS readout techniques of infrared imaging systems,” IEEE T. Circ. Syst. Vid. 7(4), 594–605 (1997).
[Crossref]

Wu, X.

Z. Zhang, T. Cheng, Q. Zhang, L. Mao, J. Gao, and X. Wu, “Sample manuscript for an optical readout infrared imaging system based on polarization to eliminate stray light,” J. Appl. Phys. 114(9), 093106 (2013).
[Crossref]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, J. Qian, and X. Wu, “Thermal and mechanical characterizations of a substrate-free focal plane array,” Chin. Phys. B 19(1), 010701 (2010).
[Crossref]

H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
[Crossref] [PubMed]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, and X. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105(3), 034505 (2009).
[Crossref]

T. Cheng, Q. Zhang, X. Wu, D. Chen, and B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEEE Electron Device Lett. 29(11), 1218–1221 (2008).
[Crossref]

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32(6), 594–596 (2007).
[Crossref] [PubMed]

Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, “The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system,” J. Appl. Phys. 102(11), 113524 (2007).
[Crossref]

Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).

Xiong, Z.

Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, “The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system,” J. Appl. Phys. 102(11), 113524 (2007).
[Crossref]

Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).

Yi, O.

J. Fu, H. Shang, H. Shi, Z. Li, O. Yi, D. Chen, and Q. Zhang, “Design optimization and performance analysis of deformed optical readout focal plane array,” J. Micromech. Microeng. 25(6), 065012 (2015).
[Crossref]

Young, B. A.

T. Kohl, S. E. Colayori, G. Westhoff, G. S. Bakken, and B. A. Young, “Directional sensitivity in the thermal response of the facial pit in western diamondback rattlesnakes (Crotalus atrox),” J. Exp. Biol. 215(15), 2630–2636 (2012).
[Crossref] [PubMed]

Yu, X.

Zhang, Q.

J. Fu, H. Shang, H. Shi, Z. Li, O. Yi, D. Chen, and Q. Zhang, “Design optimization and performance analysis of deformed optical readout focal plane array,” J. Micromech. Microeng. 25(6), 065012 (2015).
[Crossref]

Z. Zhang, T. Cheng, Q. Zhang, L. Mao, J. Gao, and X. Wu, “Sample manuscript for an optical readout infrared imaging system based on polarization to eliminate stray light,” J. Appl. Phys. 114(9), 093106 (2013).
[Crossref]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, J. Qian, and X. Wu, “Thermal and mechanical characterizations of a substrate-free focal plane array,” Chin. Phys. B 19(1), 010701 (2010).
[Crossref]

H. Shi, Q. Zhang, J. Qian, L. Mao, T. Cheng, J. Gao, X. Wu, D. Chen, and B. Jiao, “Optical sensitivity analysis of deformed mirrors for microcantilever array IR imaging,” Opt. Express 17(6), 4367–4381 (2009).
[Crossref] [PubMed]

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, and X. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105(3), 034505 (2009).
[Crossref]

T. Cheng, Q. Zhang, X. Wu, D. Chen, and B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEEE Electron Device Lett. 29(11), 1218–1221 (2008).
[Crossref]

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, “Optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett. 32(6), 594–596 (2007).
[Crossref] [PubMed]

Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, “The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system,” J. Appl. Phys. 102(11), 113524 (2007).
[Crossref]

Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).

Zhang, X.

S. Huang, H. Tao, I. K. Lin, and X. Zhang, “Development of double-cantilever infrared detectors: fabrication, curvature control and demonstration of thermal detection,” Sens. Actuators, A 145, 231–240 (2008).

Zhang, Z.

Z. Zhang, T. Cheng, Q. Zhang, L. Mao, J. Gao, and X. Wu, “Sample manuscript for an optical readout infrared imaging system based on polarization to eliminate stray light,” J. Appl. Phys. 114(9), 093106 (2013).
[Crossref]

Zhao, Y.

