Abstract

Nanoplasmonic materials are intensively studied due to the advantages they bring in various applied fields such as photonics, optoelectronics, photovoltaics and medicine. However, their large-scale fabrication and tunability are still a challenge. One of the promising ways of combining these two is to use the self-organization mechanism and after-growth engineering as annealing for tuning the properties. This paper reports the development of a bulk nanoplasmonic, Bi2O3-Ag eutectic-based metamaterial with a tunable plasmonic resonance between orange and green wavelengths. The material, obtained by a simple growth technique, exhibits a silver nanoparticle-related localized surface plasmon resonance (LSPR) in the visible wavelength range. We demonstrate the tunability of the LSPR (spectral position, width and intensity) as a function of the annealing temperature, time and the atmosphere. The critical role of the annealing atmosphere is underlined, annealing in vacuum being the most effective option for a broad control of the LSPR. The various potential mechanisms responsible for tuning the localized surface plasmon resonance upon annealing are discussed in relation to the nanostructures of the obtained materials.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films

Peng Zhou, Guanjun You, Jing Li, Songyou Wang, Shixiong Qian, and Liangyao Chen
Opt. Express 13(5) 1508-1514 (2005)

References

  • View by:
  • |
  • |
  • |

  1. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
    [Crossref]
  2. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
    [Crossref] [PubMed]
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  4. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  5. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  6. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  7. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  8. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  9. R. Jin, Y. Ch. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
    [Crossref] [PubMed]
  10. C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
    [Crossref]
  11. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
    [Crossref]
  12. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
    [Crossref]
  13. X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
    [Crossref] [PubMed]
  14. T. Huang and X.-H. Xu, “Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy,” J. Mater. Chem. 20(44), 9867–9876 (2010).
    [Crossref] [PubMed]
  15. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
    [Crossref] [PubMed]
  16. E. C. Le Ru and P. G. Etchegoin, Principles of Surface- Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier Science, 2008).
  17. S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
    [Crossref]
  18. J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
    [Crossref] [PubMed]
  19. L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
    [Crossref] [PubMed]
  20. Y. K. Mishra, S. Mohapatra, R. Singhal, D. K. Avasthi, D. C. Agarwal, and S. B. Ogale, “Au–ZnO: A tunable localized surface plasmonic nanocomposite,” Appl. Phys. Lett. 92(4), 043107 (2008).
    [Crossref]
  21. S. Mohapatra, Y. K. Mishra, D. K. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, “Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance,” Appl. Phys. Lett. 92(10), 103105 (2008).
    [Crossref]
  22. G. Xu, Ch.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadiumdioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104(5), 053102 (2008).
    [Crossref]
  23. W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
    [Crossref] [PubMed]
  24. D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
    [Crossref]
  25. D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
    [Crossref]
  26. V. Myroshnychenko, A. Stefanski, A. Manjavacas, M. Kafesaki, R. I. Merino, V. M. Orera, D. A. Pawlak, and F. J. García de Abajo, “Interacting plasmon and phonon polaritons in aligned nano- and microwires,” Opt. Express 20(10), 10879–10887 (2012).
    [Crossref] [PubMed]
  27. A. Reyes-Coronado, M. F. Acosta, R. I. Merino, V. M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, Ch. Mavidis, J. García de Abajo, E. N. Economou, and C. M. Soukoulis, “Self-organization approach for THz polaritonic metamaterials,” Opt. Express 20(13), 14663–14682 (2012).
    [Crossref] [PubMed]
  28. M. Massaouti, A. A. Basharin, M. Kafesaki, M. F. Acosta, R. I. Merino, V. M. Orera, E. N. Economou, C. M. Soukoulis, and S. Tzortzakis, “Eutectic epsilon-near-zero metamaterial terahertz waveguides,” Opt. Lett. 38(7), 1140–1142 (2013).
    [Crossref] [PubMed]
  29. K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
    [Crossref]
  30. D. H. Yoon, I. Yonenaga, N. Ohnishi, and T. Fukuda, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
    [Crossref]
  31. T. Fukuda, P. Rudolph, and S. Uda, Fiber Crystal Growth from the Melt (Springer, 2004).
  32. D. A. Pawlak, Y. Kagamitani, A. Yoshikawa, K. Wozniak, H. Sato, H. Machida, and T. Fukuda, “Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method,” J. Cryst. Growth 226(2-3), 341–347 (2001).
    [Crossref]
  33. D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
    [Crossref]
  34. M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
    [Crossref]
  35. J. Assal, B. Hallstedt, and L. J. Gauckler, “Experimental phase diagram study and thermodynamic optimization of the Ag-Bi-O system,” J. Am. Ceram. Soc. 82(3), 711–715 (1999).
    [Crossref]
  36. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Verlag GmbH & Co. KGaA, 1998).
  37. G. W. Arnold, “Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass,” J. Appl. Phys. 46(10), 4466 (1975).
    [Crossref]
  38. U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster–matter: influences of interfaces,” Phys. Status Solidi, A Appl. Res. 175(1), 351–366 (1999).
    [Crossref]
  39. M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
    [Crossref]
  40. M. Yashima and D. Ishimura, “Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3,” Chem. Phys. Lett. 378(3-4), 395–399 (2003).
    [Crossref]
  41. N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, “Bismuth based oxide electrolytes - structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
    [Crossref]
  42. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Ltd, 2007).
  43. H. A. Harwig and A. G. Gerards, “The polymorphism of bismuth sesquioxide,” Thermochim. Acta 28(1), 121–131 (1979).
    [Crossref]
  44. H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444, 151–166 (1978).
    [Crossref]
  45. J. W. Medernach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11-12), 494–497 (1978).
    [Crossref]
  46. H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of δ-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D Appl. Phys. 39(9), 1939–1943 (2006).
    [Crossref]
  47. L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, “Thermal stability of Bi2O3,” Russ. J. Inorg. Chem. 52(12), 1822–1829 (2007).
    [Crossref]
  48. A. Milch, “On the formation and thermal stability of Bi2O3 films,” Thin Solid Films 17(2), 231–236 (1973).
    [Crossref]
  49. S. Condurache-Bota, N. Tigau, A. P. Rambu, G. G. Rusu, and G. I. Rusu, “Optical and electrical properties of thermally oxidized bismuth thin films,” Appl. Surf. Sci. 257(24), 10545–10550 (2011).
    [Crossref]
  50. S. Patil and V. Puri, “Electromagnetic properties of bismuth oxide thin film deposited on glass and alumina,” Arch. Appl. Sci. Res. 3, 14–24 (2011).
  51. J. W. Medernach and R. C. Martin, “The optical properties and stoichiometry of evaporated bismuth oxide thin films,” J. Vac. Sci. Technol. 12(1), 63–66 (1975).
    [Crossref]
  52. A. Steinbrück, O. Stranik, A. Csaki, and W. Fritzsche, “Sensoric potential of gold-silver core-shell nanoparticles,” Anal. Bioanal. Chem. 401(4), 1241–1249 (2011).
    [Crossref] [PubMed]
  53. P. Singh and B. Karmakar, “Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic ag:bismuthglassnanocomposites,” Plasmonics 6(3), 457–467 (2011).
    [Crossref]
  54. J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
    [Crossref]
  55. SGsold - SGTE solders database, Scientific Group Thermodata Europe.
  56. D. Risold, B. Hallstedt, L. J. Gauckler, H. L. Lukas, and S. G. Fries, “The bismuth-oxygen system,” J. Phase Equilibria 16(3), 223–234 (1995).
    [Crossref]
  57. L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, “The surface energy of metals,” Science 411(1-2), 186–202 (1998).
  58. Y. H. Xu and J. P. Wang, “Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation,” Adv. Mater. 20(5), 994–999 (2008).
    [Crossref]
  59. W. P. Davey, “Precision measurements of the lattice constants of twelve common metals,” Phys. Rev. 25(6), 753–761 (1925).
    [Crossref]
  60. R. Ferro and A. Saccone, Intermetallic Chemistry (Elsevier, 2008).
  61. J. W. Grebinski, K. L. Richter, J. Zhang, T. H. Kosel, and M. Kuno, “Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward ii-vi nanowires,” J. Phys. Chem. B 108(28), 9745–9751 (2004).
    [Crossref]
  62. M. Gutierrez and A. Henglein, “Nanometer-sized bi particles in aqueous solution: absorption spectrum and some chemical properties,” J. Phys. Chem. 100(18), 7656–7661 (1996).
    [Crossref]

