Abstract

We demonstrated an enhanced surface plasmon resonance (SPR) detection by incorporating a nanoporous gold film on a thin gold substrate. Nanoscale control of thickness and roughness of the nanoporous layer was successfully accomplished by oblique angle deposition. In biosensing experiments, the results obtained by biotin-streptavidin interaction showed that SPR samples with a nanoporous gold layer provided a notable sensitivity improvement compared to a conventional bare gold film, which is attributed to an excitation of local plasmon field and an increased surface reaction area. Imaging sensitivity enhancement factor was employed to estimate an overall sensor performance of the fabricated samples and an optimal SPR structure was determined. Our approach is intended to show the feasibility and extend the applicability of the nanoporous gold film-mediated SPR biosensor to diverse biomolecular binding events.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts

L. Malic, B. Cui, T. Veres, and M. Tabrizian
Opt. Lett. 32(21) 3092-3094 (2007)

Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors

Seung Ho Choi, Young L. Kim, and Kyung Min Byun
Opt. Express 19(2) 458-466 (2011)

How to avoid a negative shift in reflection-type surface plasmon resonance biosensors with metallic nanostructures

Nak-Hyeon Kim, Tae Woo Kim, and Kyung Min Byun
Opt. Express 22(4) 4723-4730 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophoton. 1(1), 012501 (2007).
    [Crossref]
  2. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
    [Crossref]
  3. K. M. Byun, “Development of nanostructured plasmonic substrates for enhanced optical biosensing,” J. Opt. Soc. Korea 14(2), 65–76 (2010).
    [Crossref]
  4. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
    [Crossref] [PubMed]
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  6. R. S. Moirangthem, Y.-C. Chang, and P.-K. Wei, “Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application,” Biomed. Opt. Express 2(9), 2569–2576 (2011).
    [Crossref] [PubMed]
  7. W. R. Holland and D. G. Hall, “Surface-plasmon dispersion relation: Shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27(12), 7765–7768 (1983).
    [Crossref]
  8. W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19(11), 1465–1471 (2004).
    [Crossref] [PubMed]
  9. E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
    [Crossref]
  10. R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
    [Crossref]
  11. A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
    [Crossref]
  12. T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8(10), 3450–3455 (2008).
    [Crossref] [PubMed]
  13. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32(13), 1902–1904 (2007).
    [Crossref] [PubMed]
  14. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
    [Crossref] [PubMed]
  15. D. Vicka, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339(1-2), 88–94 (1999).
    [Crossref]
  16. Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
    [Crossref]
  17. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011).
    [Crossref] [PubMed]
  18. H.-Y. Chung, C.-C. Chen, P. C. Wu, M. L. Tseng, W.-C. Lin, C.-W. Chen, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods,” Nanoscale Res. Lett. 9(1), 476 (2014).
    [Crossref] [PubMed]
  19. M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength,” Appl. Opt. 53(7), 1449–1458 (2014).
    [Crossref] [PubMed]
  20. J. DeChancie and K. N. Houk, “The origins of femtomolar protein-ligand binding: Hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site,” J. Am. Chem. Soc. 129(17), 5419–5429 (2007).
    [Crossref] [PubMed]
  21. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
    [Crossref]

2014 (3)

Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
[Crossref]

H.-Y. Chung, C.-C. Chen, P. C. Wu, M. L. Tseng, W.-C. Lin, C.-W. Chen, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods,” Nanoscale Res. Lett. 9(1), 476 (2014).
[Crossref] [PubMed]

M. Tahmasebpour, M. Bahrami, and A. Asgari, “Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength,” Appl. Opt. 53(7), 1449–1458 (2014).
[Crossref] [PubMed]

2011 (2)

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011).
[Crossref] [PubMed]

R. S. Moirangthem, Y.-C. Chang, and P.-K. Wei, “Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application,” Biomed. Opt. Express 2(9), 2569–2576 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[Crossref] [PubMed]

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[Crossref]

2008 (2)

T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8(10), 3450–3455 (2008).
[Crossref] [PubMed]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
[Crossref]

2007 (3)

J. DeChancie and K. N. Houk, “The origins of femtomolar protein-ligand binding: Hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site,” J. Am. Chem. Soc. 129(17), 5419–5429 (2007).
[Crossref] [PubMed]

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32(13), 1902–1904 (2007).
[Crossref] [PubMed]

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophoton. 1(1), 012501 (2007).
[Crossref]

2004 (2)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19(11), 1465–1471 (2004).
[Crossref] [PubMed]

1999 (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

D. Vicka, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339(1-2), 88–94 (1999).
[Crossref]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref] [PubMed]

1983 (1)

W. R. Holland and D. G. Hall, “Surface-plasmon dispersion relation: Shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27(12), 7765–7768 (1983).
[Crossref]

1974 (1)

R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
[Crossref]

1973 (1)

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[Crossref]

Alexander, R. W.

R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
[Crossref]

Arakawa, E. T.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[Crossref]

Asgari, A.

Bahrami, M.

Bell, R. J.

R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
[Crossref]

Brett, M. J.

