Abstract

A 4-section semiconductor laser with integrated optical feedback has been shown experimentally to be capable of operating in either the short- or long-cavity regime, by controlling the device relaxation oscillation frequency relative to the external cavity frequency. Systematic increase of the laser injection current, and the resulting increase in relaxation oscillation frequency, allowed the transition between the two regimes of operation to be observed. The system displayed a gradual transition from a dynamic dominated by regular pulse packages in the short-cavity regime to one dominated by broadband chaotic output when operating in the long-cavity regime. This suggests that the “short cavity” regular pulse packages continue to co-exist with the “long cavity” broadband chaotic dynamic in the system studied. It is the relative power associated with each of these dynamics that changes. This may occur more generally in similar systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intensity behavior underlying pulse packages in semiconductor lasers that are subject to optical feedback

Marc Sciamanna, Andrzej Tabaka, Hugo Thienpont, and Krassimir Panajotov
J. Opt. Soc. Am. B 22(4) 777-785 (2005)

Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes

Heming Huang, Lyu-Chih Lin, Chih-Ying Chen, Dejan Arsenijević, Dieter Bimberg, Fan-Yi Lin, and Frédéric Grillot
Opt. Express 26(2) 1743-1751 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity: Feedback Effects on Semiconductor Lasers (John Wiley & Sons, 2005).
  2. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer-Verlag, 2006).
  3. M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
    [Crossref]
  4. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
    [Crossref]
  5. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  6. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [Crossref]
  7. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
    [Crossref] [PubMed]
  8. K. Hicke, M. A. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501610 (2013).
    [Crossref]
  9. A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
    [Crossref] [PubMed]
  10. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
    [Crossref] [PubMed]
  11. R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22(10), 11727–11740 (2014).
    [Crossref] [PubMed]
  12. J.-G. Wu, L.-J. Zhao, Z.-M. Wu, D. Lu, X. Tang, Z.-Q. Zhong, and G.-Q. Xia, “Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip,” Opt. Express 21(20), 23358–23364 (2013).
    [Crossref] [PubMed]
  13. A. A. Tager and B. B. Elenkrig, “Stability regimes and high-frequency modulation of laser diodes with short external cavity,” IEEE J. Quantum Electron. 29(12), 2886–2890 (1993).
    [Crossref]
  14. A. A. Tager and K. Petermann, “High-frequency oscillations and self-mode locking in short external-cavity laser diodes,” IEEE J. Quantum Electron. 30(7), 1553–1561 (1994).
    [Crossref]
  15. A. P. Bogatov, P. G. Eliseev, L. Ivanov, A. S. Logginov, M. A. Manko, and K. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
    [Crossref]
  16. T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
    [Crossref] [PubMed]
  17. T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(6), 066214 (2003).
    [Crossref] [PubMed]
  18. S. Donati and M. T. Fathi, “Transition from short-to-long cavity and from self-mixing to chaos in a delayed optical feedback laser,” IEEE J. Quantum Electron. 48(10), 1352–1359 (2012).
    [Crossref]
  19. S. Donati and R. H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500309 (2013).
    [Crossref]
  20. A. Tabaka, K. Panajotov, I. Veretennicoff, and M. Sciamanna, “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036211 (2004).
    [Crossref] [PubMed]
  21. M. Sciamanna, A. Tabaka, H. Thienpont, and K. Panajotov, “Intensity behavior underlying pulse packages in semiconductor lasers that are subject to optical feedback,” J. Opt. Soc. Am. B 22(4), 777–785 (2005).
    [Crossref]
  22. O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92(4), 043902 (2004).
    [Crossref] [PubMed]
  23. S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
    [Crossref] [PubMed]
  24. J. P. Toomey, C. McMahon, D. M. Kane, A. Argyris, and D. Syvridis, “Complexity of a photonic integrated device for secure chaotic communication,” In preparation (2015).
  25. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, 1988).
  26. T. Sano, “Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback,” Phys. Rev. A 50(3), 2719–2726 (1994).
    [Crossref] [PubMed]
  27. J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81(3), 033820 (2010).
    [Crossref]
  28. M.-W. Pan, B.-P. Shi, and G. R. Gray, “Semiconductor laser dynamics subject to strong optical feedback,” Opt. Lett. 22(3), 166–168 (1997).
    [Crossref] [PubMed]
  29. J. P. Toomey and D. M. Kane, “Low level optical feedback in semiconductor lasers as a tool to identify nonlinear enhancement of device noise,” in Proceedings 2010 Conference on Optoelectronic and Microelectronic Materials & Devices (COMMAD, 2010), pp 55–56 (2010).
    [Crossref]
  30. M. Peil, I. Fischer, and W. Elsäßer, “A short external cavity semiconductor laser cryptosystem,” C. R. Phys. 5(6), 633–642 (2004).
    [Crossref]

