Abstract

We present a large area (1 cm2) nanoimprinted metamaterial comprising a fishnet structure and its Babinet complement, which shows giant cross polarization. When illuminated with s-polarized light, the reflected beam can be p-polarized up to 96%, depending on the azimuthal orientation of the sample. This experimental result is close to the result of numerical simulations, which predict 98.7% of cross-polarization. It is further shown, that 95-100% cross polarization is only achieved in the case when the fishnet is combined with its Babinet complement. Each structure alone (either an ordinary fishnet or a plane with metallic rectangles only) shows substantially less polarization conversion.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Giant circular polarization conversion in layer-by-layer nonchiral metamaterial

Peng Zhang, Ming Zhao, Lin Wu, Zeqin Lu, ZuoWei Xie, Yu Zheng, Jian Duan, and ZhenYu Yang
J. Opt. Soc. Am. A 30(9) 1714-1718 (2013)

Asymmetric fishnet metamaterials with strong optical activity

Yong-Liang Zhang, Wei Jin, Xian-Zi Dong, Zhen-Sheng Zhao, and Xuan-Ming Duan
Opt. Express 20(10) 10776-10787 (2012)

Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials

Thomas W.H. Oates, Babak Dastmalchi, Goran Isic, Sajjad Tollabimazraehno, Christian Helgert, Thomas Pertsch, Ernst-Bernhard Kley, Marc A. Verschuuren, Iris Bergmair, Kurt Hingerl, and Karsten Hinrichs
Opt. Express 20(10) 11166-11177 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
    [Crossref]
  2. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  3. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
    [Crossref]
  4. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
    [Crossref] [PubMed]
  5. X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
    [Crossref] [PubMed]
  6. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
    [Crossref] [PubMed]
  7. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  8. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  9. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays for twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
    [Crossref]
  10. J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
    [Crossref]
  11. Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
    [Crossref]
  12. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
    [Crossref] [PubMed]
  13. Y.-J. Chiang and T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
    [Crossref]
  14. S. Wang, F. Garet, E. Lheurette, M. Astic, J.-L. Coutaz, and D. Lippens, “Giant rotary power of a fishnet-like metamaterial,” APL Mater. 1(3), 032116 (2013).
    [Crossref]
  15. K. Song, Y. Liu, C. Luo, and X. G. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
    [Crossref]
  16. G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37(7), 1227–1232 (1990).
    [Crossref]
  17. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
    [Crossref] [PubMed]
  18. J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
    [Crossref]
  19. E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
    [Crossref] [PubMed]
  20. B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: Spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
    [Crossref] [PubMed]
  21. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: A generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
    [Crossref]
  22. I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
    [Crossref] [PubMed]
  23. T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hingerl, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3(4), 439–451 (2013).
    [Crossref]
  24. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
    [Crossref] [PubMed]
  25. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  26. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  27. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref] [PubMed]
  28. Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express 20(10), 10776–10787 (2012).
    [Crossref] [PubMed]
  29. F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
    [Crossref]
  30. H. H. Huang and Y. C. Hung, “Design of helix metamaterials for broadband and high-transmission polarization rotation,” IEEE Photonics J. 6, 4600207 (2014).
  31. N. Calander, I. Gryczynski, and Z. Gryczynski, “Interference of surface plasmon resonances causes enhanced depolarized light scattering from metal nanoparticles,” Chem. Phys. Lett. 434(4-6), 326–330 (2007).
    [Crossref] [PubMed]
  32. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
    [Crossref] [PubMed]
  33. C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16(3), 2080–2090 (2008).
    [Crossref] [PubMed]
  34. M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultralow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
    [Crossref]
  35. K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102(20), 201121 (2013).
    [Crossref]
  36. W. Zhu, I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, “Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration,” J. Opt. 15(12), 125101 (2013).
    [Crossref]
  37. K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
    [Crossref]
  38. M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: Coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
    [Crossref] [PubMed]
  39. M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
    [Crossref]
  40. J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
    [Crossref] [PubMed]
  41. W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
    [Crossref] [PubMed]
  42. B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(2), 023007 (2014).
    [Crossref]
  43. I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
    [Crossref] [PubMed]
  44. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
    [Crossref] [PubMed]
  45. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [Crossref] [PubMed]
  46. T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103(2), 023104 (2008).
    [Crossref]
  47. M. Iwanaga, “In-plane plasmonic modes of negative group velocity in perforated waveguides,” Opt. Lett. 36(13), 2504–2506 (2011).
    [Crossref] [PubMed]
  48. D. J. Cho, W. Wu, F. M. Wang, and Y. R. Shen, “Probing the plasmonic band structure of an optical metamaterial,” Phys. Rev. B 89(3), 035434 (2014).
    [Crossref]
  49. M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
    [Crossref]

