Abstract

We are introducing a new bias free CW terahertz photomixer emitter array. Each emitter consists of an asymmetric metal-semiconductor-metal (MSM) that is made of two side by side dis-similar Schottky contacts, on a thin layer of low temperature grown (LTG) GaAs, with barrier heights of difference (ΔΦB) and a finite lateral spacing (s). Simulations show that when an appropriately designed structure is irradiated by two coherent optical beams of different center wavelengths, whose frequency difference (∆f) falls in a desired THz band, the built-in field between the two dis-similar potential barriers can accelerate the photogenerated carriers that are modulated by ∆ω, making each pitch in the array to act as a CW THz emitter, effectively. We also show the permissible values of s and ΔΦB pairs, for which the strengths of the built-in electric field maxima fall below that of the critical of 50 V/μm— i.e., the breakdown limit for the LTG-GaAs layer. Moreover, we calculate the THz radiation power per emitter in an array. Among many potential applications for these bias free THz emitters their use in endoscopic imaging without a need for hazardous external biasing circuitry that reduces the patient health risk, could be the most important one. A hybrid numerical simulation method is used to design an optimum emitter pitch, radiating at 0.5 THz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bias-free and antenna-coupled CW terahertz array emitter with anomalous Schottky barriers

Mohammad Javad Mohammad-Zamani, Morteza Fathipour, Mohammad Neshat, Fakhroddin Nazari, and Mahdi Ghaemi
J. Opt. Soc. Am. B 34(9) 1771-1779 (2017)

Nanoslit cavity plasmonic modes and built-in fields enhance the CW THz radiation in an unbiased antennaless photomixers array

Mohammad Javad Mohammad-Zamani, Mohammad Neshat, and Mohammad Kazem Moravvej-Farshi
Opt. Lett. 41(2) 420-423 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  2. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
    [Crossref]
  3. M. C. Teich, “Field-theoretical treatment of photomixing,” Appl. Phys. Lett. 14(6), 201–203 (1969).
    [Crossref]
  4. D. Saeedkia and S. Safavi-Naeini, “A comprehensive model for photomixing in ultrafast photoconductors,” IEEE Photonics Technol. Lett. 18(13), 1457–1459 (2006).
    [Crossref]
  5. E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst. 13(02), 497–545 (2003).
    [Crossref]
  6. S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71(19), 2743–2745 (1997).
    [Crossref]
  7. S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber coupled photomixers with coherent THz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
    [Crossref]
  8. J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
    [Crossref]
  9. S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Milli. Terahz. Waves 33(4), 431–454 (2012).
    [Crossref]
  10. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
    [Crossref]
  11. M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
    [Crossref]
  12. S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided wave and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans Terahz Sci. and Techno. 2(6), 652–658 (2012).
    [Crossref]
  13. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express 18(5), 4939–4947 (2010).
    [Crossref] [PubMed]
  14. V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
    [Crossref]
  15. A. Reklaitis, “Crossover between surface field and photo-dember effect induced terahertz emission,” J. Appl. Phys. 109(8), 083108 (2011).
    [Crossref]
  16. M. Nagel, “Photoconductive structure e.g. radiation source, for optical generation of field signals in terahertz-frequency range in bio analysis, has metallic layers formed from locations and provided in direct contact with semiconductor material,” European Patents Office, 2013, DE102012010926 (A1)
  17. M. J. Mohammad-Zamani, M. K. Moravvej-Farshi, and M. Neshat, “Modeling and designing an unbiased CW terahertz photomixer emitters,” Millimeter-Wave and Terahertz Technologies (MMWATT), 2014 Third Conference on.
    [Crossref]
  18. S. Lodha, D. B. Janes, and N.-P. Chen, “Fermi level unpinning in ex situ Schottky contacts on n-GaAs capped with low-temperature-grown GaAs,” Appl. Phys. Lett. 80(23), 4452–4454 (2002).
    [Crossref]
  19. M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid Computational Simulation and Study of Continuous Wave Terahertz Photomixers,” IEEE Tran. Terahz. Sci. Technol. 2(6), 605–616 (2012).
    [Crossref]
  20. M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A Global Approach for Modeling and Analysis of Edge-Coupled Traveling-Wave Terahertz Photoconductive Sources,” IEEE Trans. Microw. Theory Tech. 58(7), 1952–1966 (2010).
    [Crossref]
  21. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984).
  22. C. R. Crowell and S. M. Sze, “Current Transport in Metal-Semiconductor Barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966).
    [Crossref]
  23. S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A Hybrid Analysis Method for Plasmonic Enhanced Terahertz Photomixer Sources,” Opt. Express 21(9), 11115–11124 (2013).
    [Crossref] [PubMed]
  24. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
    [Crossref]
  25. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (John Wiley & Sons, 2005).
  26. A. Eshaghi, M. Shahabadi, and L. Chrostowski, “Radiation characteristics of large area photomixer used for generation of continuous-wave terahertz radiation,” J. Opt. Soc. Am. B 29(4), 813 (2012).
    [Crossref]