2015 (1)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

2014 (1)

2013 (4)

J.-G. Wu, L.-J. Zhao, Z.-M. Wu, D. Lu, X. Tang, Z.-Q. Zhong, and G.-Q. Xia, “Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip,” Opt. Express 21(20), 23358–23364 (2013).
[Crossref] [PubMed]

S. Donati and R. H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500309 (2013).
[Crossref]

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

K. Hicke, M. A. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501610 (2013).
[Crossref]

2012 (1)

S. Donati and M. T. Fathi, “Transition from short-to-long cavity and from self-mixing to chaos in a delayed optical feedback laser,” IEEE J. Quantum Electron. 48(10), 1352–1359 (2012).
[Crossref]

2010 (3)

2008 (2)

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[Crossref] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

2005 (2)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

M. Sciamanna, A. Tabaka, H. Thienpont, and K. Panajotov, “Intensity behavior underlying pulse packages in semiconductor lasers that are subject to optical feedback,” J. Opt. Soc. Am. B 22(4), 777–785 (2005).
[Crossref]

2004 (4)

O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92(4), 043902 (2004).
[Crossref] [PubMed]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
[Crossref] [PubMed]

M. Peil, I. Fischer, and W. Elsäßer, “A short external cavity semiconductor laser cryptosystem,” C. R. Phys. 5(6), 633–642 (2004).
[Crossref]

A. Tabaka, K. Panajotov, I. Veretennicoff, and M. Sciamanna, “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036211 (2004).
[Crossref] [PubMed]

2003 (1)

T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(6), 066214 (2003).
[Crossref] [PubMed]

2001 (1)

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

1997 (1)

1994 (2)

T. Sano, “Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback,” Phys. Rev. A 50(3), 2719–2726 (1994).
[Crossref] [PubMed]

A. A. Tager and K. Petermann, “High-frequency oscillations and self-mode locking in short external-cavity laser diodes,” IEEE J. Quantum Electron. 30(7), 1553–1561 (1994).
[Crossref]

1993 (1)

A. A. Tager and B. B. Elenkrig, “Stability regimes and high-frequency modulation of laser diodes with short external cavity,” IEEE J. Quantum Electron. 29(12), 2886–2890 (1993).
[Crossref]

1973 (1)

A. P. Bogatov, P. G. Eliseev, L. Ivanov, A. S. Logginov, M. A. Manko, and K. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Akizawa, Y.

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Arai, K.

Argyris, A.

A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
[Crossref] [PubMed]

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
[Crossref] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[Crossref] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Bauer, S.

O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92(4), 043902 (2004).
[Crossref] [PubMed]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
[Crossref] [PubMed]

Bogatov, A. P.

A. P. Bogatov, P. G. Eliseev, L. Ivanov, A. S. Logginov, M. A. Manko, and K. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Bogris, A.

Brox, O.

O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92(4), 043902 (2004).
[Crossref] [PubMed]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
[Crossref] [PubMed]

Brunner, D.

K. Hicke, M. A. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501610 (2013).
[Crossref]

Chlouverakis, K. E.

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[Crossref] [PubMed]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Davis, P.

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22(10), 11727–11740 (2014).
[Crossref] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Deligiannidis, S.

Donati, S.

S. Donati and R. H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500309 (2013).
[Crossref]

S. Donati and M. T. Fathi, “Transition from short-to-long cavity and from self-mixing to chaos in a delayed optical feedback laser,” IEEE J. Quantum Electron. 48(10), 1352–1359 (2012).
[Crossref]

Elenkrig, B. B.

A. A. Tager and B. B. Elenkrig, “Stability regimes and high-frequency modulation of laser diodes with short external cavity,” IEEE J. Quantum Electron. 29(12), 2886–2890 (1993).
[Crossref]

Eliseev, P. G.