2014 (6)

K. Song, Y. Liu, C. Luo, and X. G. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(2), 023007 (2014).
[Crossref]

H. H. Huang and Y. C. Hung, “Design of helix metamaterials for broadband and high-transmission polarization rotation,” IEEE Photonics J. 6, 4600207 (2014).

D. J. Cho, W. Wu, F. M. Wang, and Y. R. Shen, “Probing the plasmonic band structure of an optical metamaterial,” Phys. Rev. B 89(3), 035434 (2014).
[Crossref]

2013 (7)

T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hingerl, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3(4), 439–451 (2013).
[Crossref]

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: Coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102(20), 201121 (2013).
[Crossref]

W. Zhu, I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, “Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration,” J. Opt. 15(12), 125101 (2013).
[Crossref]

Y.-J. Chiang and T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

S. Wang, F. Garet, E. Lheurette, M. Astic, J.-L. Coutaz, and D. Lippens, “Giant rotary power of a fishnet-like metamaterial,” APL Mater. 1(3), 032116 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

2012 (7)

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

Y. L. Zhang, W. Jin, X. Z. Dong, Z. S. Zhao, and X. M. Duan, “Asymmetric fishnet metamaterials with strong optical activity,” Opt. Express 20(10), 10776–10787 (2012).
[Crossref] [PubMed]

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

2011 (8)

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref] [PubMed]

M. Iwanaga, “In-plane plasmonic modes of negative group velocity in perforated waveguides,” Opt. Lett. 36(13), 2504–2506 (2011).
[Crossref] [PubMed]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: Spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: A generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays for twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

2010 (4)

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
[Crossref]

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultralow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[Crossref]

2009 (4)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[Crossref] [PubMed]

2008 (3)

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103(2), 023104 (2008).
[Crossref]

C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16(3), 2080–2090 (2008).
[Crossref] [PubMed]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

2007 (3)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

N. Calander, I. Gryczynski, and Z. Gryczynski, “Interference of surface plasmon resonances causes enhanced depolarized light scattering from metal nanoparticles,” Chem. Phys. Lett. 434(4-6), 326–330 (2007).
[Crossref] [PubMed]

2005 (3)

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[Crossref] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

2004 (2)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

1990 (1)

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37(7), 1227–1232 (1990).
[Crossref]

1973 (1)

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
[Crossref]

Akosman, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Alici, K. B.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Arango, F. B.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

Astic, M.

S. Wang, F. Garet, E. Lheurette, M. Astic, J.-L. Coutaz, and D. Lippens, “Giant rotary power of a fishnet-like metamaterial,” APL Mater. 1(3), 032116 (2013).
[Crossref]

Averitt, R. D.

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[Crossref] [PubMed]

Aznabet, M.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultralow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bagheri, S.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: Coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Bergmair, I.

T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hingerl, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3(4), 439–451 (2013).
[Crossref]

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Bergmair, M.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Beruete, M.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultralow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bianco, G. V.

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

Bonache, J.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Boreman, G. D.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

Braun, J.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: Spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[Crossref] [PubMed]

Brener, I.

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Brueck, S. R. J.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Bruno, G.

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

Bryan-Brown, G. P.

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37(7), 1227–1232 (1990).
[Crossref]

Cai, W.

Calander, N.

N. Calander, I. Gryczynski, and Z. Gryczynski, “Interference of surface plasmon resonances causes enhanced depolarized light scattering from metal nanoparticles,” Chem. Phys. Lett. 434(4-6), 326–330 (2007).
[Crossref] [PubMed]

Cao, Y.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays for twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[Crossref] [PubMed]

Chen, Y.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Chettiar, U. K.

