Abstract

We numerically and experimentally demonstrate photon-number squeezed state generation with a symmetric fiber interferometer in an 800-nm wavelength and compared with an asymmetric fiber interferometer, although photon-number squeezed pulses have been generated only with asymmetric interferometers. Even though we obtain −1.0dB squeezing with an asymmetric fiber interferometer, since perfect spectral phase and intensity matching between displacement and signal pulses are achieved with a symmetric fiber interferometer, we obtain better squeezing of −3.1dB. We also numerically calculate and clarify this scheme’s usefulness at a 1.55-μm wavelength.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of squeezed pulses with a Sagnac loop fiber interferometer using a non-soliton femtosecond laser pulse at 800 nm

Y. Fujiwara, H. Nakagome, K. Hirosawa, and F. Kannari
Opt. Express 17(13) 11197-11204 (2009)

Photon-number squeezing in a solitonlike Raman Stokes component during propagation of ultrashort pulses in a microstructure fiber

Atsushi Tada, Kenichi Hirosawa, Fumihiko Kannari, Masahiro Takeoka, and Masahide Sasaki
J. Opt. Soc. Am. B 24(3) 691-698 (2007)

Amplitude-squeezed solitons from an asymmetric fiber interferometer

Dmitriy Krylov and Keren Bergman
Opt. Lett. 23(17) 1390-1392 (1998)

References

  • View by:
  • |
  • |
  • |

  1. S. Suzuki, H Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
    [Crossref]
  2. G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
    [Crossref]
  3. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
    [Crossref] [PubMed]
  4. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
    [Crossref] [PubMed]
  5. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
    [Crossref]
  6. R. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, “Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers,” Opt. Lett. 33, 116–118 (2008).
    [Crossref] [PubMed]
  7. R. Dong, J. Heersink, J. Yoshikawa, O. Glockl, U. L Andersen, and G. Leuchs, “An efficient source of continuous variable polarization entanglement,” New J. Phys. 9, 410 (2007).
    [Crossref]
  8. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
    [Crossref] [PubMed]
  9. W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
    [Crossref] [PubMed]
  10. S. Friberg, S. Machida, M. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett. 77, 3775–3778 (1996).
    [Crossref] [PubMed]
  11. T. Opatrny, N. Korolkova, and G. Leuchs, “Mode structure and photon number correlations in squeezed quantum pulses,” Phys. Rev. A 66, 053813 (2002).
    [Crossref]
  12. S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer,” Phys. Rev. Lett. 81, 2446–2449 (1998).
    [Crossref]
  13. J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon-number squeezed light generation,” Jpn. J. Appl. Phys. 40, L1220–L1222 (2001).
    [Crossref]
  14. M. Fiorentino, J. E. Sharping, P. Kumar, and A. Porzio, “Amplitude squeezing in a Mach-Zehnder fiber interferometer: Numerical analysis of experiments with microstructure fiber,” Opt. Express 10, 128–138 (2002).
    [Crossref] [PubMed]
  15. H. Nakagome, H. Ushio, Y. Itoh, and F. Kannari, “Generation of squeezed vacuum pulses at 810 nm using a 40-cm-long optical fiber,” Opt. Express 19, 1051–1056 (2011).
    [Crossref] [PubMed]
  16. Y. Fujiwara, H. Nakagome, K. Hirosawa, and F. Kannari, “Generation of squeezed pulses with a Sagnac loop fiber interferometer using a non-soliton femtosecond laser pulse at 800 nm,” Opt. Express 17, 11197–11204 (2009).
    [Crossref] [PubMed]
  17. A. Mecozzi, “Linearized quantum-fluctuation theory of spectrally filtered optical solitons,” Opt. Lett. 22, 1232–1234 (1997).
    [Crossref] [PubMed]
  18. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003).
    [Crossref]
  19. T. Tomaru, “Femtosecond pulse squeezing limited by stimulatedRaman process in optical fibers,” Opt. Commun. 273, 263–271 (2007).
    [Crossref]
  20. M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, “Soliton squeezing in a Mach-Zehnder fiber interferometer,” Phys. Rev. A 64, 031801(R) (2001).
    [Crossref]
  21. M. P. van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A 74, 012309 (2006).
    [Crossref]
  22. J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
    [Crossref]
  23. Y. Eto, A. Koshio, A. Ohshiro, J. Sakurai, K. Horie, T. Hirano, and M. Sasaki, “Efficient homodyne measurement of picosecond squeezed pulses with pulse shaping technique,” Opt. Lett. 36, 4653–4655 (2011).
    [Crossref] [PubMed]
  24. R. M. Araujo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
    [Crossref]

