Abstract

We demonstrate an ultra-selective flexible reconfigurable add and drop multiplexer (ROADM) structure enablingseparation and aggregation operations for multi-band orthogonal frequency division multiplexing(MB-OFDM) signal with ~2-GHz spectral granularity and 300-MHz guard band. The ROADM employs rectangular optical filters based on stimulated Brillouin effect (SBS) in fiber, which have steepedges, ~1-dB passband ripple and tunable bandwidth from 100 MHz to 3 GHz realized by two different kinds of electrical feedback pump control approaches. The ROADM performance is measured with MB-OFDM signals inquadrature-phase-shift-keying (QPSK) and 16-quadrature-amplitude-modulation (16-QAM) formats. For QPSK format signal, the SBS-ROADM induced penalty is ~0.7 dB while the performance for 16-QAM format is also acceptable.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber

Wei Wei, Lilin Yi, Yves Jaouën, and Weisheng Hu
Opt. Express 22(19) 23249-23260 (2014)

Dual-polarization multi-band optical OFDM transmission and transceiver limitations for up to 500 Gb/s uncompensated long-haul links

E. Giacoumidis, M. A. Jarajreh, S. Sygletos, S. T. Le, F. Farjady, A. Tsokanos, A. Hamié, E. Pincemin, Y. Jaouën, A. D. Ellis, and N. J. Doran
Opt. Express 22(9) 10975-10986 (2014)

Sharp tunable and additional noise-free optical filter based on Brillouin losses

Cheng Feng, Stefan Preussler, and Thomas Schneider
Photon. Res. 6(2) 132-137 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Lord, P. Wright, and A. Mitra, “Core networks in the flexgrid era,” J. Lightwave Technol. 33(5), 1126–1135 (2015).
    [Crossref]
  2. N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag. 50(5), 66–72 (2012).
    [Crossref]
  3. O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
    [Crossref]
  4. D. Rafique, T. Rahman, A. Napoli, S. Calabro, and B. Spinnler, “Technology options for 400 Gb/s PM-16QAM flex-grid network upgrades,” IEEE Photon. Technol. Lett. 26(8), 773–776 (2014).
    [Crossref]
  5. M.-F. Huang, A. Tanaka, E. Ip, Y.-K. Huang, D. Qian, Y. Zhang, S. Zhang, P. Ji, I. Djordjevic, T. Wang, Y. Aono, S. Murakami, T. Tajima, T. Xia, and G. Wellbrock, “Terabit/s Nyquist superchannels in high capacity fiber field trials using DP-16QAM and DP-8QAM modulation formats,” J. Lightwave Technol. 32(4), 776–782 (2014).
    [Crossref]
  6. E. Pincemin, M. Song, J. Karaki, O. Zia-Chahabi, T. Guillossou, D. Grot, G. Thouenon, C. Betoule, R. Clavier, A. Poudoulec, M. Van der Keur, Y. Jaouën, R. Le Bidan, T. Le Gall, P. Gravey, M. Morvan, B. Dumas-Feris, M. Moulinard, and G. Froc, “Multi-band OFDM transmission at 100 Gbps with sub-band optical switching,” J. Lightwave Technol. 32(12), 2202–2219 (2014).
    [Crossref]
  7. S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuM3.
    [Crossref]
  8. R. Rudnick, A. Tolmachev, D. Sinefeld, O. Golani, S. Ben-Ezra, M. Nazarathy, and D. Marom, “Sub-banded/singlesub-carrier drop-demux and flexible spectral shaping with a fine resolution photonic processor,” in Proc. ECOC2014 (Cannes, France), paper PD.4.1.
  9. X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, and J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
    [Crossref] [PubMed]
  10. B. Little, S. Chu, W. Chen, J. Hryniewicz, D. Gill, O. King, F. Johnson, R. Davidson, K. Donovan, W. Chen, and S. Grubb, “Tunable bandwidth microring resonator filters,”in Proc. ECOC2008(Brussels, Belgium),paper Th.2.C.2.
    [Crossref]
  11. Y. Qin, J. Sun, M. Du, and J. Liao, “Variable single-passband narrowband optical filter based on forward stimulated interpolarization scattering in photonic crystal fiber,” Opt. Lett. 37(17), 3720–3722 (2012).
    [Crossref] [PubMed]
  12. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
    [Crossref] [PubMed]
  13. Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
    [Crossref]
  14. L. Yi, W. Wei, Y. Jaouen, and W. Hu, “Ideal rectangular microwave photonic filter with high selectivity based on stimulated Brillouin scattering,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu3F.5.
    [Crossref]
  15. W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber,” Opt. Express 22(19), 23249–23260 (2014).
    [Crossref] [PubMed]
  16. W. Wei, L. Yi, Y. Jaouën, M. Morvan, and W. Hu, “Brillouin rectangular optical filter with improved selectivity and noise performance,” Photon. Technol. Lett. (posted 12May 2015, in press).
    [Crossref]
  17. W. Wei, L. Yi, Y. Jaouën, M. Morvan, and W. Hu, “Ultra-selective flexible add-drop multiplexer using rectangular stimulated Brillouin scattering filters,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu3D.1.
    [Crossref]
  18. V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, and G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34(7), 1018–1020 (2009).
    [Crossref] [PubMed]
  19. N. A. Olsson and J. P. Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth,” J. Lightwave Technol. 5(1), 147–153 (1987).
    [Crossref]
  20. E. Awwad, Y. Jaouën, and G. R. Othman, “Polarization-time coding for PDL mitigation in long-haul PolMux OFDM systems,” Opt. Express 21(19), 22773–22790 (2013).
    [Crossref] [PubMed]
  21. P. Winzer, A. Gnauck, A. Konczykowska, F. Jorge, and J. Dupuy, “Penalties from in-band crosstalk foradvanced optical modulation formats,” in 37th European Conference and Exposition on OpticalCommunications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.B.7.