D. Vicka, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339(1-2), 88–94 (1999).
[Crossref]

Byun, K. M.

Chang, G. L.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19(11), 1465–1471 (2004).
[Crossref] [PubMed]

Chang, Y.-C.

Chen, C.-C.

H.-Y. Chung, C.-C. Chen, P. C. Wu, M. L. Tseng, W.-C. Lin, C.-W. Chen, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods,” Nanoscale Res. Lett. 9(1), 476 (2014).
[Crossref] [PubMed]

Chen, C.-W.

H.-Y. Chung, C.-C. Chen, P. C. Wu, M. L. Tseng, W.-C. Lin, C.-W. Chen, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods,” Nanoscale Res. Lett. 9(1), 476 (2014).
[Crossref] [PubMed]

Chen, S.-J.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19(11), 1465–1471 (2004).
[Crossref] [PubMed]

Chen, W. Y.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19(11), 1465–1471 (2004).
[Crossref] [PubMed]

Chiang, H.-P.

H.-Y. Chung, C.-C. Chen, P. C. Wu, M. L. Tseng, W.-C. Lin, C.-W. Chen, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods,” Nanoscale Res. Lett. 9(1), 476 (2014).
[Crossref] [PubMed]

Chu, Y.

Chung, H.-Y.

H.-Y. Chung, C.-C. Chen, P. C. Wu, M. L. Tseng, W.-C. Lin, C.-W. Chen, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods,” Nanoscale Res. Lett. 9(1), 476 (2014).
[Crossref] [PubMed]

Crozier, K. B.

DeChancie, J.

J. DeChancie and K. N. Houk, “The origins of femtomolar protein-ligand binding: Hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site,” J. Am. Chem. Soc. 129(17), 5419–5429 (2007).
[Crossref] [PubMed]

Dew, S. K.

D. Vicka, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339(1-2), 88–94 (1999).
[Crossref]

Divliansky, I.

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[Crossref]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Friedrich, L. J.

D. Vicka, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339(1-2), 88–94 (1999).
[Crossref]

Fu, J.

Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Ghoshal, A.

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[Crossref]

Gosavi, S. W.

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophoton. 1(1), 012501 (2007).
[Crossref]

Hafner, C.

T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8(10), 3450–3455 (2008).
[Crossref] [PubMed]

Hall, D. G.

W. R. Holland and D. G. Hall, “Surface-plasmon dispersion relation: Shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27(12), 7765–7768 (1983).
[Crossref]

Hamm, R. N.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[Crossref]

He, Y.

Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
[Crossref]

Holland, W. R.

W. R. Holland and D. G. Hall, “Surface-plasmon dispersion relation: Shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27(12), 7765–7768 (1983).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Houk, K. N.

J. DeChancie and K. N. Houk, “The origins of femtomolar protein-ligand binding: Hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site,” J. Am. Chem. Soc. 129(17), 5419–5429 (2007).
[Crossref] [PubMed]

Hsu, J. H.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19(11), 1465–1471 (2004).
[Crossref] [PubMed]

Hu, W. P.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19(11), 1465–1471 (2004).
[Crossref] [PubMed]

Huang, K.-T.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19(11), 1465–1471 (2004).
[Crossref] [PubMed]

Jen, Y.-J.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011).
[Crossref] [PubMed]

Kalele, S. A.

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophoton. 1(1), 012501 (2007).
[Crossref]

Kik, P. G.

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[Crossref]

Kim, D.

Kim, S. J.

Kovener, G. S.

R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
[Crossref]

Kulkarni, S. K.

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophoton. 1(1), 012501 (2007).
[Crossref]

Lai, J.-R.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011).
[Crossref] [PubMed]

Lai, K.-A.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19(11), 1465–1471 (2004).
[Crossref] [PubMed]

Lakhtakia, A.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011).
[Crossref] [PubMed]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref] [PubMed]

Lin, C.-F.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011).
[Crossref] [PubMed]

Lin, M.-J.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011).
[Crossref] [PubMed]

Lin, W.-C.

H.-Y. Chung, C.-C. Chen, P. C. Wu, M. L. Tseng, W.-C. Lin, C.-W. Chen, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods,” Nanoscale Res. Lett. 9(1), 476 (2014).
[Crossref] [PubMed]

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref] [PubMed]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Moirangthem, R. S.

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref] [PubMed]

Ritchie, R. H.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[Crossref]

Robbie, K.

D. Vicka, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339(1-2), 88–94 (1999).
[Crossref]

Sannomiya, T.

T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8(10), 3450–3455 (2008).
[Crossref] [PubMed]

Seto, M.

D. Vicka, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339(1-2), 88–94 (1999).
[Crossref]

Shuler, M. L.

Smy, T.

D. Vicka, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339(1-2), 88–94 (1999).
[Crossref]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Tahmasebpour, M.

Tiwari, N. R.

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophoton. 1(1), 012501 (2007).
[Crossref]

Tseng, M. L.

H.-Y. Chung, C.-C. Chen, P. C. Wu, M. L. Tseng, W.-C. Lin, C.-W. Chen, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods,” Nanoscale Res. Lett. 9(1), 476 (2014).
[Crossref] [PubMed]

Vicka, D.