2014 (1)

V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]

2013 (1)

2012 (4)

A. Eshaghi, M. Shahabadi, and L. Chrostowski, “Radiation characteristics of large area photomixer used for generation of continuous-wave terahertz radiation,” J. Opt. Soc. Am. B 29(4), 813 (2012).
[Crossref]

M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid Computational Simulation and Study of Continuous Wave Terahertz Photomixers,” IEEE Tran. Terahz. Sci. Technol. 2(6), 605–616 (2012).
[Crossref]

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided wave and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans Terahz Sci. and Techno. 2(6), 652–658 (2012).
[Crossref]

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Milli. Terahz. Waves 33(4), 431–454 (2012).
[Crossref]

2011 (2)

A. Reklaitis, “Crossover between surface field and photo-dember effect induced terahertz emission,” J. Appl. Phys. 109(8), 083108 (2011).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

2010 (2)

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A Global Approach for Modeling and Analysis of Edge-Coupled Traveling-Wave Terahertz Photoconductive Sources,” IEEE Trans. Microw. Theory Tech. 58(7), 1952–1966 (2010).
[Crossref]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express 18(5), 4939–4947 (2010).
[Crossref] [PubMed]

2007 (1)

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

2006 (1)

D. Saeedkia and S. Safavi-Naeini, “A comprehensive model for photomixing in ultrafast photoconductors,” IEEE Photonics Technol. Lett. 18(13), 1457–1459 (2006).
[Crossref]

2005 (2)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

2003 (1)

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst. 13(02), 497–545 (2003).
[Crossref]

2002 (2)

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

S. Lodha, D. B. Janes, and N.-P. Chen, “Fermi level unpinning in ex situ Schottky contacts on n-GaAs capped with low-temperature-grown GaAs,” Appl. Phys. Lett. 80(23), 4452–4454 (2002).
[Crossref]

1997 (2)

S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71(19), 2743–2745 (1997).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber coupled photomixers with coherent THz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

1992 (1)

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[Crossref]

1969 (1)

M. C. Teich, “Field-theoretical treatment of photomixing,” Appl. Phys. Lett. 14(6), 201–203 (1969).
[Crossref]

1966 (1)

C. R. Crowell and S. M. Sze, “Current Transport in Metal-Semiconductor Barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966).
[Crossref]

Apostolopoulos, V.

V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]

Auston, D. H.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[Crossref]

Awad, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Baker, C.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Barnes, M. E.

V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]

Bartels, A.

Bastian, G.

Beck, M.

Bradley, I. V.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Brown, E. R.

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst. 13(02), 497–545 (2003).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71(19), 2743–2745 (1997).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber coupled photomixers with coherent THz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

Chen, N.-P.

S. Lodha, D. B. Janes, and N.-P. Chen, “Fermi level unpinning in ex situ Schottky contacts on n-GaAs capped with low-temperature-grown GaAs,” Appl. Phys. Lett. 80(23), 4452–4454 (2002).
[Crossref]

Chrostowski, L.

Crowell, C. R.

C. R. Crowell and S. M. Sze, “Current Transport in Metal-Semiconductor Barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966).
[Crossref]

Darrow, J. T.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[Crossref]

Davies, A. G.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Dekorsy, T.

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express 18(5), 4939–4947 (2010).
[Crossref] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Döhler, G. H.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Eshaghi, A.

