Abstract

We demonstrate a jitter noise reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), which promises to be capable of measuring cell mechanics. To reduce the jitter noise induced by Q-switched pulsed laser operated at high repetition frequency, photoacoustic signals from the surface of an ultrasound transducer are aligned by cross-correlation and peak-to-peak detection, respectively. Each method is then employed to measure the displacements of a target sample in an agar phantom and a breast cancer cell due to ARFI application, followed by the quantitative comparison between their performances. The suggested methods for PA-ARFI significantly reduce jitter noises, thus allowing us to measure displacements of a target cell due to ARFI application by less than 3 μm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics

Jae Youn Hwang, Bong Jin Kang, Changyang Lee, Hyung Ham Kim, Jinhyoung Park, Qifa Zhou, and K. Kirk Shung
Biomed. Opt. Express 6(1) 11-22 (2015)

Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source

Shaozhen Song, Nhan Minh Le, Zhihong Huang, Tueng Shen, and Ruikang K. Wang
Opt. Lett. 40(21) 5007-5010 (2015)

Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media

Lihong Wang, Steven L. Jacques, and Xuemei Zhao
Opt. Lett. 20(6) 629-631 (1995)

References

  • View by:
  • |
  • |
  • |

  1. K. Nightingale, “Acoustic radiation force impulse (ARFI) imaging: a review,” Curr. Med. Imaging Rev. 7(4), 328–339 (2011).
    [Crossref] [PubMed]
  2. K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
    [Crossref] [PubMed]
  3. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
    [Crossref] [PubMed]
  4. E. E. Konofagou, C. Maleke, and J. Vappou, “Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring,” Curr. Med. Imaging Rev. 8(1), 16–26 (2012).
    [Crossref] [PubMed]
  5. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
    [Crossref] [PubMed]
  6. B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, “Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility,” Ultrasound Med. Biol. 31(9), 1185–1198 (2005).
    [Crossref] [PubMed]
  7. S. J. Hsu, R. R. Bouchard, D. M. Dumont, P. D. Wolf, and G. E. Trahey, “In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging,” Ultrasound Med. Biol. 33(11), 1706–1719 (2007).
    [Crossref] [PubMed]
  8. J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol. 35(5), 707–716 (2009).
    [Crossref] [PubMed]
  9. R. Mullen, J. M. Thompson, O. Moussa, S. Vinnicombe, and A. Evans, “Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers,” Clin. Radiol. 69(12), 1259–1263 (2014).
    [Crossref] [PubMed]
  10. M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
    [Crossref] [PubMed]
  11. F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
    [Crossref] [PubMed]
  12. K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
    [Crossref] [PubMed]
  13. J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
    [Crossref] [PubMed]
  14. J. Y. Hwang, B. J. Kang, C. Lee, H. H. Kim, J. Park, Q. Zhou, and K. K. Shung, “Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics,” Biomed. Opt. Express 6(1), 11–22 (2015).
    [Crossref] [PubMed]
  15. J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
    [Crossref] [PubMed]
  16. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17(3), 1766–1771 (2009).
    [Crossref] [PubMed]
  17. F. Viola and W. F. Walker, “A spline-based algorithm for continuous time-delay estimation using sampled data,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(1), 80–93 (2005).
    [Crossref] [PubMed]
  18. J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
    [Crossref] [PubMed]
  19. K. Namura, M. Suzuki, K. Nakajima, and K. Kimura, “Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer,” Opt. Express 21(7), 8689–8700 (2013).
    [Crossref] [PubMed]
  20. V. Patel, J. J. Dahl, D. P. Bradway, J. R. Doherty, S. Y. Lee, and S. W. Smith, “Acoustic radiation force impulse imaging (ARFI) on an IVUS circular array,” Ultrason. Imaging 36(2), 98–111 (2014).
    [Crossref] [PubMed]
  21. J. R. Doherty, G. E. Trahey, K. R. Nightingale, and M. L. Palmeri, “Acoustic radiation force elasticity imaging in diagnostic ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 685–701 (2013).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

R. Mullen, J. M. Thompson, O. Moussa, S. Vinnicombe, and A. Evans, “Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers,” Clin. Radiol. 69(12), 1259–1263 (2014).
[Crossref] [PubMed]

V. Patel, J. J. Dahl, D. P. Bradway, J. R. Doherty, S. Y. Lee, and S. W. Smith, “Acoustic radiation force impulse imaging (ARFI) on an IVUS circular array,” Ultrason. Imaging 36(2), 98–111 (2014).
[Crossref] [PubMed]