Chiang, Y.-J.

Y.-J. Chiang and T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Chin, J. Y.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Cho, D. J.

D. J. Cho, W. Wu, F. M. Wang, and Y. R. Shen, “Probing the plasmonic band structure of an optical metamaterial,” Phys. Rev. B 89(3), 035434 (2014).
[Crossref]

Choi, B.

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(2), 023007 (2014).
[Crossref]

Chou, S. Y.

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Christiansen, A. B.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Clausen, J. S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Colak, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Coutaz, J.-L.

S. Wang, F. Garet, E. Lheurette, M. Astic, J.-L. Coutaz, and D. Lippens, “Giant rotary power of a fishnet-like metamaterial,” APL Mater. 1(3), 032116 (2013).
[Crossref]

Cui, T. J.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Dastmalchi, B.

T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hingerl, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3(4), 439–451 (2013).
[Crossref]

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Davis, T. J.

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Ding, F.

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

Dong, X. Z.

Drachev, V. P.

Dressel, M.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: Spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[Crossref] [PubMed]

Duan, X. M.

Eftekhari, F.

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

El Mrabet, O.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultralow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[Crossref]

Essaaidi, M.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultralow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[Crossref]

Falcone, F.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultralow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Falkner, T.

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

Fan, K.

Fan, W.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Fan, Y.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays for twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: A generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Frauenglass, A.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Garet, F.

S. Wang, F. Garet, E. Lheurette, M. Astic, J.-L. Coutaz, and D. Lippens, “Giant rotary power of a fishnet-like metamaterial,” APL Mater. 1(3), 032116 (2013).
[Crossref]

Giangregorio, M. M.

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

Giessen, H.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: Coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: Spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16(3), 2080–2090 (2008).
[Crossref] [PubMed]

Gompf, B.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: Spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[Crossref] [PubMed]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Grajower, M.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Gryczynski, I.

N. Calander, I. Gryczynski, and Z. Gryczynski, “Interference of surface plasmon resonances causes enhanced depolarized light scattering from metal nanoparticles,” Chem. Phys. Lett. 434(4-6), 326–330 (2007).
[Crossref] [PubMed]

Gryczynski, Z.

N. Calander, I. Gryczynski, and Z. Gryczynski, “Interference of surface plasmon resonances causes enhanced depolarized light scattering from metal nanoparticles,” Chem. Phys. Lett. 434(4-6), 326–330 (2007).
[Crossref] [PubMed]

Hacking, C. A.

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
[Crossref]

Han, J.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Hannam, K.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102(20), 201121 (2013).
[Crossref]

Hao, J.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

He, Q.

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Helgert, C.

T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hingerl, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3(4), 439–451 (2013).
[Crossref]

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: Coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

Hesser, G.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hilber, W.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Hingerl, K.

T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hingerl, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3(4), 439–451 (2013).
[Crossref]

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Hinrichs, K.

Højlund-Nielsen, E.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Hu, J.

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

Huang, H. H.

H. H. Huang and Y. C. Hung, “Design of helix metamaterials for broadband and high-transmission polarization rotation,” IEEE Photonics J. 6, 4600207 (2014).

Huang, Y.

W. Zhu, I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, “Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration,” J. Opt. 15(12), 125101 (2013).
[Crossref]

Hübner, U.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: Spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[Crossref] [PubMed]

Huebner, U.

T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hingerl, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3(4), 439–451 (2013).
[Crossref]

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

Hung, Y. C.

H. H. Huang and Y. C. Hung, “Design of helix metamaterials for broadband and high-transmission polarization rotation,” IEEE Photonics J. 6, 4600207 (2014).

Hutley, M. C.

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37(7), 1227–1232 (1990).
[Crossref]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Iwanaga, M.

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(2), 023007 (2014).
[Crossref]

M. Iwanaga, “In-plane plasmonic modes of negative group velocity in perforated waveguides,” Opt. Lett. 36(13), 2504–2506 (2011).
[Crossref] [PubMed]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
[Crossref]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jin, W.