Evans, M. J.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Faist, J.

Fischer, M.

Gebs, R.

Gossard, A. C.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Gregory, I. S.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Herfort, J.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Hilser, F.

Huska, K.

Jafarlou, S.

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A Hybrid Analysis Method for Plasmonic Enhanced Terahertz Photomixer Sources,” Opt. Express 21(9), 11115–11124 (2013).
[Crossref] [PubMed]

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided wave and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans Terahz Sci. and Techno. 2(6), 652–658 (2012).
[Crossref]

Janes, D. B.

S. Lodha, D. B. Janes, and N.-P. Chen, “Fermi level unpinning in ex situ Schottky contacts on n-GaAs capped with low-temperature-grown GaAs,” Appl. Phys. Lett. 80(23), 4452–4454 (2002).
[Crossref]

Johnston, M. B.

Khabiri, M.

M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid Computational Simulation and Study of Continuous Wave Terahertz Photomixers,” IEEE Tran. Terahz. Sci. Technol. 2(6), 605–616 (2012).
[Crossref]

Klatt, G.

Kurz, H.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Lemmer, U.

Linfield, E. H.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Lodha, S.

S. Lodha, D. B. Janes, and N.-P. Chen, “Fermi level unpinning in ex situ Schottky contacts on n-GaAs capped with low-temperature-grown GaAs,” Appl. Phys. Lett. 80(23), 4452–4454 (2002).
[Crossref]

Malzer, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

McIntosh, K. A.

S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71(19), 2743–2745 (1997).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber coupled photomixers with coherent THz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

Missous, M.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Morse, J. D.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[Crossref]

Nagel, M.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Neshat, M.

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A Hybrid Analysis Method for Plasmonic Enhanced Terahertz Photomixer Sources,” Opt. Express 21(9), 11115–11124 (2013).
[Crossref] [PubMed]

M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid Computational Simulation and Study of Continuous Wave Terahertz Photomixers,” IEEE Tran. Terahz. Sci. Technol. 2(6), 605–616 (2012).
[Crossref]

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided wave and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans Terahz Sci. and Techno. 2(6), 652–658 (2012).
[Crossref]

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A Global Approach for Modeling and Analysis of Edge-Coupled Traveling-Wave Terahertz Photoconductive Sources,” IEEE Trans. Microw. Theory Tech. 58(7), 1952–1966 (2010).
[Crossref]

Ploog, K.

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

Preu, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Qiao, W.

Reklaitis, A.

A. Reklaitis, “Crossover between surface field and photo-dember effect induced terahertz emission,” J. Appl. Phys. 109(8), 083108 (2011).
[Crossref]

Rezaee, L.

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A Global Approach for Modeling and Analysis of Edge-Coupled Traveling-Wave Terahertz Photoconductive Sources,” IEEE Trans. Microw. Theory Tech. 58(7), 1952–1966 (2010).
[Crossref]

Saeedkia, D.

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A Global Approach for Modeling and Analysis of Edge-Coupled Traveling-Wave Terahertz Photoconductive Sources,” IEEE Trans. Microw. Theory Tech. 58(7), 1952–1966 (2010).
[Crossref]

D. Saeedkia and S. Safavi-Naeini, “A comprehensive model for photomixing in ultrafast photoconductors,” IEEE Photonics Technol. Lett. 18(13), 1457–1459 (2006).
[Crossref]

Safavi-Naeini, S.

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A Hybrid Analysis Method for Plasmonic Enhanced Terahertz Photomixer Sources,” Opt. Express 21(9), 11115–11124 (2013).
[Crossref] [PubMed]

M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid Computational Simulation and Study of Continuous Wave Terahertz Photomixers,” IEEE Tran. Terahz. Sci. Technol. 2(6), 605–616 (2012).
[Crossref]

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided wave and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans Terahz Sci. and Techno. 2(6), 652–658 (2012).
[Crossref]

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A Global Approach for Modeling and Analysis of Edge-Coupled Traveling-Wave Terahertz Photoconductive Sources,” IEEE Trans. Microw. Theory Tech. 58(7), 1952–1966 (2010).
[Crossref]

D. Saeedkia and S. Safavi-Naeini, “A comprehensive model for photomixing in ultrafast photoconductors,” IEEE Photonics Technol. Lett. 18(13), 1457–1459 (2006).
[Crossref]

Shahabadi, M.

