Abstract

We theoretically study the transmission reduction of light passing through absorptive molecules embedded in a periodic metal slot array in a near infrared wavelength regime. From the analytically solved transmitted light, we present a simple relation given by the attenuation length of light at the resonance wavelength of the slot antennas with respect to the spectral width of the resonant transmission peak. This relation clearly explains that the control of the transmission reduction even with very low absorptive materials is possible. We investigate also the transmission reduction by absorptive molecules in a real metallic slot antenna array on a dielectric substrate and compare the results with finite difference time domain calculations. In numerical calculations, we demonstrate that the same amount of transmission reduction by a bulk absorptive material can be achieved only with one-hundredth thickness of the same material when it is embedded in an optimized Fano-resonant slot antenna array. Our relation presented in this study can contribute to label-free chemical and biological sensing as an efficient design and performance criterion for periodic slot antenna arrays.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitive detection of yeast using terahertz slot antennas

S. J. Park, B. H. Son, S. J. Choi, H. S. Kim, and Y. H. Ahn
Opt. Express 22(25) 30467-30472 (2014)

Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur
Opt. Express 14(14) 6400-6413 (2006)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Balanis, Antenna Theory : Analysis and Design (John Wiley, 2005).
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
    [Crossref]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref] [PubMed]
  5. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
    [Crossref] [PubMed]
  6. Y. Binfeng, H. Guohua, Z. Ruohu, and C. Yiping, “Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating,” Opt. Express 22, 28662–28670 (2014).
    [Crossref] [PubMed]
  7. G. D. Osowiecki, E. Barakat, A. Naqavi, and H. P. Herzig, “Vertically coupled plasmonic slot waveguide cavity for localized biosensing applications,” Opt. Express 22, 20871–20880 (2014).
    [Crossref] [PubMed]
  8. B. You, J.-Y. Lu, T.-A. Liu, and J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21, 21087–21096 (2013).
    [Crossref] [PubMed]
  9. H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
    [PubMed]
  10. D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
    [Crossref]
  11. T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7, 1653–1663 (2011).
    [Crossref] [PubMed]
  12. R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
    [Crossref]
  13. J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical wwitching,” Adv. Mater. 18, 1267–1270 (2006).
    [Crossref]
  14. M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
    [Crossref] [PubMed]
  15. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
    [Crossref] [PubMed]
  16. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [Crossref]
  17. S. Savoia, A. Ricciardi, A. Crescitelli, C. Granata, E. Esposito, V. Galdi, and A. Cusano, “Surface sensitivity of Rayleigh anomalies in metallic nanogratings,” Opt. Express 21, 23531–23542 (2013).
    [Crossref] [PubMed]
  18. A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
    [Crossref]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method (Artech House, 2005).
  20. J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
    [Crossref] [PubMed]
  21. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
    [Crossref] [PubMed]
  22. J. H. Kang, J.-H. Choe, D. S. Kim, and Q. H. Park, “Substrate effect on aperture resonances in a thin metal film,” Opt. Express 17, 15652–15658 (2009).
    [Crossref] [PubMed]
  23. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  24. S. V. Yuferev and N. Ida, Surface Impedance Boundary Conditions : A Comprehensive Approach (CRC Press/Taylor & Francis, 2010).
  25. F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
    [Crossref]
  26. H. Lochbihler and R. A. Depine, “Properties of TM resonances on metallic slit gratings,” Appl. Opt. 51, 1729–1741 (2012).
    [Crossref] [PubMed]
  27. K. Jun Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003).
    [Crossref]
  28. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  29. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .

2014 (2)

2013 (4)

B. You, J.-Y. Lu, T.-A. Liu, and J.-L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21, 21087–21096 (2013).
[Crossref] [PubMed]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[PubMed]

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
[Crossref]

S. Savoia, A. Ricciardi, A. Crescitelli, C. Granata, E. Esposito, V. Galdi, and A. Cusano, “Surface sensitivity of Rayleigh anomalies in metallic nanogratings,” Opt. Express 21, 23531–23542 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[Crossref]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

2010 (4)

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

2009 (1)

2007 (1)

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

2006 (3)

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical wwitching,” Adv. Mater. 18, 1267–1270 (2006).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

2005 (2)

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

2004 (1)

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

K. Jun Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003).
[Crossref]

1998 (1)

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Ahn, K. J.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Ameling, R.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Bahk, Y.-M.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[PubMed]

Balanis, C. A.

C. A. Balanis, Antenna Theory : Analysis and Design (John Wiley, 2005).

Barakat, E.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Binfeng, Y.

Braun, P. V.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Bravo-Abad, J.

