Abstract

Synchronized time-lens source is suitable for various applications in coherent Raman scattering (CRS) imaging up to video-rate. Timing jitter between the time-lens source and the mode-locked laser is a crucial parameter for estimating the synchronization performance. Although it has been measured experimentally, there is a lack of theoretical investigation of this parameter. Here we demonstrate numerical simulation results of timing jitter in a synchronized time-lens system, with parameters similar to those in real experiments. Our results show that due to the optical delay between the time-lens source and the mode-locked laser, the timing jitter is close to the intrinsic timing jitter of the mode-locked laser. Further reduction in timing jitter can be achieved by matching the optical delays between the time-lens source and the mode-locked laser.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Ping Qiu and Ke Wang, "Timing jitter in synchronized time-lens source for coherent Raman scattering imaging: publisher’s note," Opt. Express 24, 1045-1045 (2016)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-24-2-1045

7 January 2016: A correction was made to the acknowledgments.


OSA Recommended Articles
Synchronized time-lens source for coherent Raman scattering microscopy

Ke Wang, Christian W. Freudiger, Jennifer H. Lee, Brian G. Saar, X. Sunney Xie, and Chris Xu
Opt. Express 18(23) 24019-24024 (2010)

Pulse width reduction due to RF filtering in synchronized time-lens source

Ke Wang, Yuxin Wang, Jiaqi Wang, and Ping Qiu
Opt. Express 23(23) 29608-29614 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14(12), 630–632 (1989).
    [Crossref] [PubMed]
  2. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006).
    [Crossref]
  3. T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
    [Crossref]
  4. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
    [Crossref]
  5. J. van Howe, J. H. Lee, and C. Xu, “Generation of 3.5 nJ femtosecond pulses from a continuous-wave laser without mode locking,” Opt. Lett. 32(11), 1408–1410 (2007).
    [Crossref] [PubMed]
  6. K. Wang and C. Xu, “Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source,” Opt. Lett. 36(6), 942–944 (2011).
    [Crossref] [PubMed]
  7. K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
    [Crossref] [PubMed]
  8. K. Wang and C. Xu, “Fiber-delivered picosecond source for coherent Raman scattering imaging,” Opt. Lett. 36(21), 4233–4235 (2011).
    [Crossref] [PubMed]
  9. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  10. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  11. K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J. X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J Biophotonics 6(10), 815–820 (2013).
    [PubMed]
  12. D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy.” submitted.
  13. E. O. Potma, D. J. Jones, J. X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
    [Crossref] [PubMed]
  14. T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
    [Crossref]
  15. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
    [Crossref] [PubMed]
  16. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
    [Crossref] [PubMed]
  17. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
    [Crossref] [PubMed]

2013 (1)

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J. X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J Biophotonics 6(10), 815–820 (2013).
[PubMed]

2011 (2)

2010 (1)

2009 (1)

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[Crossref] [PubMed]

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (2)

J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006).
[Crossref]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

2005 (1)

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
[Crossref]

2002 (1)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1996 (1)

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

1989 (1)

Charan, K.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J. X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J Biophotonics 6(10), 815–820 (2013).
[PubMed]

Chen, B. J.

Cheng, J. X.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J. X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J Biophotonics 6(10), 815–820 (2013).
[PubMed]

E. O. Potma, D. J. Jones, J. X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref] [PubMed]

Cheng, J.-X.

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy.” submitted.

Chong, S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[Crossref] [PubMed]

Freudiger, C. W.

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fu, D.

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[Crossref] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Holtom, G. R.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Jiang, Z.

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

Jones, D. J.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kawanishi, S.

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
[Crossref]

Kolner, B. H.

Komukai, T.

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
[Crossref]

Lavrentovich, O.

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy.” submitted.

Leaird, D. E.

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

Lee, J. H.

Lu, S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Matthews, T. E.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[Crossref] [PubMed]

Min, W.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Nagatsuma, T.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

Nazarathy, M.

Otsuji, T.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

Potma, E. O.

Roy, R.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[Crossref] [PubMed]

Saar, B. G.

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Sano, E.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

Slipchenko, M. N.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J. X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J Biophotonics 6(10), 815–820 (2013).
[PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

van Howe, J.