Siegel, P. H.

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Sze, S. M.

C. R. Crowell and S. M. Sze, “Current Transport in Metal-Semiconductor Barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966).
[Crossref]

Teich, M. C.

M. C. Teich, “Field-theoretical treatment of photomixing,” Appl. Phys. Lett. 14(6), 201–203 (1969).
[Crossref]

Tribe, W. R.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

Verghese, S.

S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71(19), 2743–2745 (1997).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber coupled photomixers with coherent THz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

Wang, L. J.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Winnerl, S.

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Milli. Terahz. Waves 33(4), 431–454 (2012).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Zhang, X.-C.

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[Crossref]

Appl. Phys. Lett. (5)

M. C. Teich, “Field-theoretical treatment of photomixing,” Appl. Phys. Lett. 14(6), 201–203 (1969).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Optical and terahertz power limits in the low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 71(19), 2743–2745 (1997).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

M. Awad, M. Nagel, H. Kurz, J. Herfort, and K. Ploog, “Characterization of low temperature GaAs antenna array terahertz emitters,” Appl. Phys. Lett. 91(18), 181124 (2007).
[Crossref]

S. Lodha, D. B. Janes, and N.-P. Chen, “Fermi level unpinning in ex situ Schottky contacts on n-GaAs capped with low-temperature-grown GaAs,” Appl. Phys. Lett. 80(23), 4452–4454 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28(6), 1607–1616 (1992).
[Crossref]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave THz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Saeedkia and S. Safavi-Naeini, “A comprehensive model for photomixing in ultrafast photoconductors,” IEEE Photonics Technol. Lett. 18(13), 1457–1459 (2006).
[Crossref]

IEEE Tran. Terahz. Sci. Technol. (1)

M. Khabiri, M. Neshat, and S. Safavi-Naeini, “Hybrid Computational Simulation and Study of Continuous Wave Terahertz Photomixers,” IEEE Tran. Terahz. Sci. Technol. 2(6), 605–616 (2012).
[Crossref]

IEEE Trans Terahz Sci. and Techno. (1)

S. Jafarlou, M. Neshat, and S. Safavi-Naeini, “A fast method for analysis of guided wave and radiation from a nano-scale slit loaded waveguide for a THz photoconductive source,” IEEE Trans Terahz Sci. and Techno. 2(6), 652–658 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

M. Neshat, D. Saeedkia, L. Rezaee, and S. Safavi-Naeini, “A Global Approach for Modeling and Analysis of Edge-Coupled Traveling-Wave Terahertz Photoconductive Sources,” IEEE Trans. Microw. Theory Tech. 58(7), 1952–1966 (2010).
[Crossref]

P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber coupled photomixers with coherent THz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

Int. J. High Speed Electron. Syst. (1)

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst. 13(02), 497–545 (2003).
[Crossref]

J. Appl. Phys. (2)

A. Reklaitis, “Crossover between surface field and photo-dember effect induced terahertz emission,” J. Appl. Phys. 109(8), 083108 (2011).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Milli. Terahz. Waves 33(4), 431–454 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect,” J. Phys. D Appl. Phys. 47(37), 374002 (2014).
[Crossref]

Opt. Express (2)

Solid-State Electron. (1)

C. R. Crowell and S. M. Sze, “Current Transport in Metal-Semiconductor Barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966).
[Crossref]

Other (4)

M. Nagel, “Photoconductive structure e.g. radiation source, for optical generation of field signals in terahertz-frequency range in bio analysis, has metallic layers formed from locations and provided in direct contact with semiconductor material,” European Patents Office, 2013, DE102012010926 (A1)

M. J. Mohammad-Zamani, M. K. Moravvej-Farshi, and M. Neshat, “Modeling and designing an unbiased CW terahertz photomixer emitters,” Millimeter-Wave and Terahertz Technologies (MMWATT), 2014 Third Conference on.
[Crossref]

C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. (John Wiley & Sons, 2005).