2015 (2)

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

2013 (6)

M. Massaouti, A. A. Basharin, M. Kafesaki, M. F. Acosta, R. I. Merino, V. M. Orera, E. N. Economou, C. M. Soukoulis, and S. Tzortzakis, “Eutectic epsilon-near-zero metamaterial terahertz waveguides,” Opt. Lett. 38(7), 1140–1142 (2013).
[Crossref] [PubMed]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (5)

S. Condurache-Bota, N. Tigau, A. P. Rambu, G. G. Rusu, and G. I. Rusu, “Optical and electrical properties of thermally oxidized bismuth thin films,” Appl. Surf. Sci. 257(24), 10545–10550 (2011).
[Crossref]

S. Patil and V. Puri, “Electromagnetic properties of bismuth oxide thin film deposited on glass and alumina,” Arch. Appl. Sci. Res. 3, 14–24 (2011).

A. Steinbrück, O. Stranik, A. Csaki, and W. Fritzsche, “Sensoric potential of gold-silver core-shell nanoparticles,” Anal. Bioanal. Chem. 401(4), 1241–1249 (2011).
[Crossref] [PubMed]

P. Singh and B. Karmakar, “Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic ag:bismuthglassnanocomposites,” Plasmonics 6(3), 457–467 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

2010 (3)

T. Huang and X.-H. Xu, “Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy,” J. Mater. Chem. 20(44), 9867–9876 (2010).
[Crossref] [PubMed]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
[Crossref]

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[Crossref]

2009 (2)

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

2008 (5)

Y. K. Mishra, S. Mohapatra, R. Singhal, D. K. Avasthi, D. C. Agarwal, and S. B. Ogale, “Au–ZnO: A tunable localized surface plasmonic nanocomposite,” Appl. Phys. Lett. 92(4), 043107 (2008).
[Crossref]

S. Mohapatra, Y. K. Mishra, D. K. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, “Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance,” Appl. Phys. Lett. 92(10), 103105 (2008).
[Crossref]

G. Xu, Ch.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadiumdioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104(5), 053102 (2008).
[Crossref]

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

Y. H. Xu and J. P. Wang, “Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation,” Adv. Mater. 20(5), 994–999 (2008).
[Crossref]

2007 (2)

L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, “Thermal stability of Bi2O3,” Russ. J. Inorg. Chem. 52(12), 1822–1829 (2007).
[Crossref]

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

2006 (3)

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[Crossref] [PubMed]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
[Crossref]

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of δ-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

2004 (1)

J. W. Grebinski, K. L. Richter, J. Zhang, T. H. Kosel, and M. Kuno, “Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward ii-vi nanowires,” J. Phys. Chem. B 108(28), 9745–9751 (2004).
[Crossref]

2003 (3)

M. Yashima and D. Ishimura, “Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3,” Chem. Phys. Lett. 378(3-4), 395–399 (2003).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

R. Jin, Y. Ch. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

2002 (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

2001 (1)

D. A. Pawlak, Y. Kagamitani, A. Yoshikawa, K. Wozniak, H. Sato, H. Machida, and T. Fukuda, “Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method,” J. Cryst. Growth 226(2-3), 341–347 (2001).
[Crossref]

1999 (4)

J. Assal, B. Hallstedt, and L. J. Gauckler, “Experimental phase diagram study and thermodynamic optimization of the Ag-Bi-O system,” J. Am. Ceram. Soc. 82(3), 711–715 (1999).
[Crossref]

N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, “Bismuth based oxide electrolytes - structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[Crossref]

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster–matter: influences of interfaces,” Phys. Status Solidi, A Appl. Res. 175(1), 351–366 (1999).
[Crossref]

1998 (1)

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, “The surface energy of metals,” Science 411(1-2), 186–202 (1998).

