Abstract

Vulnerability of Optical Frequency Domain Reflectometry (OFDR) based sensors to high γ-ray doses (up to 10 MGy) is evaluated with a specific issue of a radiation-hardened temperature and strain monitoring system for nuclear industry. For this, we characterize the main radiation effects that are expected to degrade the sensor performances in such applicative domain: the radiation-induced attenuation (RIA), the possible evolution with the dose of the Rayleigh scattering phenomenon as well as its dependence on temperature and strain. This preliminary investigation is done after the irradiation and for five different optical fiber types covering the range from radiation-hardened fibers to highly radiation sensitive ones. Our results show that at these high dose levels the scattering mechanism at the basis of the used technique for the monitoring is unaffected (changes below 5%), authorizing acceptable precision on the temperature or strain measurements. RIA has to be considered as it limits the sensing range. From our vulnerability study, the OFDR sensors appear as promising candidates for nuclear industry even at doses as high as 10 MGy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors

Xavier Phéron, Sylvain Girard, Aziz Boukenter, Benoit Brichard, Sylvie Delepine-Lesoille, Johan Bertrand, and Youcef Ouerdane
Opt. Express 20(24) 26978-26985 (2012)

Coupled temperature and γ-radiation effect on silica-based optical fiber strain sensors based on Rayleigh and Brillouin scatterings

A. Piccolo, S. Delepine-Lesoille, M. Landolt, S. Girard, Y. Ouerdane, and C. Sabatier
Opt. Express 27(15) 21608-21621 (2019)

High spatial resolution distributed fiber strain sensor based on phase-OFDR

Jiong Li, Jiulin Gan, Zhishen Zhang, Xiaobo Heng, Changsheng Yang, Qi Qian, Shanhui Xu, and Zhongmin Yang
Opt. Express 25(22) 27913-27922 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
    [Crossref]
  2. http://www.iaea.org/
  3. A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
    [Crossref]
  4. A. Faustov, “Advanced fibre optics temperature and radiation sensing in harsh environments” PhD Thesis (2014).
  5. X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
    [Crossref] [PubMed]
  6. C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
    [Crossref]
  7. C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).
  8. S. Kreger, D. Gifford, M. Froggatt, A. Sang, R. Duncan, M. Wolfe, and B. Soller, “High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter,” Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, 65301R (2007).
  9. A. Faustov, A. Gusarov, L. B. Liokumovichc, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry,” Proc. SPIE 8794, 87943O (2013).
    [Crossref]
  10. M. Van Uffelen, “Modélisation de systèmes d’acquisition et de transmission à fibres optiques destinés à fonctionner en environnement nucléaire” Ph.D. dissertation, Univ. de Paris XI, Paris, France, (2001).
  11. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus‐doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743 (1983).
    [Crossref]
  12. S. Girard, J. Keurinck, Y. Ouerdane, J.-P. Meunie, and A. Boukenter, “Gamma-rays and Pulsed X-Ray radiation responses of germanosilicate single-mode optical fibers:influence of cladding codopants,” J. Lightwave Technol. 22(8), 1915–1922 (2004).
    [Crossref]
  13. Y. Sikali Mamdem, X. Phéron, F. Taillade, Y. Jaoüen, R. Gabet, V. Lanticq, G. Moreau, A. Boukenter, Y. Ouerdane, S. Delepine-Lesoille, and J. Bertrand, “Two-dimensional FEM analysis of Brillouin gain spectra in acoustic guiding and antiguiding single mode optical fibers” presented at COMSOL Conference, PARIS, 2010.
  14. http://www.fibertronix.com/sites/default/files/datasheets/fibertronix-sm-high-temp-acrylate.pdf
  15. F. Fernandez, H. Ooms, B. Brichard, M. Coeck, S. Coenen, F. Berghmans, and M. Décreton, “SCKCEN gamma irradiation facilities for radiation tolerance assessment” 2002 NSREC Data Workshop, 02HT8631, 171–176 (2002).
  16. H. Henschel, O. Kohn, and H. U. Schmidt, “Radiation induced loss measurements of optical fibres with optical time domain reflectometers (OTDR) at high and low dose rates” presented at the First European Conference on Radiation and its Effects on Devices and Systems, La Grande-Motte (1991).
  17. R. H. West and S. Dowling, “Measurement of long term, radiation induced losses in fibre optics using optical time domain reflectometry” presented at the First European Conference on Radiation and its Effects on Devices and Systems, La Grande-Motte (1991).
  18. S. T. Kreger, A. K. Sang, D. K. Gifford, and M. E. Froggatt, “Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter,” Proc. SPIE 7316, 73160A (2009).
    [Crossref]
  19. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]
  20. B. J. Soller, M. Wolfe, and M. E. Froggatt, “Polarization resolved measurement of Rayleigh backscatter in fiber-optic components” presented at OFC Technical Digest, Los Angeles, 2005.
  21. R. Duncan, B. Soller, D. Gifford, S. Kreger, R. Seeley, A. Sang, M. Wolfe, and M. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” Joint Conference on Aging Aircraft. 2007.