D. Vicka, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339(1-2), 88–94 (1999).
[Crossref]

Voros, J.

T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8(10), 3450–3455 (2008).
[Crossref] [PubMed]

Wang, S.-H.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011).
[Crossref] [PubMed]

Wei, P.-K.

Williams, M. W.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[Crossref]

Wu, P. C.

H.-Y. Chung, C.-C. Chen, P. C. Wu, M. L. Tseng, W.-C. Lin, C.-W. Chen, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods,” Nanoscale Res. Lett. 9(1), 476 (2014).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yoon, S. J.

Yu, C.-W.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011).
[Crossref] [PubMed]

Zhang, X.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Zhao, Y.

Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[Crossref]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (2)

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19(11), 1465–1471 (2004).
[Crossref] [PubMed]

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref] [PubMed]

Front. Phys. (1)

Y. He, J. Fu, and Y. Zhao, “Oblique angle deposition and its applications in plasmonics,” Front. Phys. 9(1), 47–59 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

J. DeChancie and K. N. Houk, “The origins of femtomolar protein-ligand binding: Hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site,” J. Am. Chem. Soc. 129(17), 5419–5429 (2007).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Nanophoton. (1)

S. A. Kalele, N. R. Tiwari, S. W. Gosavi, and S. K. Kulkarni, “Plasmon-assisted photonics at the nanoscale,” J. Nanophoton. 1(1), 012501 (2007).
[Crossref]

J. Opt. Soc. Korea (1)

Nano Lett. (2)

T. Sannomiya, C. Hafner, and J. Voros, “In situ sensing of single binding events by localized surface plasmon resonance,” Nano Lett. 8(10), 3450–3455 (2008).
[Crossref] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Nanoscale Res. Lett. (1)

H.-Y. Chung, C.-C. Chen, P. C. Wu, M. L. Tseng, W.-C. Lin, C.-W. Chen, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods,” Nanoscale Res. Lett. 9(1), 476 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, and J.-R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2, 363 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

W. R. Holland and D. G. Hall, “Surface-plasmon dispersion relation: Shifts induced by the interaction with localized plasma resonances,” Phys. Rev. B 27(12), 7765–7768 (1983).
[Crossref]

Phys. Rev. Lett. (2)

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31(18), 1127–1129 (1973).
[Crossref]

R. W. Alexander, G. S. Kovener, and R. J. Bell, “Dispersion curves for surface electromagnetic waves with damping,” Phys. Rev. Lett. 32(4), 154–157 (1974).
[Crossref]

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Thin Solid Films (1)

D. Vicka, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie, M. Seto, and T. Smy, “Self-shadowing and surface diffusion effects in obliquely deposited thin films,” Thin Solid Films 339(1-2), 88–94 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustration of OAD method via e-beam evaporation. Before OAD process, a 45-nm-thick gold film is formed on a NSF10 glass substrate after depositing a titanium adhesion film with a thickness of 5 nm. Surface morphology of a gold film can be varied depending on a deposition time of OAD when an incident flux angle is fixed at 80 ̊.
Fig. 2
Fig. 2 Experimental schematic of the proposed SPR system to detect biotin-streptavidin reactions. TM-polarized light with λ = 633 nm is incident through a prism and its reflection intensity is measured by photodetector. Binding event between streptavidin and immobilized biotin occurs on the fabricated SPR sample loaded into a fluidic channel.
Fig. 3
Fig. 3 Side-view and top-view FE-SEM images of bare and nanoporous SPR samples. (a) Conventional bare gold film, (b) OAD-A, (c) OAD-B, and (d) OAD-C.
Fig. 4
Fig. 4 Measured sheet resistance of bare and nanoporous gold films. The results obtained by four-point probe measurement show that a sheet resistance is reduced with an increasing nanoporous gold thickness.
Fig. 5
Fig. 5 AFM images of (a) conventional bare gold film, (b) OAD-A, (c) OAD-B, and (d) OAD-C.
Fig. 6
Fig. 6 SPR curves of the fabricated samples obtained before biotin-streptavidin binding experiment. Resonance angles in PBS ambience are found to be 58.48 ̊ for bare gold film, 58.52 ̊ for OAD-A, 58.93 ̊ for OAD-B, and 61.23 ̊ for OAD-C, respectively.
Fig. 7
Fig. 7 Measured SPR curves for determining the resonance angle change by biotin-streptavidin binding event. The black and red lines indicate the curves before and after streptavidin molecules are bound to immobilized biotins.
Fig. 8
Fig. 8 SPR curves for determining the peak reflectance change by biotin-streptavidin binding event. The dashed red line indicates the incidence angle with a maximum change in reflectance.
Fig. 9
Fig. 9 ASEF and ISEF characteristics of the four SPR samples. The ASEFs (squares in black) and ISEFs (circles in red) are obtained to be 1.25 and 1.25 for OAD-A, 1.67 and 1.58 for OAD-B, and 2.08 and 0.86 for OAD-C, respectively.

Metrics