1996 (1)

M. Gutierrez and A. Henglein, “Nanometer-sized bi particles in aqueous solution: absorption spectrum and some chemical properties,” J. Phys. Chem. 100(18), 7656–7661 (1996).
[Crossref]

1995 (1)

D. Risold, B. Hallstedt, L. J. Gauckler, H. L. Lukas, and S. G. Fries, “The bismuth-oxygen system,” J. Phase Equilibria 16(3), 223–234 (1995).
[Crossref]

1994 (1)

D. H. Yoon, I. Yonenaga, N. Ohnishi, and T. Fukuda, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]

1979 (1)

H. A. Harwig and A. G. Gerards, “The polymorphism of bismuth sesquioxide,” Thermochim. Acta 28(1), 121–131 (1979).
[Crossref]

1978 (2)

H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444, 151–166 (1978).
[Crossref]

J. W. Medernach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11-12), 494–497 (1978).
[Crossref]

1975 (2)

G. W. Arnold, “Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass,” J. Appl. Phys. 46(10), 4466 (1975).
[Crossref]

J. W. Medernach and R. C. Martin, “The optical properties and stoichiometry of evaporated bismuth oxide thin films,” J. Vac. Sci. Technol. 12(1), 63–66 (1975).
[Crossref]

1973 (1)

A. Milch, “On the formation and thermal stability of Bi2O3 films,” Thin Solid Films 17(2), 231–236 (1973).
[Crossref]

1925 (1)

W. P. Davey, “Precision measurements of the lattice constants of twelve common metals,” Phys. Rev. 25(6), 753–761 (1925).
[Crossref]

Acosta, M. F.

Agarwal, D. C.

Y. K. Mishra, S. Mohapatra, R. Singhal, D. K. Avasthi, D. C. Agarwal, and S. B. Ogale, “Au–ZnO: A tunable localized surface plasmonic nanocomposite,” Appl. Phys. Lett. 92(4), 043107 (2008).
[Crossref]

Aldinger, F.

N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, “Bismuth based oxide electrolytes - structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Angly, J.

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Arnold, G. W.

G. W. Arnold, “Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass,” J. Appl. Phys. 46(10), 4466 (1975).
[Crossref]

Assal, J.

J. Assal, B. Hallstedt, and L. J. Gauckler, “Experimental phase diagram study and thermodynamic optimization of the Ag-Bi-O system,” J. Am. Ceram. Soc. 82(3), 711–715 (1999).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Avasthi, D. K.

Y. K. Mishra, S. Mohapatra, R. Singhal, D. K. Avasthi, D. C. Agarwal, and S. B. Ogale, “Au–ZnO: A tunable localized surface plasmonic nanocomposite,” Appl. Phys. Lett. 92(4), 043107 (2008).
[Crossref]

S. Mohapatra, Y. K. Mishra, D. K. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, “Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance,” Appl. Phys. Lett. 92(10), 103105 (2008).
[Crossref]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

Barkovskii, N. V.

L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, “Thermal stability of Bi2O3,” Russ. J. Inorg. Chem. 52(12), 1822–1829 (2007).
[Crossref]

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Barois, P.

L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
[Crossref] [PubMed]

Basharin, A. A.

Bechelany, M.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[Crossref]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Bour, G.

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster–matter: influences of interfaces,” Phys. Status Solidi, A Appl. Res. 175(1), 351–366 (1999).
[Crossref]

Bürgi, T.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Campbell, D. J.

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

Cao, Y. Ch.

R. Jin, Y. Ch. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Chandran, S. P.

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Chen, D.-M.

G. Xu, Ch.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadiumdioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104(5), 053102 (2008).
[Crossref]

Christiansen, S.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[Crossref]

Cobley, C. M.

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

Condurache-Bota, S.

S. Condurache-Bota, N. Tigau, A. P. Rambu, G. G. Rusu, and G. I. Rusu, “Optical and electrical properties of thermally oxidized bismuth thin films,” Appl. Surf. Sci. 257(24), 10545–10550 (2011).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Correa-Duarte, M. A.

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Csaki, A.

A. Steinbrück, O. Stranik, A. Csaki, and W. Fritzsche, “Sensoric potential of gold-silver core-shell nanoparticles,” Anal. Bioanal. Chem. 401(4), 1241–1249 (2011).
[Crossref] [PubMed]

Cunningham, A.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Davey, W. P.

W. P. Davey, “Precision measurements of the lattice constants of twelve common metals,” Phys. Rev. 25(6), 753–761 (1925).
[Crossref]

Désert, A.

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Diduszko, R.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
[Crossref]

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
[Crossref]

Dintinger, J.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Dluzewski, P.

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

Economou, E. N.

El-Sayed, M. A.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[Crossref]

Fan, H. T.

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of δ-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

Fedotov, V. K.

L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, “Thermal stability of Bi2O3,” Russ. J. Inorg. Chem. 52(12), 1822–1829 (2007).
[Crossref]

Fries, S. G.

D. Risold, B. Hallstedt, L. J. Gauckler, H. L. Lukas, and S. G. Fries, “The bismuth-oxygen system,” J. Phase Equilibria 16(3), 223–234 (1995).
[Crossref]

Fritzsche, W.

A. Steinbrück, O. Stranik, A. Csaki, and W. Fritzsche, “Sensoric potential of gold-silver core-shell nanoparticles,” Anal. Bioanal. Chem. 401(4), 1241–1249 (2011).
[Crossref] [PubMed]

Fruhnert, M.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Fukuda, T.

D. A. Pawlak, Y. Kagamitani, A. Yoshikawa, K. Wozniak, H. Sato, H. Machida, and T. Fukuda, “Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method,” J. Cryst. Growth 226(2-3), 341–347 (2001).
[Crossref]

D. H. Yoon, I. Yonenaga, N. Ohnishi, and T. Fukuda, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]

Gajc, M.