2015 (1)

C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).

2014 (2)

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

2013 (2)

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

A. Faustov, A. Gusarov, L. B. Liokumovichc, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry,” Proc. SPIE 8794, 87943O (2013).
[Crossref]

2012 (1)

2009 (1)

S. T. Kreger, A. K. Sang, D. K. Gifford, and M. E. Froggatt, “Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter,” Proc. SPIE 7316, 73160A (2009).
[Crossref]

2007 (1)

S. Kreger, D. Gifford, M. Froggatt, A. Sang, R. Duncan, M. Wolfe, and B. Soller, “High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter,” Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, 65301R (2007).

2005 (1)

2004 (1)

1983 (1)

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus‐doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743 (1983).
[Crossref]

Bertrand, J.

C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

Boukenter, A.

C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

S. Girard, J. Keurinck, Y. Ouerdane, J.-P. Meunie, and A. Boukenter, “Gamma-rays and Pulsed X-Ray radiation responses of germanosilicate single-mode optical fibers:influence of cladding codopants,” J. Lightwave Technol. 22(8), 1915–1922 (2004).
[Crossref]

Brichard, B.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

Cangialosi, C.

C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

Cannas, M.

C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

Delepine-Lesoille, S.

C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

Duncan, R.

S. Kreger, D. Gifford, M. Froggatt, A. Sang, R. Duncan, M. Wolfe, and B. Soller, “High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter,” Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, 65301R (2007).

R. Duncan, B. Soller, D. Gifford, S. Kreger, R. Seeley, A. Sang, M. Wolfe, and M. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” Joint Conference on Aging Aircraft. 2007.

Faustov, A.

A. Faustov, A. Gusarov, L. B. Liokumovichc, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry,” Proc. SPIE 8794, 87943O (2013).
[Crossref]

Fleming, J. W.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus‐doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743 (1983).
[Crossref]

Fotiadi, A. A.

A. Faustov, A. Gusarov, L. B. Liokumovichc, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry,” Proc. SPIE 8794, 87943O (2013).
[Crossref]

Friebele, E. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus‐doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743 (1983).
[Crossref]

Froggatt, M.

S. Kreger, D. Gifford, M. Froggatt, A. Sang, R. Duncan, M. Wolfe, and B. Soller, “High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter,” Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, 65301R (2007).

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

R. Duncan, B. Soller, D. Gifford, S. Kreger, R. Seeley, A. Sang, M. Wolfe, and M. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” Joint Conference on Aging Aircraft. 2007.

Froggatt, M. E.

S. T. Kreger, A. K. Sang, D. K. Gifford, and M. E. Froggatt, “Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter,” Proc. SPIE 7316, 73160A (2009).
[Crossref]

Gifford, D.