Wang, K.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J. X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J Biophotonics 6(10), 815–820 (2013).
[PubMed]

K. Wang and C. Xu, “Wavelength-tunable high-energy soliton pulse generation from a large-mode-area fiber pumped by a time-lens source,” Opt. Lett. 36(6), 942–944 (2011).
[Crossref] [PubMed]

K. Wang and C. Xu, “Fiber-delivered picosecond source for coherent Raman scattering imaging,” Opt. Lett. 36(21), 4233–4235 (2011).
[Crossref] [PubMed]

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy.” submitted.

Wang, P.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J. X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J Biophotonics 6(10), 815–820 (2013).
[PubMed]

Warren, W. S.

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[Crossref] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

Weiner, A. M.

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

Xiang, J.

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy.” submitted.

Xie, X. S.

K. Wang, C. W. Freudiger, J. H. Lee, B. G. Saar, X. S. Xie, and C. Xu, “Synchronized time-lens source for coherent Raman scattering microscopy,” Opt. Express 18(23), 24019–24024 (2010).
[Crossref] [PubMed]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

E. O. Potma, D. J. Jones, J. X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Xu, C.

Yaita, M.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

Yamamoto, T.

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
[Crossref]

Ye, J.

Ye, T.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[Crossref] [PubMed]

Yurtserver, G.

Yurtsever, G.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

Zhang, D.

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J. X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J Biophotonics 6(10), 815–820 (2013).
[PubMed]

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy.” submitted.

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical processing based on spectral line-by-line pulse shaping on a phase modulated CW laser,” IEEE J. Quantum Electron. 42(7), 657–665 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

IEEE Photonics Lett. (1)

T. Komukai, T. Yamamoto, and S. Kawanishi, “Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings,” IEEE Photonics Lett. 17(8), 1746–1748 (2005).
[Crossref]

J Biophotonics (1)

K. Wang, D. Zhang, K. Charan, M. N. Slipchenko, P. Wang, C. Xu, and J. X. Cheng, “Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis,” J Biophotonics 6(10), 815–820 (2013).
[PubMed]

J. Biomed. Opt. (1)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Nature (1)

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Other (1)

D. Zhang, K. Wang, J. Xiang, C. Xu, O. Lavrentovich, and J.-X. Cheng, “Polarization-sensitive stimulated raman scattering microscopy.” submitted.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Block diagram of the synchronized time-lens source for CRS imaging. PM: phase modulator, MZ: Mach-Zehnder intensity modulator, DC: dispersion compensator, ML laser: mode-locked laser. The electrical driving signals V(t) and the optical output I(t) from the time-lens source at various stages are illustrated in the figure (not to scale).
Fig. 2
Fig. 2 Simulated time-lens output spectrum (a) and temporal intensity profile after compression (b) with 10-GHz RF drive for the phase modulator.
Fig. 3
Fig. 3 Pulse peak positions (deviation from their nominal positions without timing jitter) of the mode-locked laser (black squares) and the synchronized time-lens source (red circles) of 3 typical simulation runs. Assume σML = 200 fs and the time-lens output is delayed by 9 pulses.
Fig. 4
Fig. 4 RMS timing jitter between the mode-locked laser and the synchronized time-lens source (σsyn) as a function of the intrinsic timing jitter of the mode-locked laser (σML). Black squares: mean values of ten successive runs, error bars: standard deviation. The time-lens output is delayed by 9 pulses.
Fig. 5
Fig. 5 RMS timing jitter between the mode-locked laser and the synchronized time-lens source (σsyn) as a function of the optical delay for various σML. Black squares: mean values of ten successive runs, error bars: standard deviation.
Fig. 6
Fig. 6 RMS timing jitter between the mode-locked laser and the synchronized time-lens source (σsyn) as a function of the intrinsic timing jitter of the mode-locked laser (σML) when there is no optical delay (a). Pulse peak positions (deviation from their nominal positions without timing jitter) of the mode-locked laser (black squares) and the time-lens source (red circles) when there is no optical delay (b), and when the delay is 8 pulses (c). σML = 400 fs for (b) and (c).
Fig. 7
Fig. 7 Pulse peak positions (deviation from their nominal positions without timing jitter) of the mode-locked laser (black squares) and the time-lens source with a 50-MHz bandpass filter (red circles) and a 10-MHz bandpass filter (blue triangles). σML = 400 fs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E 0 exp { i π V p p cos [ ω ( t ) t ] / 2 V π } ,

Metrics