Abstract

We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental and theoretical investigations of an air-slot coupler between dielectric and plasmonic waveguides

Rami A. Wahsheh and Mustafa A. G. Abushagur
Opt. Express 24(8) 8237-8242 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  2. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
    [Crossref]
  3. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
    [Crossref] [PubMed]
  4. Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
    [Crossref]
  5. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
    [Crossref]
  6. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
    [Crossref] [PubMed]
  7. J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
    [Crossref]
  8. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
    [Crossref]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  10. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
    [Crossref] [PubMed]
  11. R. Su, D. Tang, W. Ding, L. Chen, and Z. Zhou, “Efficient transmission of crossing dielectric slot waveguides,” Opt. Express 19(5), 4756–4761 (2011).
    [Crossref] [PubMed]
  12. Q. Liu, J. S. Kee, and M. K. Park, “A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide,” Opt. Express 21(5), 5897–5909 (2013).
    [Crossref] [PubMed]
  13. L. Zhang, Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express 17(9), 7095–7101 (2009).
    [Crossref] [PubMed]
  14. C. Gui and J. Wang, “Simultaneous optical half-adder and half-subtracter using a single-slot waveguide,” IEEE Photonics J. 5(5), 6602010 (2013).
    [Crossref]
  15. M. Tsubokawa and D. Kong, “A near-field light probe with an optical slot-waveguide structure,” Opt. Express 23(3), 1981–1991 (2015).
    [Crossref] [PubMed]
  16. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005).
    [Crossref] [PubMed]
  17. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [Crossref] [PubMed]
  18. G. Veronis and S. Fan, “Bends and splitters in subwavelength metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [Crossref]
  19. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
    [Crossref] [PubMed]
  20. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006).
    [Crossref] [PubMed]
  21. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007).
    [Crossref] [PubMed]
  22. R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17(21), 19033–19040 (2009).
    [Crossref] [PubMed]
  23. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
    [Crossref]
  24. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31(22), 3288–3290 (2006).
    [Crossref] [PubMed]
  25. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010).
    [Crossref] [PubMed]
  26. H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3 Pt 2), 036608 (2003).
    [Crossref] [PubMed]
  27. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4), 265–273 (2000).
    [Crossref]
  28. P. Sanchis, J. Blasco, A. Martínez, and J. Marti, “Design of silicon-based slot waveguide configurations for optimum nonlinear performance,” J. Lightwave Technol. 25(5), 1298–1305 (2007).
    [Crossref]
  29. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17(11), 9282–9287 (2009).
    [Crossref] [PubMed]
  30. S. P. Savaidis and N. A. Stathopoulos, “Optical confinement in nonlinear low index nanostructures,” J. Mod. Opt. 54(18), 2699–2722 (2007).
    [Crossref]
  31. FullWAVE, http://optics.synopsys.com/rsoft/

2015 (1)

2013 (2)

C. Gui and J. Wang, “Simultaneous optical half-adder and half-subtracter using a single-slot waveguide,” IEEE Photonics J. 5(5), 6602010 (2013).
[Crossref]

Q. Liu, J. S. Kee, and M. K. Park, “A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide,” Opt. Express 21(5), 5897–5909 (2013).
[Crossref] [PubMed]

2011 (2)

R. Su, D. Tang, W. Ding, L. Chen, and Z. Zhou, “Efficient transmission of crossing dielectric slot waveguides,” Opt. Express 19(5), 4756–4761 (2011).
[Crossref] [PubMed]

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
[Crossref]

2010 (2)

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

R. Yang, R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett. 35(5), 649–651 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (3)

2005 (3)

2004 (2)

2003 (3)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3 Pt 2), 036608 (2003).
[Crossref] [PubMed]

2000 (1)

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4), 265–273 (2000).
[Crossref]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

1991 (1)

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
[Crossref]

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Abushagur, M. A.

Afshar, S.

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
[Crossref]

Almeida, V. R.

Anderson, P. A.

Arbel, D.