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
[Crossref]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
[Crossref]

García de Abajo, F. J.

García de Abajo, J.

Gartz, M.

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster–matter: influences of interfaces,” Phys. Status Solidi, A Appl. Res. 175(1), 351–366 (1999).
[Crossref]

Gauckler, L. J.

J. Assal, B. Hallstedt, and L. J. Gauckler, “Experimental phase diagram study and thermodynamic optimization of the Ag-Bi-O system,” J. Am. Ceram. Soc. 82(3), 711–715 (1999).
[Crossref]

D. Risold, B. Hallstedt, L. J. Gauckler, H. L. Lukas, and S. G. Fries, “The bismuth-oxygen system,” J. Phase Equilibria 16(3), 223–234 (1995).
[Crossref]

Gerards, A. G.

H. A. Harwig and A. G. Gerards, “The polymorphism of bismuth sesquioxide,” Thermochim. Acta 28(1), 121–131 (1979).
[Crossref]

Ghatak, J.

S. Mohapatra, Y. K. Mishra, D. K. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, “Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance,” Appl. Phys. Lett. 92(10), 103105 (2008).
[Crossref]

Górecka, E.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Grebinski, J. W.

J. W. Grebinski, K. L. Richter, J. Zhang, T. H. Kosel, and M. Kuno, “Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward ii-vi nanowires,” J. Phys. Chem. B 108(28), 9745–9751 (2004).
[Crossref]

Grigorenko, A.

L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
[Crossref] [PubMed]

Gutierrez, M.

M. Gutierrez and A. Henglein, “Nanometer-sized bi particles in aqueous solution: absorption spectrum and some chemical properties,” J. Phys. Chem. 100(18), 7656–7661 (1996).
[Crossref]

Hallstedt, B.

J. Assal, B. Hallstedt, and L. J. Gauckler, “Experimental phase diagram study and thermodynamic optimization of the Ag-Bi-O system,” J. Am. Ceram. Soc. 82(3), 711–715 (1999).
[Crossref]

D. Risold, B. Hallstedt, L. J. Gauckler, H. L. Lukas, and S. G. Fries, “The bismuth-oxygen system,” J. Phase Equilibria 16(3), 223–234 (1995).
[Crossref]

Hankache, J.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[Crossref]

Hao, E.

R. Jin, Y. Ch. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Harwig, H. A.

H. A. Harwig and A. G. Gerards, “The polymorphism of bismuth sesquioxide,” Thermochim. Acta 28(1), 121–131 (1979).
[Crossref]

H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444, 151–166 (1978).
[Crossref]

Henglein, A.

M. Gutierrez and A. Henglein, “Nanometer-sized bi particles in aqueous solution: absorption spectrum and some chemical properties,” J. Phys. Chem. 100(18), 7656–7661 (1996).
[Crossref]

Hilger, A.

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster–matter: influences of interfaces,” Phys. Status Solidi, A Appl. Res. 175(1), 351–366 (1999).
[Crossref]

Huang, Ch.-M.

G. Xu, Ch.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadiumdioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104(5), 053102 (2008).
[Crossref]

Huang, T.

T. Huang and X.-H. Xu, “Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy,” J. Mater. Chem. 20(44), 9867–9876 (2010).
[Crossref] [PubMed]

Iazzolino, A.

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Ishimura, D.

M. Yashima and D. Ishimura, “Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3,” Chem. Phys. Lett. 378(3-4), 395–399 (2003).
[Crossref]

Jiménez de Castro, M.

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Jin, P.

G. Xu, Ch.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadiumdioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104(5), 053102 (2008).
[Crossref]

Jin, R.

R. Jin, Y. Ch. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Józwik-Biala, I.

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

Kabiraj, D.

S. Mohapatra, Y. K. Mishra, D. K. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, “Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance,” Appl. Phys. Lett. 92(10), 103105 (2008).
[Crossref]

Kaczkan, M.

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
[Crossref]

Kafesaki, M.

Kagamitani, Y.

D. A. Pawlak, Y. Kagamitani, A. Yoshikawa, K. Wozniak, H. Sato, H. Machida, and T. Fukuda, “Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method,” J. Cryst. Growth 226(2-3), 341–347 (2001).
[Crossref]

Karmakar, B.

P. Singh and B. Karmakar, “Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic ag:bismuthglassnanocomposites,” Plasmonics 6(3), 457–467 (2011).
[Crossref]

Katsarakis, N.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kenanakis, G.

Kildishev, A. V.

Kisielewski, J.

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
[Crossref]

Klinkova, L. A.

L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, “Thermal stability of Bi2O3,” Russ. J. Inorg. Chem. 52(12), 1822–1829 (2007).
[Crossref]

Klos, A.

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
[Crossref]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Kollár, J.

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, “The surface energy of metals,” Science 411(1-2), 186–202 (1998).

Kolodziejak, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
[Crossref]

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
[Crossref]

Kosel, T. H.

J. W. Grebinski, K. L. Richter, J. Zhang, T. H. Kosel, and M. Kuno, “Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward ii-vi nanowires,” J. Phys. Chem. B 108(28), 9745–9751 (2004).
[Crossref]

Kravets, V.

L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
[Crossref] [PubMed]

Kreibig, U.

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster–matter: influences of interfaces,” Phys. Status Solidi, A Appl. Res. 175(1), 351–366 (1999).
[Crossref]

Kuno, M.

J. W. Grebinski, K. L. Richter, J. Zhang, T. H. Kosel, and M. Kuno, “Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward ii-vi nanowires,” J. Phys. Chem. B 108(28), 9745–9751 (2004).
[Crossref]

Le Beulze, A.

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Lederer, F.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Leng, J.

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Lerose, D.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[Crossref]

Lewandowski, W.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Li, G. H.

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of δ-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

Link, S.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[Crossref]

Lu, X.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

Lukas, H. L.