Kafesaki, M.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Kildishev, A. V.

Kivshar, Y. S.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102(20), 201121 (2013).
[Crossref]

Kley, E. B.

T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hingerl, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3(4), 439–451 (2013).
[Crossref]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Kley, E.-B.

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

Koenderink, A. F.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Kristensen, A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Lail, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

Laso, M. A. G.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16(3), 2080–2090 (2008).
[Crossref] [PubMed]

Levy, U.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Lheurette, E.

S. Wang, F. Garet, E. Lheurette, M. Astic, J.-L. Coutaz, and D. Lippens, “Giant rotary power of a fishnet-like metamaterial,” APL Mater. 1(3), 032116 (2013).
[Crossref]

Li, F.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Li, H.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays for twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Li, J. Q.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103(2), 023104 (2008).
[Crossref]

Li, T.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103(2), 023104 (2008).
[Crossref]

Li, W. D.

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

Li, Z.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Lippens, D.

S. Wang, F. Garet, E. Lheurette, M. Astic, J.-L. Coutaz, and D. Lippens, “Giant rotary power of a fishnet-like metamaterial,” APL Mater. 1(3), 032116 (2013).
[Crossref]

Liu, H.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103(2), 023104 (2008).
[Crossref]

Liu, X.-X.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Liu, Y.

K. Song, Y. Liu, C. Luo, and X. G. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Losurdo, M.

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

Lu, M.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Luo, C.

K. Song, Y. Liu, C. Luo, and X. G. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Malloy, K. J.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Martín, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Meyrath, T. P.

Minhas, B. K.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Miyazaki, H. T.

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(2), 023007 (2014).
[Crossref]

Mortensen, N. A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Muehlberger, M.

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Munk, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

Mutlu, M.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Navarro-Cía, M.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultralow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[Crossref]

O’Hara, J. F.

Oates, T. W. H.

Ozbay, E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

Penciu, R.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Peralta, X. G.

Pertsch, T.

T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hingerl, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3(4), 439–451 (2013).
[Crossref]

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Pilon, D. V.

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: A generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Powell, D. A.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102(20), 201121 (2013).
[Crossref]

Premaratne, M.

W. Zhu, I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, “Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration,” J. Opt. 15(12), 125101 (2013).
[Crossref]

Pshenay-Severin, E.

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Reissmann, L.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Robinson, L. A.

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Rockstuhl, T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, “Resonances in complementary metamaterials and nanoapertures,” Opt. Express 16(3), 2080–2090 (2008).
[Crossref] [PubMed]

Rukhlenko, I. D.

W. Zhu, I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, “Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration,” J. Opt. 15(12), 125101 (2013).
[Crossref]

Saeed, A.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Sakoda, K.

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(2), 023007 (2014).
[Crossref]

Sambles, J. R.

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37(7), 1227–1232 (1990).
[Crossref]

Sarychev, A. K.

Schoeftner, R.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Serebryannikov, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Sersic, I.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

Shadrivov, I. V.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102(20), 201121 (2013).
[Crossref]

Shalaev, V. M.

Shen, N. H.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Shen, Y. R.

D. J. Cho, W. Wu, F. M. Wang, and Y. R. Shen, “Probing the plasmonic band structure of an optical metamaterial,” Phys. Rev. B 89(3), 035434 (2014).
[Crossref]

Smirnova, E. I.

Song, K.

K. Song, Y. Liu, C. Luo, and X. G. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Sorolla, M.

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultralow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Soukoulis, C. M.

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Strikwerda, A. C.

Sugimoto, Y.

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(2), 023007 (2014).
[Crossref]

Sun, W.

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Taha, H.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Tao, H.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

X. G. Peralta, E. I. Smirnova, A. K. Azad, H.-T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express 17(2), 773–783 (2009).
[Crossref] [PubMed]

Tharp, J. S.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tsai, D. P.

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

van de Haar, M. A.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

Verschuuren, M. A.