2015 (1)

2014 (5)

2013 (2)

2012 (3)

N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag. 50(5), 66–72 (2012).
[Crossref]

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

Y. Qin, J. Sun, M. Du, and J. Liao, “Variable single-passband narrowband optical filter based on forward stimulated interpolarization scattering in photonic crystal fiber,” Opt. Lett. 37(17), 3720–3722 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (1)

1987 (1)

N. A. Olsson and J. P. Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth,” J. Lightwave Technol. 5(1), 147–153 (1987).
[Crossref]

Agrawal, G. P.

Aono, Y.

Awwad, E.

Azaña, J.

Ben-Ezra, Y.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Betoule, C.

Bottari, G.

N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag. 50(5), 66–72 (2012).
[Crossref]

Calabro, S.

D. Rafique, T. Rahman, A. Napoli, S. Calabro, and B. Spinnler, “Technology options for 400 Gb/s PM-16QAM flex-grid network upgrades,” IEEE Photon. Technol. Lett. 26(8), 773–776 (2014).
[Crossref]

Castoldi, P.

N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag. 50(5), 66–72 (2012).
[Crossref]

Clavier, R.

Cugini, F.

N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag. 50(5), 66–72 (2012).
[Crossref]

Djordjevic, I.

Du, M.

Dumas-Feris, B.

Froc, G.

Gabet, R.

Gerstel, O.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

Gravey, P.

Grot, D.

Guillossou, T.

Hu, W.

Huang, M.-F.

Huang, Y.-K.

Iovanna, P.

N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag. 50(5), 66–72 (2012).
[Crossref]

Ip, E.

Jaouën, Y.

Ji, P.

Jiang, S.

Jinno, M.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

Karaki, J.

Lanticq, V.

Le Bidan, R.

Le Gall, T.

Li, M.

Liao, J.

Lord, A.

A. Lord, P. Wright, and A. Mitra, “Core networks in the flexgrid era,” J. Lightwave Technol. 33(5), 1126–1135 (2015).
[Crossref]

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

Mitra, A.

Moreau, G.

Morvan, M.

Moulinard, M.

Murakami, S.

Napoli, A.

D. Rafique, T. Rahman, A. Napoli, S. Calabro, and B. Spinnler, “Technology options for 400 Gb/s PM-16QAM flex-grid network upgrades,” IEEE Photon. Technol. Lett. 26(8), 773–776 (2014).
[Crossref]

Olsson, N. A.

N. A. Olsson and J. P. Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth,” J. Lightwave Technol. 5(1), 147–153 (1987).
[Crossref]

Othman, G. R.

Pan, W.

Pincemin, E.

Poudoulec, A.

Qian, D.

Qin, Y.

Rafique, D.

D. Rafique, T. Rahman, A. Napoli, S. Calabro, and B. Spinnler, “Technology options for 400 Gb/s PM-16QAM flex-grid network upgrades,” IEEE Photon. Technol. Lett. 26(8), 773–776 (2014).
[Crossref]

Rahman, T.

D. Rafique, T. Rahman, A. Napoli, S. Calabro, and B. Spinnler, “Technology options for 400 Gb/s PM-16QAM flex-grid network upgrades,” IEEE Photon. Technol. Lett. 26(8), 773–776 (2014).
[Crossref]

Sambo, N.

N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag. 50(5), 66–72 (2012).
[Crossref]

Schneider, T.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Song, M.

Spinnler, B.

D. Rafique, T. Rahman, A. Napoli, S. Calabro, and B. Spinnler, “Technology options for 400 Gb/s PM-16QAM flex-grid network upgrades,” IEEE Photon. Technol. Lett. 26(8), 773–776 (2014).
[Crossref]

Stern, Y.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Sun, J.

Taillade, F.

Tajima, T.

Tanaka, A.

Thouenon, G.

Tur, M.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
[Crossref] [PubMed]

Van der Keur, M.

Van Der Ziel, J. P.