D. Risold, B. Hallstedt, L. J. Gauckler, H. L. Lukas, and S. G. Fries, “The bismuth-oxygen system,” J. Phase Equilibria 16(3), 223–234 (1995).
[Crossref]

Lukasiewicz, T.

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

Machida, H.

D. A. Pawlak, Y. Kagamitani, A. Yoshikawa, K. Wozniak, H. Sato, H. Machida, and T. Fukuda, “Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method,” J. Cryst. Growth 226(2-3), 341–347 (2001).
[Crossref]

Maeder, X.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[Crossref]

Malassis, L.

L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
[Crossref] [PubMed]

Malinowski, M.

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
[Crossref]

Manjavacas, A.

Martin, R. C.

J. W. Medernach and R. C. Martin, “The optical properties and stoichiometry of evaporated bismuth oxide thin films,” J. Vac. Sci. Technol. 12(1), 63–66 (1975).
[Crossref]

Massaouti, M.

Massé, P.

L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
[Crossref] [PubMed]

Mavidis, Ch.

Medernach, J. W.

J. W. Medernach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11-12), 494–497 (1978).
[Crossref]

J. W. Medernach and R. C. Martin, “The optical properties and stoichiometry of evaporated bismuth oxide thin films,” J. Vac. Sci. Technol. 12(1), 63–66 (1975).
[Crossref]

Merino, R. I.

Métraux, G. S.

R. Jin, Y. Ch. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Michler, J.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[Crossref]

Mieczkowski, J.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Milch, A.

A. Milch, “On the formation and thermal stability of Bi2O3 films,” Thin Solid Films 17(2), 231–236 (1973).
[Crossref]

Mirkin, C. A.

R. Jin, Y. Ch. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

Mishra, Y. K.

Y. K. Mishra, S. Mohapatra, R. Singhal, D. K. Avasthi, D. C. Agarwal, and S. B. Ogale, “Au–ZnO: A tunable localized surface plasmonic nanocomposite,” Appl. Phys. Lett. 92(4), 043107 (2008).
[Crossref]

S. Mohapatra, Y. K. Mishra, D. K. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, “Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance,” Appl. Phys. Lett. 92(10), 103105 (2008).
[Crossref]

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

Mohamed, M. B.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[Crossref]

Mohapatra, S.

Y. K. Mishra, S. Mohapatra, R. Singhal, D. K. Avasthi, D. C. Agarwal, and S. B. Ogale, “Au–ZnO: A tunable localized surface plasmonic nanocomposite,” Appl. Phys. Lett. 92(4), 043107 (2008).
[Crossref]

S. Mohapatra, Y. K. Mishra, D. K. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, “Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance,” Appl. Phys. Lett. 92(10), 103105 (2008).
[Crossref]

Mornet, S.

L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
[Crossref] [PubMed]

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Mühlig, S.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Myroshnychenko, V.

Näfe, H.

N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, “Bismuth based oxide electrolytes - structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Naik, G. V.

Ni, X.

Nikolaenko, A. E.

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
[Crossref]

Nikolaichik, V. I.

L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, “Thermal stability of Bi2O3,” Russ. J. Inorg. Chem. 52(12), 1822–1829 (2007).
[Crossref]

Ogale, S. B.

Y. K. Mishra, S. Mohapatra, R. Singhal, D. K. Avasthi, D. C. Agarwal, and S. B. Ogale, “Au–ZnO: A tunable localized surface plasmonic nanocomposite,” Appl. Phys. Lett. 92(4), 043107 (2008).
[Crossref]

Ohnishi, N.

D. H. Yoon, I. Yonenaga, N. Ohnishi, and T. Fukuda, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]

Olson, T. Y.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[Crossref] [PubMed]

Orera, V. M.

Orlinski, K.

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
[Crossref]

Pan, S. S.

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of δ-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

Patil, S.

S. Patil and V. Puri, “Electromagnetic properties of bismuth oxide thin film deposited on glass and alumina,” Arch. Appl. Sci. Res. 3, 14–24 (2011).

Pawlak, D. A.

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
[Crossref]

V. Myroshnychenko, A. Stefanski, A. Manjavacas, M. Kafesaki, R. I. Merino, V. M. Orera, D. A. Pawlak, and F. J. García de Abajo, “Interacting plasmon and phonon polaritons in aligned nano- and microwires,” Opt. Express 20(10), 10879–10887 (2012).
[Crossref] [PubMed]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
[Crossref]

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
[Crossref]

D. A. Pawlak, Y. Kagamitani, A. Yoshikawa, K. Wozniak, H. Sato, H. Machida, and T. Fukuda, “Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method,” J. Cryst. Growth 226(2-3), 341–347 (2001).
[Crossref]

Philippe, L.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[Crossref]

Piersa, M.

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

Ponsinet, V.

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Puri, V.

S. Patil and V. Puri, “Electromagnetic properties of bismuth oxide thin film deposited on glass and alumina,” Arch. Appl. Sci. Res. 3, 14–24 (2011).

Rambu, A. P.

S. Condurache-Bota, N. Tigau, A. P. Rambu, G. G. Rusu, and G. I. Rusu, “Optical and electrical properties of thermally oxidized bismuth thin films,” Appl. Surf. Sci. 257(24), 10545–10550 (2011).
[Crossref]

Reyes-Coronado, A.

Richter, K. L.

J. W. Grebinski, K. L. Richter, J. Zhang, T. H. Kosel, and M. Kuno, “Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward ii-vi nanowires,” J. Phys. Chem. B 108(28), 9745–9751 (2004).
[Crossref]

Riesterer, J.

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[Crossref]

Risold, D.

D. Risold, B. Hallstedt, L. J. Gauckler, H. L. Lukas, and S. G. Fries, “The bismuth-oxygen system,” J. Phase Equilibria 16(3), 223–234 (1995).
[Crossref]

Rockstuhl, C.

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Rozniatowski, K.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
[Crossref]

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
[Crossref]

Ruban, A. V.

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, “The surface energy of metals,” Science 411(1-2), 186–202 (1998).