2014 (2)

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

R. M. Araujo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

2011 (3)

2010 (2)

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (2)

T. Tomaru, “Femtosecond pulse squeezing limited by stimulatedRaman process in optical fibers,” Opt. Commun. 273, 263–271 (2007).
[Crossref]

R. Dong, J. Heersink, J. Yoshikawa, O. Glockl, U. L Andersen, and G. Leuchs, “An efficient source of continuous variable polarization entanglement,” New J. Phys. 9, 410 (2007).
[Crossref]

2006 (2)

S. Suzuki, H Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

M. P. van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A 74, 012309 (2006).
[Crossref]

2003 (1)

2002 (2)

2001 (2)

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon-number squeezed light generation,” Jpn. J. Appl. Phys. 40, L1220–L1222 (2001).
[Crossref]

M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, “Soliton squeezing in a Mach-Zehnder fiber interferometer,” Phys. Rev. A 64, 031801(R) (2001).
[Crossref]

1998 (2)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer,” Phys. Rev. Lett. 81, 2446–2449 (1998).
[Crossref]

1997 (1)

1996 (1)

S. Friberg, S. Machida, M. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett. 77, 3775–3778 (1996).
[Crossref] [PubMed]

1991 (1)

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[Crossref] [PubMed]

1987 (1)

Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[Crossref] [PubMed]

Aiello, A.

M. P. van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A 74, 012309 (2006).
[Crossref]

Andersen, U. L

R. Dong, J. Heersink, J. Yoshikawa, O. Glockl, U. L Andersen, and G. Leuchs, “An efficient source of continuous variable polarization entanglement,” New J. Phys. 9, 410 (2007).
[Crossref]

Andersen, U. L.

Araujo, R. M.

R. M. Araujo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

Ast, S.

Bauchrowitz, J.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Berchera, I. R.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

Braunstein, S. L.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Brida, G.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

Cai, Y.

R. M. Araujo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

Corney, J. F.

de Araujo, R. M.

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

Dong, R.

R. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, “Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers,” Opt. Lett. 33, 116–118 (2008).
[Crossref] [PubMed]

R. Dong, J. Heersink, J. Yoshikawa, O. Glockl, U. L Andersen, and G. Leuchs, “An efficient source of continuous variable polarization entanglement,” New J. Phys. 9, 410 (2007).
[Crossref]

Drummond, P. D.

Eberle, T.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Ebhardt, H. M.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Eto, Y.

Fabre, C.

R. M. Araujo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

Ferrini, G.

R. M. Araujo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

Ficker, J.

S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer,” Phys. Rev. Lett. 81, 2446–2449 (1998).
[Crossref]

Fiorentino, M.

M. Fiorentino, J. E. Sharping, P. Kumar, and A. Porzio, “Amplitude squeezing in a Mach-Zehnder fiber interferometer: Numerical analysis of experiments with microstructure fiber,” Opt. Express 10, 128–138 (2002).
[Crossref] [PubMed]

M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, “Soliton squeezing in a Mach-Zehnder fiber interferometer,” Phys. Rev. A 64, 031801(R) (2001).
[Crossref]

Friberg, S.

S. Friberg, S. Machida, M. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett. 77, 3775–3778 (1996).
[Crossref] [PubMed]

Fuchs, C. A.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Fujiwara, Y.

Furusawa, A.

S. Suzuki, H Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Genovese, M.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

Glockl, O.

R. Dong, J. Heersink, J. Yoshikawa, O. Glockl, U. L Andersen, and G. Leuchs, “An efficient source of continuous variable polarization entanglement,” New J. Phys. 9, 410 (2007).
[Crossref]

Goto, T.

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon-number squeezed light generation,” Jpn. J. Appl. Phys. 40, L1220–L1222 (2001).
[Crossref]

Händchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Heersink, J.

R. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, “Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers,” Opt. Lett. 33, 116–118 (2008).
[Crossref] [PubMed]

R. Dong, J. Heersink, J. Yoshikawa, O. Glockl, U. L Andersen, and G. Leuchs, “An efficient source of continuous variable polarization entanglement,” New J. Phys. 9, 410 (2007).
[Crossref]

Higuchi, J.

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon-number squeezed light generation,” Jpn. J. Appl. Phys. 40, L1220–L1222 (2001).
[Crossref]

Hirano, T.

Hirosawa, K.

Holzlohner, R.

Horie, K.

Itaya, Y.

Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[Crossref] [PubMed]

Itoh, Y.

Jiang, S.

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

Kannari, F.

Kimble, H. J.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Konig, F.