2013 (2)

J. R. Doherty, G. E. Trahey, K. R. Nightingale, and M. L. Palmeri, “Acoustic radiation force elasticity imaging in diagnostic ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 685–701 (2013).
[Crossref] [PubMed]

K. Namura, M. Suzuki, K. Nakajima, and K. Kimura, “Photoacoustic emission from Au nanoparticles arrayed on thermal insulation layer,” Opt. Express 21(7), 8689–8700 (2013).
[Crossref] [PubMed]

2012 (3)

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

E. E. Konofagou, C. Maleke, and J. Vappou, “Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring,” Curr. Med. Imaging Rev. 8(1), 16–26 (2012).
[Crossref] [PubMed]

2011 (1)

K. Nightingale, “Acoustic radiation force impulse (ARFI) imaging: a review,” Curr. Med. Imaging Rev. 7(4), 328–339 (2011).
[Crossref] [PubMed]

2010 (1)

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

2009 (2)

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol. 35(5), 707–716 (2009).
[Crossref] [PubMed]

B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17(3), 1766–1771 (2009).
[Crossref] [PubMed]

2007 (1)

S. J. Hsu, R. R. Bouchard, D. M. Dumont, P. D. Wolf, and G. E. Trahey, “In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging,” Ultrasound Med. Biol. 33(11), 1706–1719 (2007).
[Crossref] [PubMed]

2005 (3)

B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, “Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility,” Ultrasound Med. Biol. 31(9), 1185–1198 (2005).
[Crossref] [PubMed]

F. Viola and W. F. Walker, “A spline-based algorithm for continuous time-delay estimation using sampled data,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(1), 80–93 (2005).
[Crossref] [PubMed]

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

2004 (1)

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

2003 (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[Crossref] [PubMed]

2002 (1)

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

1995 (1)

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

1991 (1)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Allen, J. D.

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol. 35(5), 707–716 (2009).
[Crossref] [PubMed]

Bentley, R. C.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Bouchard, R. R.

S. J. Hsu, R. R. Bouchard, D. M. Dumont, P. D. Wolf, and G. E. Trahey, “In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging,” Ultrasound Med. Biol. 33(11), 1706–1719 (2007).
[Crossref] [PubMed]

Bradway, D. P.

V. Patel, J. J. Dahl, D. P. Bradway, J. R. Doherty, S. Y. Lee, and S. W. Smith, “Acoustic radiation force impulse imaging (ARFI) on an IVUS circular array,” Ultrason. Imaging 36(2), 98–111 (2014).
[Crossref] [PubMed]

Céspedes, I.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Cole, B.

Dahl, J. J.

V. Patel, J. J. Dahl, D. P. Bradway, J. R. Doherty, S. Y. Lee, and S. W. Smith, “Acoustic radiation force impulse imaging (ARFI) on an IVUS circular array,” Ultrason. Imaging 36(2), 98–111 (2014).
[Crossref] [PubMed]

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol. 35(5), 707–716 (2009).
[Crossref] [PubMed]

Doherty, J. R.

V. Patel, J. J. Dahl, D. P. Bradway, J. R. Doherty, S. Y. Lee, and S. W. Smith, “Acoustic radiation force impulse imaging (ARFI) on an IVUS circular array,” Ultrason. Imaging 36(2), 98–111 (2014).
[Crossref] [PubMed]

J. R. Doherty, G. E. Trahey, K. R. Nightingale, and M. L. Palmeri, “Acoustic radiation force elasticity imaging in diagnostic ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 685–701 (2013).
[Crossref] [PubMed]

Dumont, D. M.

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol. 35(5), 707–716 (2009).
[Crossref] [PubMed]

S. J. Hsu, R. R. Bouchard, D. M. Dumont, P. D. Wolf, and G. E. Trahey, “In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging,” Ultrasound Med. Biol. 33(11), 1706–1719 (2007).
[Crossref] [PubMed]

Evans, A.

R. Mullen, J. M. Thompson, O. Moussa, S. Vinnicombe, and A. Evans, “Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers,” Clin. Radiol. 69(12), 1259–1263 (2014).
[Crossref] [PubMed]

Fahey, B. J.

B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, “Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility,” Ultrasound Med. Biol. 31(9), 1185–1198 (2005).
[Crossref] [PubMed]

Fatemi, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[Crossref] [PubMed]

Frinkley, K. D.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Goldberg, L.