Rusu, G. G.

S. Condurache-Bota, N. Tigau, A. P. Rambu, G. G. Rusu, and G. I. Rusu, “Optical and electrical properties of thermally oxidized bismuth thin films,” Appl. Surf. Sci. 257(24), 10545–10550 (2011).
[Crossref]

Rusu, G. I.

S. Condurache-Bota, N. Tigau, A. P. Rambu, G. G. Rusu, and G. I. Rusu, “Optical and electrical properties of thermally oxidized bismuth thin films,” Appl. Surf. Sci. 257(24), 10545–10550 (2011).
[Crossref]

Rycenga, M.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

Sadecka, K.

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
[Crossref]

Salmon, J.-B.

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Sammes, N. M.

N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, “Bismuth based oxide electrolytes - structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Sands, T. D.

Sato, H.

D. A. Pawlak, Y. Kagamitani, A. Yoshikawa, K. Wozniak, H. Sato, H. Machida, and T. Fukuda, “Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method,” J. Cryst. Growth 226(2-3), 341–347 (2001).
[Crossref]

Scharf, T.

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Schatz, G. C.

R. Jin, Y. Ch. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Schroeder, J. L.

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

Schwartzberg, A. M.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[Crossref] [PubMed]

Serna, R.

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Singh, P.

P. Singh and B. Karmakar, “Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic ag:bismuthglassnanocomposites,” Plasmonics 6(3), 457–467 (2011).
[Crossref]

Singhal, R.

Y. K. Mishra, S. Mohapatra, R. Singhal, D. K. Avasthi, D. C. Agarwal, and S. B. Ogale, “Au–ZnO: A tunable localized surface plasmonic nanocomposite,” Appl. Phys. Lett. 92(4), 043107 (2008).
[Crossref]

Skrabalak, S. E.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

Skriver, H. L.

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, “The surface energy of metals,” Science 411(1-2), 186–202 (1998).

Smalc, J.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
[Crossref]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

Snyder, R. L.

J. W. Medernach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11-12), 494–497 (1978).
[Crossref]

Sobczak, K.

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

Soukoulis, C. M.

Stefanski, A.

Steinbrück, A.

A. Steinbrück, O. Stranik, A. Csaki, and W. Fritzsche, “Sensoric potential of gold-silver core-shell nanoparticles,” Anal. Bioanal. Chem. 401(4), 1241–1249 (2011).
[Crossref] [PubMed]

Stranik, O.

A. Steinbrück, O. Stranik, A. Csaki, and W. Fritzsche, “Sensoric potential of gold-silver core-shell nanoparticles,” Anal. Bioanal. Chem. 401(4), 1241–1249 (2011).
[Crossref] [PubMed]

Surma, H. B.

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
[Crossref]

Talley, C. E.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[Crossref] [PubMed]

Tazawa, M.

G. Xu, Ch.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadiumdioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104(5), 053102 (2008).
[Crossref]

Teng, X. M.

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of δ-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

Tigau, N.

S. Condurache-Bota, N. Tigau, A. P. Rambu, G. G. Rusu, and G. I. Rusu, “Optical and electrical properties of thermally oxidized bismuth thin films,” Appl. Surf. Sci. 257(24), 10545–10550 (2011).
[Crossref]

Tompsett, G. A.

N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, “Bismuth based oxide electrolytes - structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Toudert, J.

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

Tréguer-Delapierre, M.

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
[Crossref] [PubMed]

Turczynski, S.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
[Crossref]

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
[Crossref]

Tzortzakis, S.

Varma, S.

S. Mohapatra, Y. K. Mishra, D. K. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, “Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance,” Appl. Phys. Lett. 92(10), 103105 (2008).
[Crossref]

Vendik, I.

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
[Crossref]

Vitos, L.

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, “The surface energy of metals,” Science 411(1-2), 186–202 (1998).

Wang, J. P.

Y. H. Xu and J. P. Wang, “Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation,” Adv. Mater. 20(5), 994–999 (2008).
[Crossref]

Weisbecker, P.

L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
[Crossref] [PubMed]

Wiley, B.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

Wozniak, K.

D. A. Pawlak, Y. Kagamitani, A. Yoshikawa, K. Wozniak, H. Sato, H. Machida, and T. Fukuda, “Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method,” J. Cryst. Growth 226(2-3), 341–347 (2001).
[Crossref]

Xia, Y.

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

Xu, G.

G. Xu, Ch.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadiumdioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104(5), 053102 (2008).
[Crossref]

Xu, X.-H.

T. Huang and X.-H. Xu, “Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy,” J. Mater. Chem. 20(44), 9867–9876 (2010).
[Crossref] [PubMed]

Xu, Y. H.

Y. H. Xu and J. P. Wang, “Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation,” Adv. Mater. 20(5), 994–999 (2008).
[Crossref]

Yashima, M.

M. Yashima and D. Ishimura, “Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3,” Chem. Phys. Lett. 378(3-4), 395–399 (2003).
[Crossref]

Ye, C.

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of δ-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

Yonenaga, I.

D. H. Yoon, I. Yonenaga, N. Ohnishi, and T. Fukuda, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]

Yoon, D. H.

D. H. Yoon, I. Yonenaga, N. Ohnishi, and T. Fukuda, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]

Yoshikawa, A.

D. A. Pawlak, Y. Kagamitani, A. Yoshikawa, K. Wozniak, H. Sato, H. Machida, and T. Fukuda, “Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method,” J. Cryst. Growth 226(2-3), 341–347 (2001).
[Crossref]

Zdunek, K.

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
[Crossref]

Zhang, J.