S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer-Verlag, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Cross sectional view of the unit cell of the periodic array of the modeled bias-free THz photomixer emitters, each consisting an interconnected pair of dissimilar Schottky contacts on LTG-GaAs layer. The array pitch size is Λ. Geometrical dimensions can be found in Table 1.
Fig. 2
Fig. 2 Measured Schottky barrier heights (●) for Mg, Ti and Au contacted LTG-GaAs, versus work-function [18]. Dotted-dashes shows a quadratic fit, while (⋮) indicate the exact value of Cr work function. The work functions for other metals known to make Schottky contacts on LTG-GaAs are depicted by horizontal dots.
Fig. 3
Fig. 3 (a) CB diagrams of the MSM structure with a single pair of Schottky contacts along the LTG-GaAs surface (x-direction at y = 1 nm) for ΦB1 = 1.11 eV and 0.08 ≤ΦB2 1.11 eV; the corresponding CB diagrams in x-y plane (y ≥ 1 nm) for (b) ΦB2 = 1.11 eV and (c) ΦB2 = 0.8 eV. All drawn under equilibrium.
Fig. 4
Fig. 4 (a) 1D distributions of Ex below the LTG-GaAs surface (at y = 1nm) for ΦB1 = 1.11 eV and 0.8 ≤ ΦB2 1.11 eV. Corresponding 2D distributions in x-y plane (y ≥ 1 nm) for (b) ΦB2 = 1.11 eV and (c) ΦB2 = 0.8 eV. (d) 1D distribution and (e) and (f) 2D distributions of Ey similar to those of Ex shown in (a), (b) and (c), respectively.
Fig. 5
Fig. 5 Strength of the maximum electric field versus the size of lateral spacing between M1 and M2, s, and the difference in the barrier heights, ΔΦB. Dashes depict the loci of the critical eclectic field strength, 50 V/μm.
Fig. 6
Fig. 6 Efficiency, η, versus s and ΔΦB. The ellipse encompasses the high efficiency region (η ≥90%) of the plot.
Fig. 7
Fig. 7 The time-averaged carrier photo-generation rate inside the LTG–GaAs layer of the individual emitter.
Fig. 8
Fig. 8 Snapshots of the carriers’ concentrations: (a) electrons and (b) holes, within the LTG-GaAs substrate, at a given moment.
Fig. 9
Fig. 9 Snapshots of the components of the local current densities: (a) Jphx and (b) −Jphy, within the LTG-GaAs substrate, at a given moment.
Fig. 10
Fig. 10 Time dependence of the amplitudes of the components of the effective THz dipole current, Jeff-x () and Jeff-y (- - -), for the optimized individual emitter.
Fig. 11
Fig. 11 Snap shots of the (a) electrons and (b) holes concentrations; and the components of the total local current densities (c) Jphx and (d) −Jphy, within the LTG–GaAs substrate of the two-finger MSM photomixer, under illumination.
Fig. 12
Fig. 12 Time dependence of the amplitudes of the components of the effective THz dipole current, Jeff-x () and Jeff-y (- - -), for a single pitch of arrayed emitters.
Fig. 13
Fig. 13 (a) The photomixer efficiency (∗) read from the left axis, and the effective THz dipole current (○) read from the right axis, and (b) the THz radiation output power from a 10-μm wide pitch, all versus the pitch size (Λ).

Tables (1)

Tables Icon

Table 1 Geometrical and physical parameters used in simulations

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = G ( x , y ) E ( x , y ) d x d y max { G ( x , y ) E ( x , y ) d x d y } .
J ph   ( x , y , t ) =   J DC ( x , y )   +   J AC ( x , y ) cos ( ω t ) ,
J eff-x ( t )   =   J eff-x   e j ω t
J eff-y ( t )   =   J eff-y e j ( ω t φ ) ,
P THz = 1 2 R rad I eff 2 { J eff-x 2 + J eff-y 2 } ,
R rad = 2 π Z 0 ε eff 3 [ l 0 λ THz , 0 ] 2 with l 0 = v sat τ rec
P THz-Pitch Emitter P THz-individual Emitter P THz-Pitch Emitter 36.7 % .

Metrics