T. W. H. Oates, B. Dastmalchi, C. Helgert, L. Reissmann, U. Huebner, E. B. Kley, M. A. Verschuuren, I. Bergmair, T. Pertsch, K. Hingerl, and K. Hinrichs, “Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount,” Opt. Mater. Express 3(4), 439–451 (2013).
[Crossref]

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, F. M.

D. J. Cho, W. Wu, F. M. Wang, and Y. R. Shen, “Probing the plasmonic band structure of an optical metamaterial,” Phys. Rev. B 89(3), 035434 (2014).
[Crossref]

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103(2), 023104 (2008).
[Crossref]

Wang, S.

S. Wang, F. Garet, E. Lheurette, M. Astic, J.-L. Coutaz, and D. Lippens, “Giant rotary power of a fishnet-like metamaterial,” APL Mater. 1(3), 032116 (2013).
[Crossref]

Wang, S. M.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103(2), 023104 (2008).
[Crossref]

Wang, Y.

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

Wang, Z.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wei, Z.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays for twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Weiss, T.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: Coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: Spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[Crossref] [PubMed]

Wen, G.

W. Zhu, I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, “Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration,” J. Opt. 15(12), 125101 (2013).
[Crossref]

Wu, C.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Wu, W.

D. J. Cho, W. Wu, F. M. Wang, and Y. R. Shen, “Probing the plasmonic band structure of an optical metamaterial,” Phys. Rev. B 89(3), 035434 (2014).
[Crossref]

Yazdi, S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Ye, Y.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Yen, T.-J.

Y.-J. Chiang and T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Young, L.

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
[Crossref]

Yu, X.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays for twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Yuan, H. K.

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zentgraf, T.

Zhang, S.

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

Zhang, X.

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103(2), 023104 (2008).
[Crossref]

Zhang, Y. L.

Zhao, X. G.

K. Song, Y. Liu, C. Luo, and X. G. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Zhao, Z. S.

Zheludev, N. I.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: A generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

Zhou, L.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett. 36(6), 927–929 (2011).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhu, S. N.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103(2), 023104 (2008).
[Crossref]

Zhu, W.

W. Zhu, I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, “Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration,” J. Opt. 15(12), 125101 (2013).
[Crossref]

APL Mater. (1)

S. Wang, F. Garet, E. Lheurette, M. Astic, J.-L. Coutaz, and D. Lippens, “Giant rotary power of a fishnet-like metamaterial,” APL Mater. 1(3), 032116 (2013).
[Crossref]

Appl. Phys. Lett. (9)

Y.-J. Chiang and T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays for twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98(16), 161907 (2011).
[Crossref]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, “Stacked complementary metasurfaces for ultralow microwave metamaterials,” Appl. Phys. Lett. 96(16), 164103 (2010).
[Crossref]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102(20), 201121 (2013).
[Crossref]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96(8), 083106 (2010).
[Crossref]

Chem. Phys. Lett. (1)

N. Calander, I. Gryczynski, and Z. Gryczynski, “Interference of surface plasmon resonances causes enhanced depolarized light scattering from metal nanoparticles,” Chem. Phys. Lett. 434(4-6), 326–330 (2007).
[Crossref] [PubMed]

IEEE Photonics J. (1)

H. H. Huang and Y. C. Hung, “Design of helix metamaterials for broadband and high-transmission polarization rotation,” IEEE Photonics J. 6, 4600207 (2014).

IEEE Trans. Antenn. Propag. (2)

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
[Crossref]

J. Appl. Phys. (1)

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103(2), 023104 (2008).
[Crossref]

J. Micro. Nanolithogr. MEMS MOEMS (1)

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro. Nanolithogr. MEMS MOEMS 13(2), 023007 (2014).
[Crossref]

J. Mod. Opt. (1)

G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37(7), 1227–1232 (1990).
[Crossref]

J. Opt. (2)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: A generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

W. Zhu, I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, “Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration,” J. Opt. 15(12), 125101 (2013).
[Crossref]