J. W. Grebinski, K. L. Richter, J. Zhang, T. H. Kosel, and M. Kuno, “Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward ii-vi nanowires,” J. Phys. Chem. B 108(28), 9745–9751 (2004).
[Crossref]

Zhang, J. Z.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

ACS Nano (1)

J. Angly, A. Iazzolino, J.-B. Salmon, J. Leng, S. P. Chandran, V. Ponsinet, A. Désert, A. Le Beulze, S. Mornet, M. Tréguer-Delapierre, and M. A. Correa-Duarte, “Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles,” ACS Nano 7(8), 6465–6477 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

M. Gajc, H. B. Surma, A. Klos, K. Sadecka, K. Orlinski, A. E. Nikolaenko, K. Zdunek, and D. A. Pawlak, “NanoParticle Direct Doping: Novel method for manufacturing three-dimensional bulk plasmonic nanocomposites,” Adv. Funct. Mater. 23(27), 3443–3451 (2013).
[Crossref]

D. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, and I. Vendik, “How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry,” Adv. Funct. Mater. 20(7), 1116–1124 (2010).
[Crossref]

Adv. Mater. (3)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Y. H. Xu and J. P. Wang, “Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation,” Adv. Mater. 20(5), 994–999 (2008).
[Crossref]

Adv. Opt. Mater. (1)

K. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, I. Jóźwik-Biała, A. Klos, K. Sobczak, P. Dłużewski, J. Toudert, and D. A. Pawlak, “When eutectics meet plasmonics: Nanoplasmonic volumetric, self-organized silver-based eutectic,” Adv. Opt. Mater. 3(3), 381–389 (2015).
[Crossref]

Anal. Bioanal. Chem. (1)

A. Steinbrück, O. Stranik, A. Csaki, and W. Fritzsche, “Sensoric potential of gold-silver core-shell nanoparticles,” Anal. Bioanal. Chem. 401(4), 1241–1249 (2011).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia, “Chemical synthesis of novel plasmonic nanoparticles,” Annu. Rev. Phys. Chem. 60(1), 167–192 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Y. K. Mishra, S. Mohapatra, R. Singhal, D. K. Avasthi, D. C. Agarwal, and S. B. Ogale, “Au–ZnO: A tunable localized surface plasmonic nanocomposite,” Appl. Phys. Lett. 92(4), 043107 (2008).
[Crossref]

S. Mohapatra, Y. K. Mishra, D. K. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, “Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance,” Appl. Phys. Lett. 92(10), 103105 (2008).
[Crossref]

Appl. Surf. Sci. (1)

S. Condurache-Bota, N. Tigau, A. P. Rambu, G. G. Rusu, and G. I. Rusu, “Optical and electrical properties of thermally oxidized bismuth thin films,” Appl. Surf. Sci. 257(24), 10545–10550 (2011).
[Crossref]

Arch. Appl. Sci. Res. (1)

S. Patil and V. Puri, “Electromagnetic properties of bismuth oxide thin film deposited on glass and alumina,” Arch. Appl. Sci. Res. 3, 14–24 (2011).

Chem. Mater. (1)

D. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, and M. Malinowski, “Self-organized, rod-like, micron-scale microstructure of Tb3Sc2Al3O12-TbScO3:Pr eutectic,” Chem. Mater. 18(9), 2450–2457 (2006).
[Crossref]

Chem. Phys. Lett. (1)

M. Yashima and D. Ishimura, “Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3,” Chem. Phys. Lett. 378(3-4), 395–399 (2003).
[Crossref]

Cryst. Growth Des. (2)

D. A. Pawlak, K. Kolodziejak, K. Rozniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, M. Piersa, J. Kisielewski, and T. Lukasiewicz, “PrAlO3-PrAl11O18 eutectic – its microstructure and spectroscopic properties,” Cryst. Growth Des. 8(4), 1243–1249 (2008).
[Crossref]

M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, and L. Philippe, “Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010).
[Crossref]

J. Am. Ceram. Soc. (2)

J. W. Medernach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11-12), 494–497 (1978).
[Crossref]

J. Assal, B. Hallstedt, and L. J. Gauckler, “Experimental phase diagram study and thermodynamic optimization of the Ag-Bi-O system,” J. Am. Ceram. Soc. 82(3), 711–715 (1999).
[Crossref]

J. Appl. Phys. (2)

G. Xu, Ch.-M. Huang, M. Tazawa, P. Jin, and D.-M. Chen, “Nano-Ag on vanadiumdioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys. 104(5), 053102 (2008).
[Crossref]

G. W. Arnold, “Near-surface nucleation and crystallization of an ion-implanted lithia-alumina-silica glass,” J. Appl. Phys. 46(10), 4466 (1975).
[Crossref]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755 (2002).
[Crossref]

J. Cryst. Growth (2)

D. A. Pawlak, Y. Kagamitani, A. Yoshikawa, K. Wozniak, H. Sato, H. Machida, and T. Fukuda, “Growth of Tb-Sc-Al garnet single crystals by the micro-pulling down method,” J. Cryst. Growth 226(2-3), 341–347 (2001).
[Crossref]

D. H. Yoon, I. Yonenaga, N. Ohnishi, and T. Fukuda, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth 142(3-4), 339–343 (1994).
[Crossref]

J. Eur. Ceram. Soc. (1)

N. M. Sammes, G. A. Tompsett, H. Näfe, and F. Aldinger, “Bismuth based oxide electrolytes - structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

J. Mater. Chem. (1)

T. Huang and X.-H. Xu, “Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy,” J. Mater. Chem. 20(44), 9867–9876 (2010).
[Crossref] [PubMed]

J. Phase Equilibria (1)

D. Risold, B. Hallstedt, L. J. Gauckler, H. L. Lukas, and S. G. Fries, “The bismuth-oxygen system,” J. Phase Equilibria 16(3), 223–234 (1995).
[Crossref]

J. Phys. Chem. (1)

M. Gutierrez and A. Henglein, “Nanometer-sized bi particles in aqueous solution: absorption spectrum and some chemical properties,” J. Phys. Chem. 100(18), 7656–7661 (1996).
[Crossref]

J. Phys. Chem. B (4)

J. W. Grebinski, K. L. Richter, J. Zhang, T. H. Kosel, and M. Kuno, “Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward ii-vi nanowires,” J. Phys. Chem. B 108(28), 9745–9751 (2004).
[Crossref]