S. Kreger, D. Gifford, M. Froggatt, A. Sang, R. Duncan, M. Wolfe, and B. Soller, “High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter,” Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, 65301R (2007).

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

R. Duncan, B. Soller, D. Gifford, S. Kreger, R. Seeley, A. Sang, M. Wolfe, and M. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” Joint Conference on Aging Aircraft. 2007.

Gifford, D. K.

S. T. Kreger, A. K. Sang, D. K. Gifford, and M. E. Froggatt, “Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter,” Proc. SPIE 7316, 73160A (2009).
[Crossref]

Girard, S.

C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

S. Girard, J. Keurinck, Y. Ouerdane, J.-P. Meunie, and A. Boukenter, “Gamma-rays and Pulsed X-Ray radiation responses of germanosilicate single-mode optical fibers:influence of cladding codopants,” J. Lightwave Technol. 22(8), 1915–1922 (2004).
[Crossref]

Griscom, D. L.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus‐doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743 (1983).
[Crossref]

Gusarov, A.

A. Faustov, A. Gusarov, L. B. Liokumovichc, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry,” Proc. SPIE 8794, 87943O (2013).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Keurinck, J.

Kreger, S.

S. Kreger, D. Gifford, M. Froggatt, A. Sang, R. Duncan, M. Wolfe, and B. Soller, “High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter,” Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, 65301R (2007).

R. Duncan, B. Soller, D. Gifford, S. Kreger, R. Seeley, A. Sang, M. Wolfe, and M. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” Joint Conference on Aging Aircraft. 2007.

Kreger, S. T.

S. T. Kreger, A. K. Sang, D. K. Gifford, and M. E. Froggatt, “Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter,” Proc. SPIE 7316, 73160A (2009).
[Crossref]

Kuhnhenn, J.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Liokumovichc, L. B.

A. Faustov, A. Gusarov, L. B. Liokumovichc, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry,” Proc. SPIE 8794, 87943O (2013).
[Crossref]

Long, K. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus‐doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743 (1983).
[Crossref]

Macé, J.-R.

Marcandella, C.

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Marin, E.

Mégret, P.

A. Faustov, A. Gusarov, L. B. Liokumovichc, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry,” Proc. SPIE 8794, 87943O (2013).
[Crossref]

Meunie, J.-P.

Morana, A.

Ouerdane, Y.

C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

X. Phéron, S. Girard, A. Boukenter, B. Brichard, S. Delepine-Lesoille, J. Bertrand, and Y. Ouerdane, “High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors,” Opt. Express 20(24), 26978–26985 (2012).
[Crossref] [PubMed]

S. Girard, J. Keurinck, Y. Ouerdane, J.-P. Meunie, and A. Boukenter, “Gamma-rays and Pulsed X-Ray radiation responses of germanosilicate single-mode optical fibers:influence of cladding codopants,” J. Lightwave Technol. 22(8), 1915–1922 (2004).
[Crossref]

Paillet, P.

C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, P. Paillet, J. Périsse, J.-R. Macé, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Opt. Lett. 39(18), 5313–5316 (2014).
[Crossref]

Périsse, J.

Phéron, X.

Sang, A.

S. Kreger, D. Gifford, M. Froggatt, A. Sang, R. Duncan, M. Wolfe, and B. Soller, “High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter,” Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, 65301R (2007).

R. Duncan, B. Soller, D. Gifford, S. Kreger, R. Seeley, A. Sang, M. Wolfe, and M. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” Joint Conference on Aging Aircraft. 2007.

Sang, A. K.

S. T. Kreger, A. K. Sang, D. K. Gifford, and M. E. Froggatt, “Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter,” Proc. SPIE 7316, 73160A (2009).
[Crossref]

Seeley, R.

R. Duncan, B. Soller, D. Gifford, S. Kreger, R. Seeley, A. Sang, M. Wolfe, and M. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” Joint Conference on Aging Aircraft. 2007.