J. Phys. Chem. C (1)

M. Losurdo, I. Bergmair, M. M. Giangregorio, B. Dastmalchi, G. V. Bianco, C. Helgert, E. Pshenay-Severin, T. Falkner, T. Pertsch, E.-B. Kley, U. Huebner, M. A. Verschuuren, M. Muehlberger, K. Hingerl, and G. Bruno, “Enhancing chemical and optical stability of silver nanostructures by low-temperature hydrogen atoms processing,” J. Phys. Chem. C 116(43), 23004–23012 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. Song, Y. Liu, C. Luo, and X. G. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Nano Lett. (2)

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: Coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

Nanotechnology (2)

W. Zhang, F. Ding, W. D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology 23(22), 225301 (2012).
[Crossref] [PubMed]

I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hübner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B (3)

D. J. Cho, W. Wu, F. M. Wang, and Y. R. Shen, “Probing the plasmonic band structure of an optical metamaterial,” Phys. Rev. B 89(3), 035434 (2014).
[Crossref]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Broadband chiral metamaterials with large optical activity,” Phys. Rev. B 89(12), 125105 (2014).
[Crossref]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B 86(7), 075428 (2012).
[Crossref]

Phys. Rev. Lett. (10)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

E. Plum, X.-X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: Spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[Crossref] [PubMed]

Science (2)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) A schematic illustration shows one unit cell which is comprised of two main parts, the paired layers on top of a plateau of photoresist (as in the dashed frame) and the double layer fishnet underneath. The double layer fishnet and the paired layers on top of the plateau are Babinet complements of one and another. (b) Same as (a) but for the single layer fishnet /single-layer-on-plateau structure. (c,d) SEM images of the double-layer sample (c) with and (d) without the plateaus carrying the paired-layers.

Fig. 2
Fig. 2

Plain double layer fishnet (without the paired layers): Experimentally measured (a) cross- and (b) co-polarized reflectivities |rps|2 and |rss|2, together with (c) the relative amount of cross-polarized light C. The incident angle is 45°. (d)-(f) show the respective numerical simulations.

Fig. 3
Fig. 3

Fishnet combined with its Babinet-complement, the paired layers: Experimentally measured (a) cross- and (b) co-polarized reflectivities |rps|2 and |rss|2, together with (c) the relative amount of cross-polarized light C. The incident angle is 45°. (d)-(f) show the respective numerical simulations.

Fig. 4
Fig. 4

A plane with paired layers only (positioned on photoresist pillars), without the fishnet: Numerically calculated (a) cross- and (b) co-polarized reflectivities |rps|2 and |rss|2, together with (c) the relative amount of cross-polarized light C.

Fig. 5
Fig. 5

Comparison of the relative amount of cross-polarized light C in case of (a) the combined structure, and (b) the sum of the “fishnet only” and the “paired-layers only”. The results are from simulations.

Fig. 6
Fig. 6

Single layer fishnet structure combined with a Ag monolayer on top of the plateaus of photoresist: Experimentally measured (a) cross- and (b) co-polarized reflectivities |rps|2 and |rss|2, together with (c) the relative amount of cross-polarized light C. The incident angle is 45°. (d) -(f) show the respective numerical simulations.

Fig. 7
Fig. 7

Left (a-c): The incident light is p-polarized instead of s-polarized. Numerically calculated (a) cross- and (b) co-polarized reflectivities |rsp|2 and |rpp|2, together with (c) the relative amount of cross-polarized light C. Right (d-f): The incident light is s-polarized, but in contrast to Fig. 3(d)-3(f), the substrate and the photoresist are both set to “air” in the simulation. Numerically calculated (d) cross- and (e) co-polarized reflectivities |rps|2 and |rss|2, together with (c) the relative amount of cross-polarized light C.

Fig. 8
Fig. 8

Left column (a-c): “Inverted” structure, where the paired layers face the silicon substrate and the double layer fishnet faces the air. Numerically calculated (a) cross- and (b) co-polarized reflectivities |rps|2 and |rss|2, together with (c) the relative amount of cross-polarized light C. Right column (d-f): Quadratic fishnet with Babinet complement: Numerically calculated (d) cross- and (e) co-polarized reflectivities |rps|2 and |rss|2, together with (f) the relative amount of cross-polarized light C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I rs = | r ss | 2 I is I rp = | r ps | 2 I is
C= | r ps | 2 | r ss | 2 + | r ps | 2 .

Metrics