S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer,” Phys. Rev. Lett. 81, 2446–2449 (1998).
[Crossref]

Korolkova, N.

T. Opatrny, N. Korolkova, and G. Leuchs, “Mode structure and photon number correlations in squeezed quantum pulses,” Phys. Rev. A 66, 053813 (2002).
[Crossref]

Koshio, A.

Kumar, P.

M. Fiorentino, J. E. Sharping, P. Kumar, and A. Porzio, “Amplitude squeezing in a Mach-Zehnder fiber interferometer: Numerical analysis of experiments with microstructure fiber,” Opt. Express 10, 128–138 (2002).
[Crossref] [PubMed]

M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, “Soliton squeezing in a Mach-Zehnder fiber interferometer,” Phys. Rev. A 64, 031801(R) (2001).
[Crossref]

Leuchs, G.

R. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, “Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers,” Opt. Lett. 33, 116–118 (2008).
[Crossref] [PubMed]

R. Dong, J. Heersink, J. Yoshikawa, O. Glockl, U. L Andersen, and G. Leuchs, “An efficient source of continuous variable polarization entanglement,” New J. Phys. 9, 410 (2007).
[Crossref]

T. Opatrny, N. Korolkova, and G. Leuchs, “Mode structure and photon number correlations in squeezed quantum pulses,” Phys. Rev. A 66, 053813 (2002).
[Crossref]

S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer,” Phys. Rev. Lett. 81, 2446–2449 (1998).
[Crossref]

Levandovsky, D.

M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, “Soliton squeezing in a Mach-Zehnder fiber interferometer,” Phys. Rev. A 64, 031801(R) (2001).
[Crossref]

Levanon, A.

S. Friberg, S. Machida, M. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett. 77, 3775–3778 (1996).
[Crossref] [PubMed]

Machida,

Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[Crossref] [PubMed]

Machida, S.

S. Friberg, S. Machida, M. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett. 77, 3775–3778 (1996).
[Crossref] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[Crossref] [PubMed]

Mecozzi, A.

Mehmet, M.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Menyuk, C. R.

Mori, M.

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon-number squeezed light generation,” Jpn. J. Appl. Phys. 40, L1220–L1222 (2001).
[Crossref]

Mukai, T.

S. Friberg, S. Machida, M. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett. 77, 3775–3778 (1996).
[Crossref] [PubMed]

Nakagome, H.

Nienhuis, G.

M. P. van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A 74, 012309 (2006).
[Crossref]

Nishizawa, N.

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon-number squeezed light generation,” Jpn. J. Appl. Phys. 40, L1220–L1222 (2001).
[Crossref]

Oemrawsingh, S. S. R.

M. P. van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A 74, 012309 (2006).
[Crossref]

Ohshiro, A.

Opatrny, T.

T. Opatrny, N. Korolkova, and G. Leuchs, “Mode structure and photon number correlations in squeezed quantum pulses,” Phys. Rev. A 66, 053813 (2002).
[Crossref]

Polzik, E. S.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Porzio, A.

Richardson, W. H.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[Crossref] [PubMed]

Roslund, J.

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

R. M. Araujo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

Sakurai, J.

Sasaki, M.

Y. Eto, A. Koshio, A. Ohshiro, J. Sakurai, K. Horie, T. Hirano, and M. Sasaki, “Efficient homodyne measurement of picosecond squeezed pulses with pulse shaping technique,” Opt. Lett. 36, 4653–4655 (2011).
[Crossref] [PubMed]

S. Suzuki, H Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

Schmitt, S.

S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer,” Phys. Rev. Lett. 81, 2446–2449 (1998).
[Crossref]

Schnabel, R.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Sharping, J. E.

M. Fiorentino, J. E. Sharping, P. Kumar, and A. Porzio, “Amplitude squeezing in a Mach-Zehnder fiber interferometer: Numerical analysis of experiments with microstructure fiber,” Opt. Express 10, 128–138 (2002).
[Crossref] [PubMed]

M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, “Soliton squeezing in a Mach-Zehnder fiber interferometer,” Phys. Rev. A 64, 031801(R) (2001).
[Crossref]

Sinkin, O. V.

Sizmann, A.

S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer,” Phys. Rev. Lett. 81, 2446–2449 (1998).
[Crossref]

Sorensen, J. L.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Steinlechner, S.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Suzuki, S.

S. Suzuki, H Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

Tomaru, T.

T. Tomaru, “Femtosecond pulse squeezing limited by stimulatedRaman process in optical fibers,” Opt. Commun. 273, 263–271 (2007).
[Crossref]

Treps, N.