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Choe, J.-H.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Crescitelli, A.

Cusano, A.

Dahlin, A. B.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Depine, R. A.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Dintinger, J.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical wwitching,” Adv. Mater. 18, 1267–1270 (2006).
[Crossref]

Djurišic, A. B.

Ebbesen, T. W.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical wwitching,” Adv. Mater. 18, 1267–1270 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Elazar, J. M.

Enoch, S.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Esposito, E.

Galdi, V.

Garcia-Parajo, M. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
[Crossref]

García-Vidal, F. J.

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

Giessen, H.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Gordon, R.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

Granata, C.

Guohua, H.

Hafner, C.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method (Artech House, 2005).

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Han, S.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[PubMed]

Harmsen, R. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Hentschel, M.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Herzig, H. P.

Ida, N.

S. V. Yuferev and N. Ida, Surface Impedance Boundary Conditions : A Comprehensive Approach (CRC Press/Taylor & Francis, 2010).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Jefimovs, K.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Jun Ahn, K.

K. Jun Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003).
[Crossref]

Kang, J. H.

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Kim, D. S.

Kim, D.-S.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H.-s.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H.-T.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Klein, S.

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical wwitching,” Adv. Mater. 18, 1267–1270 (2006).
[Crossref]

Knorr, A.

K. Jun Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003).
[Crossref]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Kuipers, L.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Kumar, L. K. S.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Langguth, L.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Liu, T.-A.

Lochbihler, H.

Lu, J.-Y.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Majewski, M. L.

Martín-Moreno, L.

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

Mary, A.

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

Mesch, M.

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Mivelle, M.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
[Crossref]

Moparthi, S. B.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
[Crossref]

Moreno, E.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

Naqavi, A.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[Crossref]

Osowiecki, G. D.

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Park, H.-R.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[PubMed]

Park, N.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Park, Q. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

J. H. Kang, J.-H. Choe, D. S. Kim, and Q. H. Park, “Substrate effect on aperture resonances in a thin metal film,” Opt. Express 17, 15652–15658 (2009).
[Crossref] [PubMed]

Peng, J.-L.

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

Prangsma, J. C.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Punj, D.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
[Crossref]

Rakic, A. D.

Ricciardi, A.

Rigneault, H.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
[Crossref]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

Ruohu, Z.

Sandtke, M.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Sannomiya, T.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Savoia, S.

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Scholder, O.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Segerink, F. B.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method (Artech House, 2005).

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[Crossref]

van Hulst, N. F.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
[Crossref]

van Nieuwstadt, J. A. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

van Zanten, T. S.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
[Crossref]

Wenger, J.

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

Yiping, C.

You, B.

Yuferev, S. V.

S. V. Yuferev and N. Ida, Surface Impedance Boundary Conditions : A Comprehensive Approach (CRC Press/Taylor & Francis, 2010).

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Adv. Mater. (1)

J. Dintinger, S. Klein, and T. W. Ebbesen, “Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical wwitching,” Adv. Mater. 18, 1267–1270 (2006).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, “Cavity-enhanced localized plasmon resonance sensing,” Appl. Phys. Lett. 97, 253116 (2010).
[Crossref]

Nano Lett. (3)

M. Seo, J. Kyoung, H. Park, S. Koo, H.-s. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q. H. Park, K. Ahn, and D.-s. Kim, “Active terahertz nanoantennas based on VO2 phase transition,“ Nano Lett. 10, 2064–2068 (2010).
[Crossref] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[Crossref] [PubMed]

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[Crossref]

Nat. Nanotech. (1)

D. Punj, M. Mivelle, S. B. Moparthi, T. S. van Zanten, H. Rigneault, N. F. van Hulst, M. F. Garcia-Parajo, and J. Wenger, “A plasmonic ’antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations,” Nat. Nanotech. 8, 512–516 (2013).
[Crossref]

Nat. Photon. (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. B (3)

K. Jun Ahn and A. Knorr, “Radiative lifetime of quantum confined excitons near interfaces,” Phys. Rev. B 68, 161307 (2003).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[Crossref]

A. Mary, S. G. Rodrigo, L. Martín-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[Crossref]

Phys. Rev. Lett. (3)

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93, 227401 (2004).
[Crossref] [PubMed]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005).
[Crossref] [PubMed]

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[Crossref] [PubMed]

Small (1)

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7, 1653–1663 (2011).
[Crossref] [PubMed]

Other (5)

C. A. Balanis, Antenna Theory : Analysis and Design (John Wiley, 2005).

A. Taflove and S. C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method (Artech House, 2005).

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

S. V. Yuferev and N. Ida, Surface Impedance Boundary Conditions : A Comprehensive Approach (CRC Press/Taylor & Francis, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The sample geometry considered in this study. A periodic array of rectangular apertures perforated in a thin metal film is attached on a dielectric substrate. Each aperture has a same dimension of l × w × h (length × width × height) and the array has periods Lx and Ly along the x- and the y-axis. The dielectric constants of the substrate, the metal, molecules in the metal cavity, and the incident region are denoted as ε3, εm, ε2, and ε1, in respective.