Gottfried, M.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Greenleaf, J. F.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[Crossref] [PubMed]

Hays, A.

Hsu, S. J.

S. J. Hsu, R. R. Bouchard, D. M. Dumont, P. D. Wolf, and G. E. Trahey, “In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging,” Ultrasound Med. Biol. 33(11), 1706–1719 (2007).
[Crossref] [PubMed]

Hu, C.

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

Huang, Y.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

Hwang, J. Y.

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[Crossref] [PubMed]

Kang, B. J.

Kim, H. H.

Kimura, K.

Kirk Shung, K.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

Konofagou, E. E.

E. E. Konofagou, C. Maleke, and J. Vappou, “Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring,” Curr. Med. Imaging Rev. 8(1), 16–26 (2012).
[Crossref] [PubMed]

Kornguth, P. J.

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Kramer, M. D.

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

Lau, S. T.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

Lawrence, M. B.

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

Lee, A.

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Lee, C.

J. Y. Hwang, B. J. Kang, C. Lee, H. H. Kim, J. Park, Q. Zhou, and K. K. Shung, “Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics,” Biomed. Opt. Express 6(1), 11–22 (2015).
[Crossref] [PubMed]

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Lee, J.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Lee, S. Y.

V. Patel, J. J. Dahl, D. P. Bradway, J. R. Doherty, S. Y. Lee, and S. W. Smith, “Acoustic radiation force impulse imaging (ARFI) on an IVUS circular array,” Ultrason. Imaging 36(2), 98–111 (2014).
[Crossref] [PubMed]

Li, X.

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Lien, C. L.

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

Ludwig, K.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Maleke, C.

E. E. Konofagou, C. Maleke, and J. Vappou, “Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring,” Curr. Med. Imaging Rev. 8(1), 16–26 (2012).
[Crossref] [PubMed]

McDermott, B. A.

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

McIntosh, C.

Miller, E. M.

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol. 35(5), 707–716 (2009).
[Crossref] [PubMed]

Moussa, O.

R. Mullen, J. M. Thompson, O. Moussa, S. Vinnicombe, and A. Evans, “Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers,” Clin. Radiol. 69(12), 1259–1263 (2014).
[Crossref] [PubMed]

Mullen, R.

R. Mullen, J. M. Thompson, O. Moussa, S. Vinnicombe, and A. Evans, “Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers,” Clin. Radiol. 69(12), 1259–1263 (2014).
[Crossref] [PubMed]

Nakajima, K.

Namura, K.

Nelson, R. C.

B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, “Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility,” Ultrasound Med. Biol. 31(9), 1185–1198 (2005).
[Crossref] [PubMed]

Nightingale, K.

K. Nightingale, “Acoustic radiation force impulse (ARFI) imaging: a review,” Curr. Med. Imaging Rev. 7(4), 328–339 (2011).
[Crossref] [PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

Nightingale, K. R.

J. R. Doherty, G. E. Trahey, K. R. Nightingale, and M. L. Palmeri, “Acoustic radiation force elasticity imaging in diagnostic ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 685–701 (2013).
[Crossref] [PubMed]

B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, “Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility,” Ultrasound Med. Biol. 31(9), 1185–1198 (2005).
[Crossref] [PubMed]

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Nightingale, R.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

Oberhauser, J. P.

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

Ophir, J.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Palmeri, M. L.

J. R. Doherty, G. E. Trahey, K. R. Nightingale, and M. L. Palmeri, “Acoustic radiation force elasticity imaging in diagnostic ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 685–701 (2013).
[Crossref] [PubMed]

B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, “Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility,” Ultrasound Med. Biol. 31(9), 1185–1198 (2005).
[Crossref] [PubMed]

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Park, J.

J. Y. Hwang, B. J. Kang, C. Lee, H. H. Kim, J. Park, Q. Zhou, and K. K. Shung, “Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics,” Biomed. Opt. Express 6(1), 11–22 (2015).
[Crossref] [PubMed]

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

Patel, V.

V. Patel, J. J. Dahl, D. P. Bradway, J. R. Doherty, S. Y. Lee, and S. W. Smith, “Acoustic radiation force impulse imaging (ARFI) on an IVUS circular array,” Ultrason. Imaging 36(2), 98–111 (2014).
[Crossref] [PubMed]

Ponnekanti, H.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Schilling, B. W.

Shung, K. K.