Soller, B.

S. Kreger, D. Gifford, M. Froggatt, A. Sang, R. Duncan, M. Wolfe, and B. Soller, “High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter,” Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, 65301R (2007).

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

R. Duncan, B. Soller, D. Gifford, S. Kreger, R. Seeley, A. Sang, M. Wolfe, and M. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” Joint Conference on Aging Aircraft. 2007.

Van Uffelen, M.

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

Wolfe, M.

S. Kreger, D. Gifford, M. Froggatt, A. Sang, R. Duncan, M. Wolfe, and B. Soller, “High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter,” Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, 65301R (2007).

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

R. Duncan, B. Soller, D. Gifford, S. Kreger, R. Seeley, A. Sang, M. Wolfe, and M. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” Joint Conference on Aging Aircraft. 2007.

Wuilpart, M.

A. Faustov, A. Gusarov, L. B. Liokumovichc, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry,” Proc. SPIE 8794, 87943O (2013).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, “Radiation effects on silica-based optical fibers: recent advances and future challenges,” IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013).
[Crossref]

C. Cangialosi, Y. Ouerdane, S. Girard, A. Boukenter, S. Delepine-Lesoille, J. Bertrand, C. Marcandella, P. Paillet, and M. Cannas, “Development of a temperature distributed monitoring system based on Raman scattering in harsh environment,” IEEE Trans. Nucl. Sci. 61(6), 3315–3322 (2014).
[Crossref]

J. Appl. Phys. (1)

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus‐doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743 (1983).
[Crossref]

J. Lightwave Technol. (2)

C. Cangialosi, S. Girard, A. Boukenter, M. Cannas, S. Delepine-Lesoille, J. Bertrand, P. Paillet, and Y. Ouerdane, “Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors,” J. Lightwave Technol. 33(11), 1558–2213 (2015).

S. Girard, J. Keurinck, Y. Ouerdane, J.-P. Meunie, and A. Boukenter, “Gamma-rays and Pulsed X-Ray radiation responses of germanosilicate single-mode optical fibers:influence of cladding codopants,” J. Lightwave Technol. 22(8), 1915–1922 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (2)

A. Faustov, A. Gusarov, L. B. Liokumovichc, A. A. Fotiadi, M. Wuilpart, and P. Mégret, “Comparison of simulated and experimental results for distributed radiation-induced absorption measurement using OFDR reflectometry,” Proc. SPIE 8794, 87943O (2013).
[Crossref]

S. T. Kreger, A. K. Sang, D. K. Gifford, and M. E. Froggatt, “Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter,” Proc. SPIE 7316, 73160A (2009).
[Crossref]

Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring (1)

S. Kreger, D. Gifford, M. Froggatt, A. Sang, R. Duncan, M. Wolfe, and B. Soller, “High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter,” Proc. SPIE 6530, Sensor Systems and Networks: Phenomena, Technology, and Applications for NDE and Health Monitoring 2007, 65301R (2007).

Other (10)

http://www.iaea.org/

A. Faustov, “Advanced fibre optics temperature and radiation sensing in harsh environments” PhD Thesis (2014).

Y. Sikali Mamdem, X. Phéron, F. Taillade, Y. Jaoüen, R. Gabet, V. Lanticq, G. Moreau, A. Boukenter, Y. Ouerdane, S. Delepine-Lesoille, and J. Bertrand, “Two-dimensional FEM analysis of Brillouin gain spectra in acoustic guiding and antiguiding single mode optical fibers” presented at COMSOL Conference, PARIS, 2010.

http://www.fibertronix.com/sites/default/files/datasheets/fibertronix-sm-high-temp-acrylate.pdf

F. Fernandez, H. Ooms, B. Brichard, M. Coeck, S. Coenen, F. Berghmans, and M. Décreton, “SCKCEN gamma irradiation facilities for radiation tolerance assessment” 2002 NSREC Data Workshop, 02HT8631, 171–176 (2002).