Fig. 2
Fig. 2

Transmission spectra of (a) the PEC and (b) the Au slot antenna (l = 350nm, w = 50nm, h = 100nm) array (Lx = 850nmLy = 600nm) for ε2 = 1 (red solid line), ε2 = 1 + 0.01i (blue dashed lines), and their ratio (T/T0) (black solid line), calculated for ε1 = ε3 = 1 by the Rayleigh expansion model (REM). For a comparison, the transmission of the same size of a single PEC slot antenna is displayed in Fig. 2(a).

Fig. 3
Fig. 3

Transmission spectra of (a) the PEC and (b) the Au slot antenna array with the same dimensions and periods of Fig. 2 for ε2 = 1 (red solid line), ε2 = 1 + 0.01i (blue dashed lines), and their ratio (T/T0) (black solid line), calculated by the REM with considering an dielectric substrate (ε3 = 2.25).

Fig. 4
Fig. 4

Transmission spectra of (a) the PEC and (b) the Au slit array with the same dimensions and periods of Fig. 2 for ε2 = 1 (red solid line), ε2 = 1 + 0.01i (blue dashed lines), and their ratio (T/T0) (black solid line), calculated for ε3 = 2.25 by FDTD.

Fig. 5
Fig. 5

Transmission spectra of the Au slot antenna array with the same dimensions and periods of Fig. 2 for ε2 = 1 (red solid line) and a dispersive ε2(w) (blue dashed lines), and their ratio (T/T0) (black solid line), calculated by (a) the REM and (b) the FDTD method.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E x I = i k 0 ε 1 k x , k y { i k 1 z e i k 1 z ( z h / 2 ) δ k x , 0 δ k y , 0 + ( i k 1 z g y i k x g z ) e i Θ e i k 1 z ( z h / 2 ) } ,
H y I = 1 Z 0 k x , k y { e i k 1 z ( z h / 2 ) δ k x , 0 δ k y , 0 + g y e i Θ e i k 1 z ( z h / 2 ) } for z > h / 2 ,
E x II = sin ( π y l ) ( A e i β z + B e i β z ) ,
H y II = β k 0 Z 0 sin ( π y l ) ( A e i β z B e i β z ) ,
H z II = π k 0 l Z 0 cos ( π y l ) ( A e i β z + B e i β z ) for h / 2 z h / 2 ,
E x III = 1 k 0 ε 3 k x , k y { ( k 3 z f y + k x f z ) e i Θ e i k 3 z ( z + h / 2 ) } ,
H y III = 1 Z 0 k x , k y f y e i Θ e i k 3 z ( z + h / 2 ) for z < h / 2 ,
T = 1 2 Re [ E x III H y III * ] = 32 I 0 π 2 | D | 2 | β k 0 | 2 Re [ W 3 ] ,
I 0 = 1 2 Z 0 l w L x L y ,
W j = l w 2 L x L y k x , k y k j z 2 + k x 2 k 0 k j z | J ( k x , k y ) | 2 ,
J ( k x , k y ) = sinc ( k x w 2 ) { sinc ( k y l + π 2 ) + sinc ( k y l π 2 ) } ,
D = i sin ( β h ) ( | β k 0 | 2 + W 1 W 3 ) + cos ( β h ) β k 0 ( W 1 + W 3 ) .
R = 1 2 Re [ E x I H y I * ] = 8 I 0 π Re [ 1 D { β k 0 cos ( β h ) i W 3 sin ( β h ) } k x , k y J ( k x , k y ) ] 32 I 0 π 2 | D | 2 | β k 0 cos ( β h ) i W 3 sin ( β h ) | 2 Re [ W 1 ] .
tan ( l 2 k 0 2 ε 2 β 2 ) = β 2 k 0 2 ε m k 0 2 ε 2 β 2 ,
T | β k 0 | 2 G r | D | 2 G r / | i ( 2 G i h k 0 β 2 ) + 2 G r | 2 .
T G r / | i ( 2 G i h k 0 ( ε r k 0 2 k ρ 2 ) ) + ( ε i h k 0 + 2 G r ) | 2 .
T / T 0 = 1 / | k 0 h 2 G r ε i + 1 | 2 .

Metrics