J. Y. Hwang, B. J. Kang, C. Lee, H. H. Kim, J. Park, Q. Zhou, and K. K. Shung, “Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics,” Biomed. Opt. Express 6(1), 11–22 (2015).
[Crossref] [PubMed]

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Smith, S. W.

V. Patel, J. J. Dahl, D. P. Bradway, J. R. Doherty, S. Y. Lee, and S. W. Smith, “Acoustic radiation force impulse imaging (ARFI) on an IVUS circular array,” Ultrason. Imaging 36(2), 98–111 (2014).
[Crossref] [PubMed]

Soo, M. S.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

Suzuki, M.

Teh, S. Y.

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

Thompson, J. M.

R. Mullen, J. M. Thompson, O. Moussa, S. Vinnicombe, and A. Evans, “Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers,” Clin. Radiol. 69(12), 1259–1263 (2014).
[Crossref] [PubMed]

Trahey, G.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

Trahey, G. E.

J. R. Doherty, G. E. Trahey, K. R. Nightingale, and M. L. Palmeri, “Acoustic radiation force elasticity imaging in diagnostic ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 685–701 (2013).
[Crossref] [PubMed]

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol. 35(5), 707–716 (2009).
[Crossref] [PubMed]

S. J. Hsu, R. R. Bouchard, D. M. Dumont, P. D. Wolf, and G. E. Trahey, “In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging,” Ultrasound Med. Biol. 33(11), 1706–1719 (2007).
[Crossref] [PubMed]

B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, “Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility,” Ultrasound Med. Biol. 31(9), 1185–1198 (2005).
[Crossref] [PubMed]

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Trussell, C. W.

Vappou, J.

E. E. Konofagou, C. Maleke, and J. Vappou, “Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring,” Curr. Med. Imaging Rev. 8(1), 16–26 (2012).
[Crossref] [PubMed]

Vinnicombe, S.

R. Mullen, J. M. Thompson, O. Moussa, S. Vinnicombe, and A. Evans, “Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers,” Clin. Radiol. 69(12), 1259–1263 (2014).
[Crossref] [PubMed]

Viola, F.

F. Viola and W. F. Walker, “A spline-based algorithm for continuous time-delay estimation using sampled data,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(1), 80–93 (2005).
[Crossref] [PubMed]

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

Walker, W. F.

F. Viola and W. F. Walker, “A spline-based algorithm for continuous time-delay estimation using sampled data,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(1), 80–93 (2005).
[Crossref] [PubMed]

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Wolf, P. D.

S. J. Hsu, R. R. Bouchard, D. M. Dumont, P. D. Wolf, and G. E. Trahey, “In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging,” Ultrasound Med. Biol. 33(11), 1706–1719 (2007).
[Crossref] [PubMed]

Yazdi, Y.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Zhai, L.

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

Zhou, Q.

J. Y. Hwang, B. J. Kang, C. Lee, H. H. Kim, J. Park, Q. Zhou, and K. K. Shung, “Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics,” Biomed. Opt. Express 6(1), 11–22 (2015).
[Crossref] [PubMed]

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

Ann. Biomed. Eng. (2)

J. Park, J. Lee, S. T. Lau, C. Lee, Y. Huang, C. L. Lien, and K. Kirk Shung, “Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence,” Ann. Biomed. Eng. 40(4), 907–915 (2012).
[Crossref] [PubMed]

F. Viola, M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker, “Sonorheometry: a noncontact method for the dynamic assessment of thrombosis,” Ann. Biomed. Eng. 32(5), 696–705 (2004).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Clin. Radiol. (1)

R. Mullen, J. M. Thompson, O. Moussa, S. Vinnicombe, and A. Evans, “Shear-wave elastography contributes to accurate tumour size estimation when assessing small breast cancers,” Clin. Radiol. 69(12), 1259–1263 (2014).
[Crossref] [PubMed]

Curr. Med. Imaging Rev. (2)

K. Nightingale, “Acoustic radiation force impulse (ARFI) imaging: a review,” Curr. Med. Imaging Rev. 7(4), 328–339 (2011).
[Crossref] [PubMed]

E. E. Konofagou, C. Maleke, and J. Vappou, “Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring,” Curr. Med. Imaging Rev. 8(1), 16–26 (2012).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

J. Park, C. Hu, X. Li, Q. Zhou, and K. K. Shung, “Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(4), 825–832 (2012).
[Crossref] [PubMed]

F. Viola and W. F. Walker, “A spline-based algorithm for continuous time-delay estimation using sampled data,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(1), 80–93 (2005).
[Crossref] [PubMed]