A. P. Bogatov, P. G. Eliseev, L. Ivanov, A. S. Logginov, M. A. Manko, and K. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Elsäßer, W.

M. Peil, I. Fischer, and W. Elsäßer, “A short external cavity semiconductor laser cryptosystem,” C. R. Phys. 5(6), 633–642 (2004).
[Crossref]

T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(6), 066214 (2003).
[Crossref] [PubMed]

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

Escalona-Moran, M. A.

K. Hicke, M. A. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501610 (2013).
[Crossref]

Fathi, M. T.

S. Donati and M. T. Fathi, “Transition from short-to-long cavity and from self-mixing to chaos in a delayed optical feedback laser,” IEEE J. Quantum Electron. 48(10), 1352–1359 (2012).
[Crossref]

Fischer, I.

K. Hicke, M. A. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501610 (2013).
[Crossref]

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

M. Peil, I. Fischer, and W. Elsäßer, “A short external cavity semiconductor laser cryptosystem,” C. R. Phys. 5(6), 633–642 (2004).
[Crossref]

T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(6), 066214 (2003).
[Crossref] [PubMed]

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

García-Ojalvo, J.

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81(3), 033820 (2010).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Gavrielides, A.

T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(6), 066214 (2003).
[Crossref] [PubMed]

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

Gray, G. R.

Green, K.

T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(6), 066214 (2003).
[Crossref] [PubMed]

Grivas, E.

Hamacher, M.

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
[Crossref] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[Crossref] [PubMed]

Harayama, T.

Heil, T.

T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(6), 066214 (2003).
[Crossref] [PubMed]

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

Henneberger, F.

O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92(4), 043902 (2004).
[Crossref] [PubMed]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
[Crossref] [PubMed]

Hicke, K.

K. Hicke, M. A. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501610 (2013).
[Crossref]

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Horng, R. H.

S. Donati and R. H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500309 (2013).
[Crossref]

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Ivanov, L.

A. P. Bogatov, P. G. Eliseev, L. Ivanov, A. S. Logginov, M. A. Manko, and K. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Krauskopf, B.

T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(6), 066214 (2003).
[Crossref] [PubMed]

Kreissl, J.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
[Crossref] [PubMed]

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Logginov, A. S.

A. P. Bogatov, P. G. Eliseev, L. Ivanov, A. S. Logginov, M. A. Manko, and K. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Lu, D.

Manko, M. A.

A. P. Bogatov, P. G. Eliseev, L. Ivanov, A. S. Logginov, M. A. Manko, and K. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Masoller, C.

J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81(3), 033820 (2010).
[Crossref]

Mirasso, C. R.

K. Hicke, M. A. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501610 (2013).
[Crossref]

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Pan, M.-W.

Panajotov, K.

M. Sciamanna, A. Tabaka, H. Thienpont, and K. Panajotov, “Intensity behavior underlying pulse packages in semiconductor lasers that are subject to optical feedback,” J. Opt. Soc. Am. B 22(4), 777–785 (2005).
[Crossref]

A. Tabaka, K. Panajotov, I. Veretennicoff, and M. Sciamanna, “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036211 (2004).
[Crossref] [PubMed]

Peil, M.

M. Peil, I. Fischer, and W. Elsäßer, “A short external cavity semiconductor laser cryptosystem,” C. R. Phys. 5(6), 633–642 (2004).
[Crossref]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Petermann, K.

A. A. Tager and K. Petermann, “High-frequency oscillations and self-mode locking in short external-cavity laser diodes,” IEEE J. Quantum Electron. 30(7), 1553–1561 (1994).
[Crossref]

Pikasis, E.

Radziunas, M.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
[Crossref] [PubMed]

Sano, T.

T. Sano, “Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback,” Phys. Rev. A 50(3), 2719–2726 (1994).
[Crossref] [PubMed]

Sartorius, B.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
[Crossref] [PubMed]

Sciamanna, M.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

M. Sciamanna, A. Tabaka, H. Thienpont, and K. Panajotov, “Intensity behavior underlying pulse packages in semiconductor lasers that are subject to optical feedback,” J. Opt. Soc. Am. B 22(4), 777–785 (2005).
[Crossref]

A. Tabaka, K. Panajotov, I. Veretennicoff, and M. Sciamanna, “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036211 (2004).
[Crossref] [PubMed]

Senatorov, K.