Astilean, S.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4), 265–273 (2000).
[Crossref]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Baehr-Jones, T.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Barrios, C. A.

Beausoleil, R. G.

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Blasco, J.

Blok, H.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3 Pt 2), 036608 (2003).
[Crossref] [PubMed]

Bradbery, G. W.

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
[Crossref]

Brongersma, M. L.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
[Crossref] [PubMed]

Cai, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Catrysse, P. B.

Chen, L.

Dalton, L.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Davies, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ding, W.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, S.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in subwavelength metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005).
[Crossref] [PubMed]

Ginzburg, P.

Gramotnev, D. K.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

Gui, C.

C. Gui and J. Wang, “Simultaneous optical half-adder and half-subtracter using a single-slot waveguide,” IEEE Photonics J. 5(5), 6602010 (2013).
[Crossref]

Hainberger, R.

Han, Z.

He, S.

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Hochberg, M.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Huang, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Jen, A.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Kee, J. S.

Kim, T. D.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Kong, D.

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Lalanne, P.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4), 265–273 (2000).
[Crossref]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Lenstra, D.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3 Pt 2), 036608 (2003).
[Crossref] [PubMed]

Lipson, M.

Liu, L.

Liu, Q.

Lu, Z.

Luo, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Marti, J.

Martínez, A.

Monro, T. M.

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
[Crossref]

Muellner, P.

Novotny, L.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Orenstein, M.

Painter, O.

Palamaru, M.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4), 265–273 (2000).
[Crossref]

Park, M. K.

Penkov, B.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

Pohl, D. W.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Preston, K.

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Robinson, J. T.

Ruan, Y.

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
[Crossref]

Sambles, J. R.

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
[Crossref]

Sanchis, P.

Savaidis, S. P.

S. P. Savaidis and N. A. Stathopoulos, “Optical confinement in nonlinear low index nanostructures,” J. Mod. Opt. 54(18), 2699–2722 (2007).
[Crossref]

Scherer, A.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Schmidt, B. S.

Schouten, H. F.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3 Pt 2), 036608 (2003).
[Crossref] [PubMed]

Selker, M. D.

Shin, W.

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Stathopoulos, N. A.

S. P. Savaidis and N. A. Stathopoulos, “Optical confinement in nonlinear low index nanostructures,” J. Mod. Opt. 54(18), 2699–2722 (2007).
[Crossref]

Su, R.

Sullivan, P.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Takayesu, J.

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

Tang, D.

Tsubokawa, M.

Veronis, G.

Visser, T. D.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3 Pt 2), 036608 (2003).
[Crossref] [PubMed]

Wahsheh, R. A.

Wang, J.

C. Gui and J. Wang, “Simultaneous optical half-adder and half-subtracter using a single-slot waveguide,” IEEE Photonics J. 5(5), 6602010 (2013).
[Crossref]

Wellenzohn, M.

Willner, A. E.

Xiao-Li, Y.

Xu, Q.

Yang, F.

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
[Crossref]

Yang, R.

Yue, Y.

Zhang, L.

Zhou, Z.

Zia, R.

Adv. Mater. (1)

W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25V,” Appl. Phys. Lett. 92(16), 163303 (2008).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
[Crossref]

G. Veronis and S. Fan, “Bends and splitters in subwavelength metal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[Crossref]

Contemp. Phys. (1)

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32(3), 173–183 (1991).
[Crossref]

IEEE Photonics J. (2)

C. Gui and J. Wang, “Simultaneous optical half-adder and half-subtracter using a single-slot waveguide,” IEEE Photonics J. 5(5), 6602010 (2013).
[Crossref]

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photonics J. 3(1), 130–139 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

S. P. Savaidis and N. A. Stathopoulos, “Optical confinement in nonlinear low index nanostructures,” J. Mod. Opt. 54(18), 2699–2722 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (2)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[Crossref]

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175(4), 265–273 (2000).
[Crossref]

Opt. Express (10)

P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17(11), 9282–9287 (2009).
[Crossref] [PubMed]