J. R. Doherty, G. E. Trahey, K. R. Nightingale, and M. L. Palmeri, “Acoustic radiation force elasticity imaging in diagnostic ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 685–701 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Ultrason. Imaging (3)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

M. L. Palmeri, K. D. Frinkley, L. Zhai, M. Gottfried, R. C. Bentley, K. Ludwig, and K. R. Nightingale, “Acoustic radiation force impulse (ARFI) imaging of the gastrointestinal tract,” Ultrason. Imaging 27(2), 75–88 (2005).
[Crossref] [PubMed]

V. Patel, J. J. Dahl, D. P. Bradway, J. R. Doherty, S. Y. Lee, and S. W. Smith, “Acoustic radiation force impulse imaging (ARFI) on an IVUS circular array,” Ultrason. Imaging 36(2), 98–111 (2014).
[Crossref] [PubMed]

Ultrasound Med. Biol. (6)

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol. 28(2), 227–235 (2002).
[Crossref] [PubMed]

B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, “Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility,” Ultrasound Med. Biol. 31(9), 1185–1198 (2005).
[Crossref] [PubMed]

S. J. Hsu, R. R. Bouchard, D. M. Dumont, P. D. Wolf, and G. E. Trahey, “In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging,” Ultrasound Med. Biol. 33(11), 1706–1719 (2007).
[Crossref] [PubMed]

J. J. Dahl, D. M. Dumont, J. D. Allen, E. M. Miller, and G. E. Trahey, “Acoustic radiation force impulse imaging for noninvasive characterization of carotid artery atherosclerotic plaques: a feasibility study,” Ultrasound Med. Biol. 35(5), 707–716 (2009).
[Crossref] [PubMed]

J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, “Transverse acoustic trapping using a gaussian focused ultrasound,” Ultrasound Med. Biol. 36(2), 350–355 (2010).
[Crossref] [PubMed]

K. R. Nightingale, P. J. Kornguth, W. F. Walker, B. A. McDermott, and G. E. Trahey, “A novel ultrasonic technique for differentiating cysts from solid lesions: preliminary results in the breast,” Ultrasound Med. Biol. 21(6), 745–751 (1995).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The configuration of PA-ARFI microscopy and (b) the pulse sequences for PA-ARFI (reference, pushing and tracking).
Fig. 2
Fig. 2 (a) The representative RF signal which is composed of three components: a trigger signal, a surface PA signal, and a target PA signal. The trigger signal represents the signal which was distributed from a function generator for the system synchronization. The surface and target PA signal were generated from the transducer surface and the target, respectively.
Fig. 3
Fig. 3 (a) Signal intensities represented as a 2-D image along the depth at each time and (b) the magnified 2-D images which contain the trigger, surface PA and target PA signal components. Both surface and target PA signals were drifted because of the pulse to pulse timing jitter of the Q-switched pulsed laser.
Fig. 4
Fig. 4 Images of the RF signals of (a) before applying jitter reduction method, and after applying (b) peak-to-peak and (c) cross-correlation methods.
Fig. 5
Fig. 5 Temporal variations of a target signal reconstructed by the peak-to-peak (black-dashed line) and cross-correlation (red-solid line) method (a) without and (b) with bandpass filtering (BPF).
Fig. 6
Fig. 6 Temporal displacements of a target due to ARFI application: Temporal displacements obtained by using the peak-to-peak (black-dashed line) and cross-correlation (red-solid line) method (a) without and (b) with bandpass filtering (BPF).
Fig. 7
Fig. 7 Temporal displacements of cell membrane due to ARFI application: Cell membrane displacement obtained by using the peak-to-peak (black-dashed line) and cross-correlation (red-solid line) method (a) without and (b) with bandpass filtering (BPF).

Tables (1)

Tables Icon

Table 1 Quantitative analysis of the displacement results obtained by using a peak-to-peak detection and cross-correlation method with and without bandpass filtering: root mean square error (RMSE) values were calculated after applying curve fitting on the estimated displacements by each method (BPF: bandpass filtering, C.C: cross-correlation, PTP: peak-to-peak).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N o r m a l i z e d c r o s s c o r r e l a t i o n [ τ ] = i = r r + N 1 ( s 1 [ i ] × s 2 [ i + τ ] ) i = r r + N 1 s 1 2 [ i ] × i = r r + N 1 s 2 2 [ i + τ ]

Metrics