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B 110(40), 19935–19944 (2006).
[Crossref] [PubMed]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Phys. Chem. C (1)

J. Toudert, R. Serna, and M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. T. Fan, S. S. Pan, X. M. Teng, C. Ye, and G. H. Li, “Structure and thermal stability of δ-Bi2O3 thin films deposited by reactive sputtering,” J. Phys. D Appl. Phys. 39(9), 1939–1943 (2006).
[Crossref]

J. Vac. Sci. Technol. (1)

J. W. Medernach and R. C. Martin, “The optical properties and stoichiometry of evaporated bismuth oxide thin films,” J. Vac. Sci. Technol. 12(1), 63–66 (1975).
[Crossref]

Langmuir (1)

L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, V. Kravets, A. Grigorenko, and P. Barois, “Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core-shell plasmonic nanoparticles,” Langmuir 29(5), 1551–1561 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Self-assembled plasmonic metamaterials,” Nanophotonics 2(3), 211–240 (2013).
[Crossref]

Nat. Commun. (1)

W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, “Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nat. Commun. 6, 6590 (2015).
[Crossref] [PubMed]

Nature (2)

R. Jin, Y. Ch. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[Crossref] [PubMed]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483(7390), 421–427 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

W. P. Davey, “Precision measurements of the lattice constants of twelve common metals,” Phys. Rev. 25(6), 753–761 (1925).
[Crossref]

Phys. Status Solidi, A Appl. Res. (1)

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster–matter: influences of interfaces,” Phys. Status Solidi, A Appl. Res. 175(1), 351–366 (1999).
[Crossref]

Plasmonics (2)

P. Singh and B. Karmakar, “Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic ag:bismuthglassnanocomposites,” Plasmonics 6(3), 457–467 (2011).
[Crossref]

C. M. Cobley, S. E. Skrabalak, D. J. Campbell, and Y. Xia, “Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications,” Plasmonics 4(2), 171–179 (2009).
[Crossref]

Russ. J. Inorg. Chem. (1)

L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, “Thermal stability of Bi2O3,” Russ. J. Inorg. Chem. 52(12), 1822–1829 (2007).
[Crossref]

Science (2)

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, “The surface energy of metals,” Science 411(1-2), 186–202 (1998).

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Thermochim. Acta (1)

H. A. Harwig and A. G. Gerards, “The polymorphism of bismuth sesquioxide,” Thermochim. Acta 28(1), 121–131 (1979).
[Crossref]

Thin Solid Films (1)

A. Milch, “On the formation and thermal stability of Bi2O3 films,” Thin Solid Films 17(2), 231–236 (1973).
[Crossref]

Z. Anorg. Allg. Chem. (1)

H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444, 151–166 (1978).
[Crossref]

Other (8)

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Ltd, 2007).

SGsold - SGTE solders database, Scientific Group Thermodata Europe.

R. Ferro and A. Saccone, Intermetallic Chemistry (Elsevier, 2008).

E. C. Le Ru and P. G. Etchegoin, Principles of Surface- Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier Science, 2008).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

T. Fukuda, P. Rudolph, and S. Uda, Fiber Crystal Growth from the Melt (Springer, 2004).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Verlag GmbH & Co. KGaA, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Tunability of the LSPR in Bi2O3–Ag composite dependent on annealing shown via images of the samples observed in transmitted light and its extinction coefficients: a) air atmosphere, 600 °C for 10 h, 24 h, and 60 h; b) the hydrogen atmosphere, 30 min at 200°C, 300°C, and 400°C; c) vacuum for 60 min, 200°C, 400°C, and 600°C. The blue arrows in (b) and (c) highlight the “blue regions” containing Ag nanoparticles. The extinction coefficients measured at the selected areas of samples, are shown with the square with the same color.

Fig. 2
Fig. 2

The evolution of the optical diameter D of Ag nanoparticles embedded in a Bi2O3 matrix, in the Bi2O3-Ag eutectic nanocomposite, and the LSPR peak intensity. The change of D as a function of a) annealing time in the air atmosphere, and b) annealing temperature in hydrogen and vacuum. The change of the LSPR peak intensity as a function of c) annealing time in the air atmosphere, and d) annealing temperature in hydrogen and vacuum.

Fig. 3
Fig. 3

The tunability of the spectral position of the LSPR peak upon the change of the NPs optical diameter, D, occurring upon annealing.

Fig. 4
Fig. 4

a) Simulated quasi-static extinction cross-section spectra of a spherical Ag nanoparticle embedded in a transparent medium of dielectric function εm, representing Bi2O3. The wavelength dependence of εm has been calculated using the Cauchy law, with εm = (Am + 0.01λ−2)2, where Am is a wavelength-independent term. The spectra have been computed using different values of Am and thus of εm,infrared = Am2, which is the asymptotic limit of εm in the near infrared where 0.01λ−2→ 0. b) LSPR wavelength for different values of εm, infrared. The dielectric function of Ag was taken from the Palik database and corrected for classical finite size effects using A = 1.

Fig. 5
Fig. 5

a) Simulated quasi-static extinction cross-section spectra of a spherical Ag-Bi core-shell nanoparticle embedded in a transparent medium of dielectric function εm. The wavelength dependence of εm has been calculated using the Cauchy law, with: εm = (2.5 + 0.01λ−2)2. b) Resulting Ag-Bi core-shell LSPR wavelength as a function of Bi shell thickness. The core diameter was 5 nm and the shell thickness was varied between 0 and 2 nm. The dielectric function of Ag was taken from the Palik database (bulk Ag) and corrected for classical finite size effects using A = 1. The dielectric function of Bi was taken from [54].

Tables (1)

Tables Icon

Table 1 The annealing parameters and optical characteristics of the Bi2O3-Ag samples after the annealing treatments.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E In = 3 ε m ε( λ )+2 ε m E 0
α=4π a 3 ε( λ ) ε m ε( λ )+2 ε m E 0
| ε( λ )+2 ε m |=m i ˙ nimum
w 1 2 = v F D ;D= d A

Metrics