A. P. Bogatov, P. G. Eliseev, L. Ivanov, A. S. Logginov, M. A. Manko, and K. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

Shi, B.-P.

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Shore, K. A.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Sieber, J.

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
[Crossref] [PubMed]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Soriano, M. C.

K. Hicke, M. A. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501610 (2013).
[Crossref]

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

Sunada, S.

Syvridis, D.

A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
[Crossref] [PubMed]

A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express 18(5), 5188–5198 (2010).
[Crossref] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[Crossref] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Tabaka, A.

M. Sciamanna, A. Tabaka, H. Thienpont, and K. Panajotov, “Intensity behavior underlying pulse packages in semiconductor lasers that are subject to optical feedback,” J. Opt. Soc. Am. B 22(4), 777–785 (2005).
[Crossref]

A. Tabaka, K. Panajotov, I. Veretennicoff, and M. Sciamanna, “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036211 (2004).
[Crossref] [PubMed]

Tager, A. A.

A. A. Tager and K. Petermann, “High-frequency oscillations and self-mode locking in short external-cavity laser diodes,” IEEE J. Quantum Electron. 30(7), 1553–1561 (1994).
[Crossref]

A. A. Tager and B. B. Elenkrig, “Stability regimes and high-frequency modulation of laser diodes with short external cavity,” IEEE J. Quantum Electron. 29(12), 2886–2890 (1993).
[Crossref]

Takahashi, R.

Tang, X.

Thienpont, H.

Tsuzuki, K.

Uchida, A.

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22(10), 11727–11740 (2014).
[Crossref] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Ushakov, O.

O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92(4), 043902 (2004).
[Crossref] [PubMed]

Veretennicoff, I.

A. Tabaka, K. Panajotov, I. Veretennicoff, and M. Sciamanna, “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036211 (2004).
[Crossref] [PubMed]

Wu, J.-G.

Wu, Z.-M.

Wünsche, H. J.

O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92(4), 043902 (2004).
[Crossref] [PubMed]

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
[Crossref] [PubMed]

Xia, G.-Q.

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Yoshimura, K.

R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai, K. Yoshimura, and P. Davis, “Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation,” Opt. Express 22(10), 11727–11740 (2014).
[Crossref] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Zamora-Munt, J.

J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81(3), 033820 (2010).
[Crossref]

Zhao, L.-J.

Zhong, Z.-Q.

C. R. Phys. (1)

M. Peil, I. Fischer, and W. Elsäßer, “A short external cavity semiconductor laser cryptosystem,” C. R. Phys. 5(6), 633–642 (2004).
[Crossref]

IEEE J. Quantum Electron. (4)

S. Donati and M. T. Fathi, “Transition from short-to-long cavity and from self-mixing to chaos in a delayed optical feedback laser,” IEEE J. Quantum Electron. 48(10), 1352–1359 (2012).
[Crossref]

A. A. Tager and B. B. Elenkrig, “Stability regimes and high-frequency modulation of laser diodes with short external cavity,” IEEE J. Quantum Electron. 29(12), 2886–2890 (1993).
[Crossref]

A. A. Tager and K. Petermann, “High-frequency oscillations and self-mode locking in short external-cavity laser diodes,” IEEE J. Quantum Electron. 30(7), 1553–1561 (1994).
[Crossref]

A. P. Bogatov, P. G. Eliseev, L. Ivanov, A. S. Logginov, M. A. Manko, and K. Senatorov, “Study of the single-mode injection laser,” IEEE J. Quantum Electron. 9(2), 392–394 (1973).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Hicke, M. A. Escalona-Moran, D. Brunner, M. C. Soriano, I. Fischer, and C. R. Mirasso, “Information processing using transient dynamics of semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501610 (2013).
[Crossref]

S. Donati and R. H. Horng, “The diagram of feedback regimes revisited,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500309 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (2)

T. Sano, “Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback,” Phys. Rev. A 50(3), 2719–2726 (1994).
[Crossref] [PubMed]

J. Zamora-Munt, C. Masoller, and J. García-Ojalvo, “Transient low-frequency fluctuations in semiconductor lasers with optical feedback,” Phys. Rev. A 81(3), 033820 (2010).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016206 (2004).
[Crossref] [PubMed]