N. A. Olsson and J. P. Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth,” J. Lightwave Technol. 5(1), 147–153 (1987).
[Crossref]

Wang, T.

Wei, W.

Wellbrock, G.

Wise, A.

Wright, P.

Xia, T.

Yan, L.

Yao, J.

Yi, L.

Yoo, S. J. B.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

Zadok, A.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
[Crossref] [PubMed]

Zhang, R.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Zhang, S.

Zhang, Y.

Zhong, K.

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Zia-Chahabi, O.

Zou, X.

IEEE Commun. Mag. (2)

N. Sambo, P. Castoldi, F. Cugini, G. Bottari, and P. Iovanna, “Toward high-rate and flexible optical networks,” IEEE Commun. Mag. 50(5), 66–72 (2012).
[Crossref]

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag. 50(2), s12–s20 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Rafique, T. Rahman, A. Napoli, S. Calabro, and B. Spinnler, “Technology options for 400 Gb/s PM-16QAM flex-grid network upgrades,” IEEE Photon. Technol. Lett. 26(8), 773–776 (2014).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (3)

Opt. Lett. (3)

Photonics Res. (1)

Y. Stern, K. Zhong, T. Schneider, R. Zhang, Y. Ben-Ezra, M. Tur, and A. Zadok, “Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,” Photonics Res. 2(4), B18–B25 (2014).
[Crossref]

Other (7)

L. Yi, W. Wei, Y. Jaouen, and W. Hu, “Ideal rectangular microwave photonic filter with high selectivity based on stimulated Brillouin scattering,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu3F.5.
[Crossref]

W. Wei, L. Yi, Y. Jaouën, M. Morvan, and W. Hu, “Brillouin rectangular optical filter with improved selectivity and noise performance,” Photon. Technol. Lett. (posted 12May 2015, in press).
[Crossref]

W. Wei, L. Yi, Y. Jaouën, M. Morvan, and W. Hu, “Ultra-selective flexible add-drop multiplexer using rectangular stimulated Brillouin scattering filters,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu3D.1.
[Crossref]

P. Winzer, A. Gnauck, A. Konczykowska, F. Jorge, and J. Dupuy, “Penalties from in-band crosstalk foradvanced optical modulation formats,” in 37th European Conference and Exposition on OpticalCommunications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.5.B.7.

B. Little, S. Chu, W. Chen, J. Hryniewicz, D. Gill, O. King, F. Johnson, R. Davidson, K. Donovan, W. Chen, and S. Grubb, “Tunable bandwidth microring resonator filters,”in Proc. ECOC2008(Brussels, Belgium),paper Th.2.C.2.
[Crossref]

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuM3.
[Crossref]

R. Rudnick, A. Tolmachev, D. Sinefeld, O. Golani, S. Ben-Ezra, M. Nazarathy, and D. Marom, “Sub-banded/singlesub-carrier drop-demux and flexible spectral shaping with a fine resolution photonic processor,” in Proc. ECOC2014 (Cannes, France), paper PD.4.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The principle of the filter generation.
Fig. 2
Fig. 2 The (a) amplitude and (b)phase responses of SBS gain filters with tunable selectivity.
Fig. 3
Fig. 3 The (a) amplitude and (b) phase responses of SBS gain filters with tunable bandwidth.
Fig. 4
Fig. 4 The dual-stage SBS filter and the feedback process based on coherent detection using OFDM signal. Inset (i) single sideband pump fp, SBS gain around fg, and DFB laser frequency fc, (ii) OFDM signal as a probe with bandwidth larger than pump, (iii) OFDM probe signal amplified by the first stage SBS gain filter, (iv) OFDM probe signal amplified by the second stage SBS gain filter.
Fig. 5
Fig. 5 Filter passband shapes after feedback process based on coherent detection using OFDM signal as the probe. The spectrum precision is ~20 MHz equaling the interval of the OFDM subcarriers.
Fig. 6
Fig. 6 Typical convergence speed of the two different feedback methods.
Fig. 7
Fig. 7 Concept of the SBS-based ROADM. The SBS gain filter and loss filter are used to realize drop and through function at the same time.
Fig. 8
Fig. 8 Experimental setup and the optical spectrum schemes at different points.
Fig. 9
Fig. 9 The electrical spectra of the OFDM signal at different points of the ROADM
Fig. 10
Fig. 10 TheSNR measurement method.The noise level is estimated from the pure noise region near the signal by assuming that the noise level is uniform in a wide range.
Fig. 11
Fig. 11 BER-SNR performance of(a) QPSK (b) 16-QAM format OFDM signal, only the central band being amplified.
Fig. 12
Fig. 12 BER-SNR performance of(a) QPSK (b) 16-QAM format OFDM signal with the full add and drop functions. ad: add and drop. 0.5G/0.3G: the bandwidth of the guard band. 30/25/20 dB: the SBS gain value.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ideal gain (dB) Measured gain (dB) = ( Electrical amplitude new Electrical amplitude used ) 2

Metrics