Y. Feng, Y. Zhao, M. Liu, L. Dong, X. Yu, L. Kong, W. Ma, and X. Liu, “Image quality improvement by the structured light illumination method in an optical readout cantilever array infrared imaging system,” Opt. Lett. 40(7), 1390–1393 (2015).
[Crossref] [PubMed]

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Anat. Rec. (1)

F. Amemiya, T. Ushiki, R. C. Goris, Y. Atobe, and T. Kusunoki, “Ultrastructure of the crotaline snake infrared pit receptors: SEM confirmation of TEM findings,” Anat. Rec. 246(1), 135–146 (1996).
[Crossref] [PubMed]

Biomacromolecules (1)

V. Gorbunov, N. Fuchigami, M. Stone, M. Grace, and V. V. Tsukruk, “Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors,” Biomacromolecules 3(1), 106–115 (2002).
[Crossref] [PubMed]

Chin. Phys. B (1)

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, J. Qian, and X. Wu, “Thermal and mechanical characterizations of a substrate-free focal plane array,” Chin. Phys. B 19(1), 010701 (2010).
[Crossref]

IEEE Electron Device Lett. (1)

T. Cheng, Q. Zhang, X. Wu, D. Chen, and B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array,” IEEE Electron Device Lett. 29(11), 1218–1221 (2008).
[Crossref]

IEEE T. Circ. Syst. Vid. (1)

C. C. Hsieh, C. Y. Wu, F. W. Jih, and T. P. Sun, “Focal-plane-arrays and CMOS readout techniques of infrared imaging systems,” IEEE T. Circ. Syst. Vid. 7(4), 594–605 (1997).
[Crossref]

J. Appl. Phys. (4)

T. Cheng, Q. Zhang, D. Chen, H. Shi, J. Gao, and X. Wu, “Performance of an optimized substrate-free focal plane array for optical readout uncooled infrared detector,” J. Appl. Phys. 105(3), 034505 (2009).
[Crossref]

Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao, “The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system,” J. Appl. Phys. 102(11), 113524 (2007).
[Crossref]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Z. Zhang, T. Cheng, Q. Zhang, L. Mao, J. Gao, and X. Wu, “Sample manuscript for an optical readout infrared imaging system based on polarization to eliminate stray light,” J. Appl. Phys. 114(9), 093106 (2013).
[Crossref]

J. Comp. Neurol. (1)

T. Kohl, M. S. Bothe, H. Luksch, H. Straka, and G. Westhoff, “Organotopic organization of the primary Infrared Sensitive Nucleus (LTTD) in the western diamondback rattlesnake (Crotalus atrox),” J. Comp. Neurol. 522(18), 3943–3959 (2014).
[Crossref] [PubMed]

J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. (1)

V. Cadena, D. V. Andrade, R. P. Bovo, and G. J. Tattersall, “Evaporative respiratory cooling augments pit organ thermal detection in rattlesnakes,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199(12), 1093–1104 (2013).
[Crossref] [PubMed]

J. Exp. Biol. (2)

T. Kohl, S. E. Colayori, G. Westhoff, G. S. Bakken, and B. A. Young, “Directional sensitivity in the thermal response of the facial pit in western diamondback rattlesnakes (Crotalus atrox),” J. Exp. Biol. 215(15), 2630–2636 (2012).
[Crossref] [PubMed]

G. S. Bakken, S. E. Colayori, and T. Duong, “Analytical methods for the geometric optics of thermal vision illustrated with four species of pitvipers,” J. Exp. Biol. 215(15), 2621–2629 (2012).
[Crossref] [PubMed]

J. Microelectromech. Syst. (2)

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

P. Eriksson, J. Y. Andersson, and G. Stemme, “Thermal characteriza- tion of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst. 6(1), 55–61 (1997).
[Crossref]

J. Micromech. Microeng. (1)

J. Fu, H. Shang, H. Shi, Z. Li, O. Yi, D. Chen, and Q. Zhang, “Design optimization and performance analysis of deformed optical readout focal plane array,” J. Micromech. Microeng. 25(6), 065012 (2015).
[Crossref]

J. Physiol. (1)

T. H. Bullock and F. P. Diecke, “Properties of an infra-red receptor,” J. Physiol. 134(1), 47–87 (1956).
[Crossref] [PubMed]

Nature (1)