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

R. M. Araujo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

Ushio, H.

Vahlbruch, H.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

van Exter, M. P.

M. P. van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A 74, 012309 (2006).
[Crossref]

Vasilyev, M.

M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, “Soliton squeezing in a Mach-Zehnder fiber interferometer,” Phys. Rev. A 64, 031801(R) (2001).
[Crossref]

Werner, M.

S. Friberg, S. Machida, M. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett. 77, 3775–3778 (1996).
[Crossref] [PubMed]

Woerdman, J. P.

M. P. van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A 74, 012309 (2006).
[Crossref]

Wolff, M.

S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer,” Phys. Rev. Lett. 81, 2446–2449 (1998).
[Crossref]

Yamamoto, Y.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[Crossref] [PubMed]

Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[Crossref] [PubMed]

Yamane, K.

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon-number squeezed light generation,” Jpn. J. Appl. Phys. 40, L1220–L1222 (2001).
[Crossref]

Yonezawa, H

S. Suzuki, H Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

Yoshikawa, J.

R. Dong, J. Heersink, J. Yoshikawa, O. Glockl, U. L Andersen, and G. Leuchs, “An efficient source of continuous variable polarization entanglement,” New J. Phys. 9, 410 (2007).
[Crossref]

Zweck, J.

Appl. Phys. Lett. (1)

S. Suzuki, H Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon-number squeezed light generation,” Jpn. J. Appl. Phys. 40, L1220–L1222 (2001).
[Crossref]

Nat. Photonics (2)

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2014).
[Crossref]

New J. Phys. (1)

R. Dong, J. Heersink, J. Yoshikawa, O. Glockl, U. L Andersen, and G. Leuchs, “An efficient source of continuous variable polarization entanglement,” New J. Phys. 9, 410 (2007).
[Crossref]

Opt. Commun. (1)

T. Tomaru, “Femtosecond pulse squeezing limited by stimulatedRaman process in optical fibers,” Opt. Commun. 273, 263–271 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (4)

R. M. Araujo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps, “Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping,” Phys. Rev. A 89, 053828 (2014).
[Crossref]

T. Opatrny, N. Korolkova, and G. Leuchs, “Mode structure and photon number correlations in squeezed quantum pulses,” Phys. Rev. A 66, 053813 (2002).
[Crossref]

M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, “Soliton squeezing in a Mach-Zehnder fiber interferometer,” Phys. Rev. A 64, 031801(R) (2001).
[Crossref]

M. P. van Exter, A. Aiello, S. S. R. Oemrawsingh, G. Nienhuis, and J. P. Woerdman, “Effect of spatial filtering on the Schmidt decomposition of entangled photons,” Phys. Rev. A 74, 012309 (2006).
[Crossref]

Phys. Rev. Lett. (5)

Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
[Crossref] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[Crossref] [PubMed]

S. Friberg, S. Machida, M. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett. 77, 3775–3778 (1996).
[Crossref] [PubMed]

S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic sagnac interferometer,” Phys. Rev. Lett. 81, 2446–2449 (1998).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. M. Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Science (1)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Principle of photon-number squeezed state generation in a single mode picture. SNL: shot noise limit, SPM: self-phase modulation.

Fig. 2
Fig. 2

Generalized MZ interferometry scheme of photon-number squeezed state generation

Fig. 3
Fig. 3

Schematic view of photon-number squeezed light generation and detection. M: mirror, PBS: polarization beam splitter, HWP: half wave plate, QWP: quarter wave plate, PD: photo diode, BPF: band-pass filter, SA: spectrum analyzer, PZT: piezoelectric transducer.

Fig. 4
Fig. 4

Experimental (solid lines) and calculation (dashed lines) results of relative noise levels of photon-number noise compared to SNL with (a) asymmetric fiber interferometer and (b) symmetric fiber interferometer. z indicates where 562.5-pJ pulses became an FTL in the 40-cm long fiber.

Fig. 5
Fig. 5

Simulation of spectrum of output pulses of 40-cm fiber. Solid and dashed lines are spectral intensity and phase difference between signal and displacement pulses, respectively. Gray line corresponds to input pulse. (a) indicates when a FTL pulse is launched. (b) and (c) indicate when input pulses are added to negative chirp to form FTL pulses at fiber’s end and middle, respectively. Blue, red, and green lines represent pulse energy of signal pulses at 187.5 pJ, 375 pJ, and 562.5 pJ, respectively.