M. Tsubokawa and D. Kong, “A near-field light probe with an optical slot-waveguide structure,” Opt. Express 23(3), 1981–1991 (2015).
[Crossref] [PubMed]

P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007).
[Crossref] [PubMed]

R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17(21), 19033–19040 (2009).
[Crossref] [PubMed]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[Crossref] [PubMed]

R. Su, D. Tang, W. Ding, L. Chen, and Z. Zhou, “Efficient transmission of crossing dielectric slot waveguides,” Opt. Express 19(5), 4756–4761 (2011).
[Crossref] [PubMed]

Q. Liu, J. S. Kee, and M. K. Park, “A refractive index sensor design based on grating-assisted coupling between a strip waveguide and a slot waveguide,” Opt. Express 21(5), 5897–5909 (2013).
[Crossref] [PubMed]

L. Zhang, Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express 17(9), 7095–7101 (2009).
[Crossref] [PubMed]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3 Pt 2), 036608 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[Crossref] [PubMed]

Other (1)

FullWAVE, http://optics.synopsys.com/rsoft/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic model of joint between dielectric slot waveguide and MIM waveguide with same slot width. (b) Transmission efficiency as function of Wslab when Wslot = 20 nm, 50 nm, and 80 nm. Behavior of time-averaged Poynting vector near interface is shown in inset. (c) Transmission efficiency as function of Wslot when Wslab = 150 nm, 180 nm, and 200 nm. (d) Transmission efficiency and reflection coefficient as function of Wslot for Wslab = 150 nm. Transmission efficiency calculated for MIM with lossless silver is also plotted for reference.
Fig. 2
Fig. 2 Field distribution around joint between dielectric slot waveguide and MIM waveguide for Wslot = 50 nm and Wslab = 150 nm.
Fig. 3
Fig. 3 (a) Schematic model of waveguide connection with slots of different widths. (b) Transmission efficiency as function of Wsd when Wsp = 20 nm, 50 nm, and 80 nm. (c) Effective width as function of Wsd for Wslab = 150 nm. Insets show profiles of propagation mode in dielectric slot waveguides with slot widths of 10 nm, 50 nm, and 100 nm. (d) Transmission efficiency as function of Wsp when Wsd = 0 nm, 10 nm, and 50 nm.
Fig. 4
Fig. 4 Behavior of time-averaged Poynting vector (arrows), and distribution for (a) Wsd = 10 nm and (b) Wsd = 100 nm when Wsp = 50 nm.
Fig. 5
Fig. 5 (a) Schematic model of waveguide connection with position misalignment D between dielectric slot waveguide and MIM waveguide. (b) Transmission efficiency as function of D when Wsd = 50 nm, 10 nm, and 0 nm for Wsp = 50 nm. Field distributions for (c) Wsd = 10 nm and D = 20 nm, (d) Wsd = 50 nm and D = 40 nm, when Wsp = 50 nm, respectively.
Fig. 6
Fig. 6 (a) Schematic model of waveguide connection through air gap with width Wg and length Lg. (b) Transmission efficiency as function of Wg and Lg. (c) Field distribution around joint with air gap of Wg = 250 nm and Lg = 35 nm. (d) Behavior of time-averaged Poynting vector in local region delineated by white dotted lines in (c). (e) Behavior of time-averaged Poynting vector without air gap.
Fig. 7
Fig. 7 (a) Comparison of transmission efficiency as function of wavelengths obtained from different structures (Figs. 1(a) (Wslab = 150 nm, Wslot = 50 nm), 2(a) (Wslab = 150 nm, Wsd = 10 nm, Wsp = 50 nm), and Fig. 6(a) (Wslab = 150 nm, Wslot = 50 nm, Lg = 35 nm, Wg = 250 nm)). (b) Effective width and intension of funnel effect for various wavelengths. (c) Schematic model of waveguide connection used to estimate funnel effect. Plane wave launches from the left.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W eff = ( + | F(x) |dx ) 2 ( HW +HW | F(x) | 2 dx )

Metrics