A. Tabaka, K. Panajotov, I. Veretennicoff, and M. Sciamanna, “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036211 (2004).
[Crossref] [PubMed]

T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: bifurcation scenarios and mechanisms,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(6), 066214 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Phys. Rev. Lett. 87(24), 243901 (2001).
[Crossref] [PubMed]

A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100(19), 194101 (2008).
[Crossref] [PubMed]

O. Ushakov, S. Bauer, O. Brox, H. J. Wünsche, and F. Henneberger, “Self-organization in semiconductor lasers with ultrashort optical feedback,” Phys. Rev. Lett. 92(4), 043902 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85(1), 421–470 (2013).
[Crossref]

Other (5)

D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity: Feedback Effects on Semiconductor Lasers (John Wiley & Sons, 2005).

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer-Verlag, 2006).

J. P. Toomey, C. McMahon, D. M. Kane, A. Argyris, and D. Syvridis, “Complexity of a photonic integrated device for secure chaotic communication,” In preparation (2015).

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, 1988).

J. P. Toomey and D. M. Kane, “Low level optical feedback in semiconductor lasers as a tool to identify nonlinear enhancement of device noise,” in Proceedings 2010 Conference on Optoelectronic and Microelectronic Materials & Devices (COMMAD, 2010), pp 55–56 (2010).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (8311 KB)      Animation showing the evolution of the RF spectrum as the system transitions from SCR to LCR.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the PIC laser device that includes an InGaAsP DFB laser (λ = 1561 nm), a 200 μm gain/absorption section, a phase section and a 1 cm passive waveguide. After [9].
Fig. 2
Fig. 2 (a) Smoothed fast Fourier transform of all the time series for DFB section current varying from IDFB = 15 mA to 50 mA and fixed G/A section bias VGAS = −2V and phase section current IPH = 0 mA, (b) relaxation oscillation frequency, as determined from the FFT peak, as a function of IDFB, and (c) the linear relationship between the fRO and the square root of (IDFB minus the laser threshold current Ith).
Fig. 3
Fig. 3 (a) Output power time series showing regular pulse packages for the device operating in a short-cavity regime (IDFB = 15 mA, IGAS = 6.7 mA, IPH = 0 mA). The inset shows a close up of 2 of these packages which consist of pulses occurring at the external cavity round trip interval. (b) The RF spectrum (FFT of the time series) highlighting the peaks corresponding to the RPP frequency (fRPP) and the external cavity frequency (fext).
Fig. 4
Fig. 4 (a) Output power time series showing chaotic dynamics for the device operating in the long-cavity regime (IDFB = 50 mA, IGAS = 6.7 mA, IPH = 0 mA). The inset shows a close up of chaotic power fluctuations. (b) The RF spectrum (FFT of the time series) highlighting the broadband nature of the dynamics with the main peak at the external cavity frequency (fext).
Fig. 5
Fig. 5 (a) RF spectra (FFT) as a function of DFB laser section current for IGAS = 6.7 mA and IPH = 0 mA. (b) The amplitude difference between the RPP frequency peak and the baseline of the spectra (taken as the minima of the spectral region between 1.5 and 3.5 GHz). This power ratio diminishes primarily because the power level of the broadband chaos is increasing. (c) The frequency of the RPP as a function of DFB section current (taken as the FFT maxima for f < 2 GHz) for two different smoothing windows: 2% and 5% of the data.
Fig. 6
Fig. 6 A frame from Visualization 1 showing the location of the main RPP peak the secondary subsidiary peak, the first external cavity peak and the relative difference between the RPP peak and the background level.
Fig. 7
Fig. 7 (a) The RMS amplitude of the experimental time series for the PIC laser operating in SCR (IDFB = 15.5 mA) with varying feedback phase (IPH) and feedback level (IGAS). Example time series for IGAS = 9.0 mA and (b) IPH = 3.9 mA, (c) IPH = 4.2 mA, and (d) IPH = 5.0 mA.
Fig. 8
Fig. 8 The RMS amplitude of the experimental time series for the PIC laser operating in LCR (IDFB = 50 mA) with varying feedback phase (IPH) and feedback level (IGAS).

Metrics