E. O. Gracheva, N. T. Ingolia, Y. M. Kelly, J. F. Cordero-Morales, G. Hollopeter, A. T. Chesler, E. E. Sánchez, J. C. Perez, J. S. Weissman, and D. Julius, “Molecular basis of infrared detection by snakes,” Nature 464(7291), 1006–1011 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

A. B. Sichert, P. Friedel, and J. L. van Hemmen, “Snake’s perspective on heat: reconstruction of input using an imperfect detection system,” Phys. Rev. Lett. 97(6), 068105 (2006).
[Crossref] [PubMed]

PLoS One (1)

Q. Chen, H. Deng, S. E. Brauth, L. Ding, and Y. Tang, “Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses,” PLoS One 7(5), e34989 (2012).
[Crossref] [PubMed]

Proc. Am. Philos. Soc. (1)

G. K. Noble and A. Schmidt, “The structure and function of the facial and labial pits of snakes,” Proc. Am. Philos. Soc. 77(3), 263–288 (1937).

Science (3)

T. H. Bullock and R. B. Cowles, “Physiology of an infrared receptor: the facial pit of pit vipers,” Science 115(2994), 541–543 (1952).
[Crossref] [PubMed]

P. H. Hartline, L. Kass, and M. S. Loop, “Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes,” Science 199(4334), 1225–1229 (1978).
[Crossref] [PubMed]

E. A. Newman and P. H. Hartline, “Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum,” Science 213(4509), 789–791 (1981).
[Crossref] [PubMed]

Sens. Actuators, A (1)

S. Huang, H. Tao, I. K. Lin, and X. Zhang, “Development of double-cantilever infrared detectors: fabrication, curvature control and demonstration of thermal detection,” Sens. Actuators, A 145, 231–240 (2008).

Wuli Xuebao (1)

Z. Miao, Q. Zhang, D. Chen, X. Wu, C. Li, Z. Guo, F. Dong, and Z. Xiong, “Bi-material mircocantilever array room-temperature IR imaging,” Wuli Xuebao 55, 3208–3214 (2006).

Other (3)

H. Y. Wong, Heat Transfer for Engineers (Longman, 1977).

P. W. Kruse, “Chapter 2: principles of uncooled infrared focal plane array,” Semiconduct. Semimet. 47, 17–42 (1997).

G. C. Holst, Testing and Evaluation of Infrared Imaging Systems, 2nd ed. (JCD Publishing, 1998).

Supplementary Material (2)