H. Henschel, O. Kohn, and H. U. Schmidt, “Radiation induced loss measurements of optical fibres with optical time domain reflectometers (OTDR) at high and low dose rates” presented at the First European Conference on Radiation and its Effects on Devices and Systems, La Grande-Motte (1991).

R. H. West and S. Dowling, “Measurement of long term, radiation induced losses in fibre optics using optical time domain reflectometry” presented at the First European Conference on Radiation and its Effects on Devices and Systems, La Grande-Motte (1991).

B. J. Soller, M. Wolfe, and M. E. Froggatt, “Polarization resolved measurement of Rayleigh backscatter in fiber-optic components” presented at OFC Technical Digest, Los Angeles, 2005.

R. Duncan, B. Soller, D. Gifford, S. Kreger, R. Seeley, A. Sang, M. Wolfe, and M. Froggatt, “OFDR-based distributed sensing and fault detection for single- and multi-mode avionics fiber-optics,” Joint Conference on Aging Aircraft. 2007.

M. Van Uffelen, “Modélisation de systèmes d’acquisition et de transmission à fibres optiques destinés à fonctionner en environnement nucléaire” Ph.D. dissertation, Univ. de Paris XI, Paris, France, (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Attenuation of studied optical fibers at 1550 nm irradiated at the doses of 1 MGy, 3 MGy, 6 MGy and 10 MGy.
Fig. 2
Fig. 2 Example of Rayleigh spectral shift in the fiber path of spliced SMF 28 (pristine and irradiated ones) as a function of the path length at 10 different temperatures from 35°C (reference trace) to 80°C and (b) measured Rayleigh spectral shift dependence on temperature for SMF28 pristine and irradiated samples at 1MGy, 3MGy, 6MGy and 10MGy shown for one point for each fiber in the considered range chosen to calculate CT.
Fig. 3
Fig. 3 Temperature coefficients extracted from Rayleigh spectral shift measurements as a function of irradiation doses in studied optical fibers: SMF 28 (a) in which is also represented the literature value [18–21] given as a red circle at 0MGy, SMF1-F (b), SMF2-PSC (c), SMF3-Ge (d) and finally SMF4-GeP (e). Solid line in the middle indicates the average values of the coefficients and space between dotted lines in each graph indicates a variation of 5% from average values that is the maximum variation obtained for the F-doped fiber.
Fig. 4
Fig. 4 (a) Example of Rayleigh spectral shift in SMF 28 sample as a function of fiber length at different applied strains from 0µε (reference trace) up to 4550µε and (b) measured Rayleigh spectral shift dependence on strain for SMF28 non-irradiated and irradiated samples at 1MGy, 3MGy, 6MGy and 10MGy shown for one point for each fiber in the considered range chosen to calculate Cε.
Fig. 5
Fig. 5 Strain coefficients extracted from Rayleigh spectral shift measurements as a function of irradiation doses in studied optical fibers: SMF 28 (a) in which is also represented the literature value [18–21] given as a red circle at 0MGy and a dotted red line indicates in all the dose range, SMF1-F (b), SMF2-PSC (c), SMF3-Ge (d) and finally SMF4-GeP (e). Space between dotted lines in each graph indicates a variation of 5% from average values of the coefficients and solid line in the middle of this space indicates the average values of the coefficients.
Fig. 6
Fig. 6 Normalized power as a function of fiber length in GeP-doped fiber non-irradiated and irradiated at 10 MGy (a) and in F-doped fiber non-irradiated and irradiated at all the doses.

Tables (3)

Tables Icon

Table 1 List of investigated samples

Tables Icon

Table 2 Temperature coefficients extracted from Rayleigh measurements and relative errors

Tables Icon

Table 3 Strain coefficients extracted from Rayleigh spectral shift measurements and relative errors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ λ = Δν ν = C T ΔT+ C ε ε.

Metrics