Fig. 6
Fig. 6

Measured spectrum of output pulses of 40-cm fiber. Dashed line corresponds to input pulse. (a) indicates when a FTL pulse is launched; (b) and (c) indicate when input pulses are added to negative chirp to form FTL pulses at fiber’s end and middle, respectively. Blue, red, and green lines represent pulse energy of signal pulses are 187.5 pJ, 375 pJ, and 562.5 pJ, respectively.

Fig. 7
Fig. 7

Photon-number squeezing levels with three schemes: symmetric MZ (red line), asymmetric Sagnac (blue line), and MZ (green line) interferometers

Fig. 8
Fig. 8

Spectral intensity and phase in asymmetric interferometer: (a) when incident power was soliton energy of 250 pJ; (b) when incident energy was 112.5 pJ. The solid and dotted lines represent intensity and phase, respectively.

Fig. 9
Fig. 9

Normalized quantum correlation map between frequency bins

Fig. 10
Fig. 10

Results of decomposition of quantum correlation map: (a) shows variance Vm and dotted line indicates SNL. (b) shows first three mode functions fm(ω).

Fig. 11
Fig. 11

Mode functions of g(ω) normalized LO spectrum and f2(ω) having lowest variance

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

z U ( z , t ) = i k 2 i k β k k ! k t k U ( z , t ) + i γ | U ( z , t ) | 2 U ( z , t ) ,
U ^ ( z , t ) = U ( z , t ) + u ^ ( z , t ) .
U ^ ( z , t ) U ^ ( z , t ) | U ( z , t ) | 2 + U ( z , t ) u ^ ( z , t ) + U * ( z , t ) u ^ ( z , t ) .
Var [ U ^ ( z , t ) U ^ ( z , t ) ] = Var [ 2 U ( z , t ) | u ^ ( z , t ) ] ,
f ( t ) | g ( t ) : = 1 2 { f ( t ) g * ( t ) + f * ( t ) g ( t ) } d t .
S = Var [ U ( L , t ) | u ^ ( L , t ) ] Var [ U ( L , t ) | u ^ ( 0 , t ) ] ,
U ^ i ( L , t ) = R 2 U ^ s ( L , t ) + 1 R 2 U ^ d ( L , t τ d ) = R 2 { U s ( L , t ) + u ^ s ( L , t ) } + 1 R 2 { U d ( L , t τ d ) + u ^ d ( L , t τ d ) } .
U ^ ( L , t ) { U s ( L , t ) + 1 R 2 U d ( L , t τ d ) } + u ^ s ( L , t ) = U i ( L , t ) + u ^ s ( L , t ) ,
S i = Var [ U i ( L , t ) | u ^ s ( L , t ) ] Var [ U i ( L , t ) | u ^ s ( 0 , t ) ] ,
d d z U i ( z , t ) | u ^ s ( z , t ) = 0 ,
S i = Var [ U i ( 0 , t ) | u ^ s ( 0 , t ) ] Var [ U i ( L , t ) | u ^ s ( 0 , t ) ] ,
d d z U i ( z , t ) | u ^ s ( z , t ) = 1 2 z { U i ( z , t ) u ^ s ( z , t ) + z U i * ( z , t ) u ^ s ( z , t ) } d t = U i ( z , t ) | z u ^ s ( z , t ) + z U i ( z , t ) | u ^ s ( z , t ) .
U i ( z , t ) | z u ^ s ( z , t ) = z U i ( z , t ) | u ^ s ( z , t ) .
z u ^ s ( z , t ) = i k 2 i k β k k ! k t k u ^ s ( z , t ) + 2 i γ | U s ( z , t ) | 2 u ^ s ( z , t ) i γ U s 2 ( z , t ) u ^ s ( z , t ) .
z U i ( z , t ) = i k 2 ( i ) k β k k ! k t k U i ( z , t ) + 2 i γ | U s ( z , t ) | 2 U i ( z , t ) i γ U s 2 ( z , t ) U i * ( z , t ) .
C ( n ) ( k , l ) = cov ( n k , n l ) Δ n k 2 Δ n l 2 δ k , l n k Δ n k 2 .
C ( n ) ( k , l ) = 2 m f m ( ω k ) f m ( ω l ) ( V m 1 2 ) Δ ω .
C ( n ) ( ω , ω ) = 2 m f m ( ω ) f m ( ω ) ( V m 1 2 ) .
g ( ω ) = | U i ( L , ω ) | | U i ( L , ω ) | 2 d ω ,
g ( ω ) = m c m f m ( ω ) ,
cov ( ω , ω ) = g ( ω ) g ( ω ) { 1 2 δ ω , ω + m f m ( ω ) f m ( ω ) ( V m 1 2 ) } .

Metrics