NameDescription
» Visualization 1: MOV (3264 KB)      When a container filled with room temperature water was close to the pit vipers, they had no reaction.
» Visualization 2: MOV (4221 KB)      When a container filled with hot water was placed at less than 0.2 m from the pit vipers, they quickly changed to defensive posture, and rapidly adjusted their position and defense angle when the container moved.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Pit vipers and pit organ. (a) Trimeresurus gramineus, (b) Deinagkistrodon acutus, behavioral experiments of deinagkistrodon acutus are shown in Visualization 1 (room temperature object stimulation) and Visualization 2 (hot object stimulation). (c) Gloydius brevicaudus, (d) The surrounding tissue of pit organ is cut off to see the pit membrane, (e) The pit membrane is gripped and stretched by the tweezers to see the ostiole in front of eye, (f) Dissected pit membrane, (g) Transverse section micrograph of the pit membrane, (h) Pit organ schematic diagram. 1. Nostril, 2. Pit organ, 3. Eye, 4. Pit membrane, 5. Ostiole in front of eye, 6. Inner chamber, 7. Outer chamber.
Fig. 2
Fig. 2 Schematic of pit organ FEA models. (a) Overall schematic view of the model, (b) and (c) are partial schematic views of substrate-free model and substrate model, respectively.
Fig. 3
Fig. 3 Temperature distribution of 9 × 9 units when applying centric heat flux loads. (a) load applied to the centric 1 × 1 unit of the substrate model, maximum temperature rise = 2.5 × 10−4 K, (b) load applied on the centric 1 × 1 unit of the substrate-free model, maximum temperature rise = 4 × 10−4 K, (c) load applied to the centric 3 × 3 unit of the substrate model, maximum temperature rise = 5.5 × 10−4 K, (d) load applied to the centric 3 × 3 unit of the substrate-free model, maximum temperature rise = 1.85 × 10−3 K.
Fig. 4
Fig. 4 Maximum temperature rise with the number of loaded centric units.
Fig. 5
Fig. 5 Temperature distribution calculated by FEA when periodic heat flux loads are applied. (a)–(c) For substrate pit organ, loaded spatial periods 40, 10, and 2 units and MTF 0.99, 0.93, and 0.28, respectively. (d)–(f) For substrate-free pit organ, loaded spatial periods 40, 10, and 2 units and MTF 0.33,0.06, and 0.005, respectively.
Fig. 6
Fig. 6 MTF changes with loaded spatial frequency.
Fig. 7
Fig. 7 FEA simulations of the infrared imaging process of the substrate-free pit organ. (a) Rat shaped heat flux load distribution. (b) Temperature distribution of the 80 × 80 unit membrane. (c) Temperature distribution of the 160 × 160 unit membrane. (d) Hand shaped heat flux load distribution. (e) Temperature distribution of the 80 × 80 unit membrane. (f) Temperature distribution of the 160 × 160 unit membrane.
Fig. 8
Fig. 8 Structures, fabrication process, and FEA model of FPA. (a) Electronic readout FPA unit. (b) Optical readout substrate FPA unit. (c) Optical readout substrate-free FPA unit. (d) Fabrication process of substrate-free FPA. (e) FEA model of FPA.
Fig. 9
Fig. 9 Temperature distribution of centric 7 × 7 units when applying centric heat flux loads. (a) Load applied on the centric 1 × 1 unit of the substrate model, maximum temperature rise = 0.1181 K. (b) Load applied on the centric 1 × 1 unit of the substrate-free model, maximum temperature rise = 0.1718 K. (c) Load applied on the centric 3 × 3 units of the substrate model, maximum temperature rise = 0.1181 K. (d) Load applied on the centric 3 × 3 units of the substrate-free model, maximum temperature rise = 0.3874 K.
Fig. 10
Fig. 10 Maximum temperature rise changes with the number of centric loaded units.
Fig. 11
Fig. 11 Temperature distribution calculated by FEA when periodic heat flux load was applied for the substrate-free FPA model. (a)–(d) Loaded spatial periods 40, 20, 10, and 2 units, MTF = 0.90, 0.55, 0.26, and 0.07, respectively.
Fig. 12
Fig. 12 MTF changes with the loaded spatial frequency.
Fig. 13
Fig. 13 Total thermal conductance, Gtotal, response to air pressure. (a) Black line = substrate-free FPA (d = 2mm), red line = substrate FPA (d = 2μm). (b) Amplification of the black line in (a).
Fig. 14
Fig. 14 light path schematic of optical readout infrared imaging.
Fig. 15
Fig. 15 infrared imaging results of substrate-free FPA. (a) Hand image obtained under atmosphere conditions (b) - (d) Hand, watch on the wrist, and face images obtained under vacuum conditions, respectively.

Tables (3)

Tables Icon

Table 1 Material parameters of pit membrane and air

Tables Icon

Table 2 Material parameters of SiNx and Au

Tables Icon

Table 3 Dimensions of the FPA

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ΔP= dP d T s Δ T s =0.63Δ T s
h= A s θεΔP A o = A s A o l 0 2 εΔP A o = A s εΔP l 0 2 =0.63 A s ε l 0 2 Δ T s
MTF= M(Image) M(Source) ,
MTF= T max T min T max + T min .
G total = Ah ΔT ,
τ= C G total ,
h=0.63 τεπ 4 F 2 Δ T s
G total = G rad + G leg + G air
G rad =4σ( ε Au + ε SiNx ) A ab T 3
G leg = 2 n ( L k SiNx A SiNx + k Au A Au + L k SiNx A SiNx ) 1
R a = gβ( T c T sub ) D 3 αν
G air = G cond = k air A ab d
k air = n 0 v 0 c air l 3
1 k air = 1 k hp + 1 γ lp Pd
1 G air = d k hp A ab + 1 γ lp P A ab

Metrics