Abstract

Scattering-type scanning near-field optical microscopy (s-SNOM) is applied to investigate three-dimensional optical near field distribution, including both amplitude and phase information. A method analogous to the force volume mode of the atomic force microscopy (AFM) technique is adapted for the measurement. The results show high lateral resolution of tens of nanometers, and even higher vertical resolution of only a few nanometers. The experiment results provide a straightforward illustration of the optical near fields in the space above the sample surface. Numerical computations support the experimental data. The ability to map the 3D optical near filed helps to reveal the factors that influence the performance of the designed near-field structures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional mapping of optical near field of a nanoscale bowtie antenna

Rui Guo, Edward C. Kinzel, Yan Li, Sreemanth M. Uppuluri, Arvind Raman, and Xianfan Xu
Opt. Express 18(5) 4961-4971 (2010)

Reflection-mode scanning near-field optical microscopy using an apertureless metallic tip

R. Bachelot, P. Gleyzes, and A. C. Boccara
Appl. Opt. 36(10) 2160-2170 (1997)

Resolving near-field from high order signals of scattering near-field scanning optical microscopy

Nan Zhou, Yan Li, and Xianfan Xu
Opt. Express 22(15) 18715-18723 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [Crossref]
  2. S. M. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
    [Crossref] [PubMed]
  3. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
    [Crossref] [PubMed]
  4. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
    [Crossref] [PubMed]
  5. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007).
    [Crossref] [PubMed]
  6. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
    [Crossref] [PubMed]
  7. G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” in Plasmonics, S. Enoch and N. Bonod, eds., (Springer, 2012).
  8. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
    [Crossref]
  9. R. Guo, E. C. Kinzel, Y. Li, S. M. Uppuluri, A. Raman, and X. Xu, “Three-dimensional mapping of optical near field of a nanoscale bowtie antenna,” Opt. Express 18(5), 4961–4971 (2010).
    [Crossref] [PubMed]
  10. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. A Math. 362(1817), 787–805 (2004).
    [Crossref]
  11. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114(16), 7341–7345 (2010).
    [Crossref]
  12. M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
    [Crossref] [PubMed]
  13. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
    [Crossref] [PubMed]
  14. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
    [Crossref] [PubMed]
  15. R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105(16), 167403 (2010).
    [Crossref] [PubMed]
  16. H. J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope: technique, interpretation and applications,” Surf. Sci. Rep. 59(1-6), 1–152 (2005).
    [Crossref]
  17. N. Zhou, Y. Li, and X. Xu, “Resolving near-field from high order signals of scattering near-field scanning optical microscopy,” Opt. Express 22(15), 18715–18723 (2014).
    [Crossref] [PubMed]
  18. Y. Li, N. Zhou, E. C. Kinzel, X. Ren, and X. Xu, “The origin of interferometric effect involving surface plasmon polariton in scattering near-field scanning optical microscopy,” Opt. Express 22(3), 2965–2972 (2014).
    [Crossref] [PubMed]
  19. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
    [Crossref]
  20. S. Hu and A. Raman, “Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy,” Nanotechnology 19(37), 375704 (2008).
    [Crossref] [PubMed]
  21. R. García and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999).
    [Crossref]
  22. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
    [Crossref]
  23. E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
    [Crossref]
  24. H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
    [Crossref]
  25. Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater. 8(3), 181–185 (2007).
    [Crossref]

2014 (3)

2012 (1)

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

2011 (1)

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

2010 (5)

R. Guo, E. C. Kinzel, Y. Li, S. M. Uppuluri, A. Raman, and X. Xu, “Three-dimensional mapping of optical near field of a nanoscale bowtie antenna,” Opt. Express 18(5), 4961–4971 (2010).
[Crossref] [PubMed]

S. M. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
[Crossref] [PubMed]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105(16), 167403 (2010).
[Crossref] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114(16), 7341–7345 (2010).
[Crossref]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

2008 (2)

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

S. Hu and A. Raman, “Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy,” Nanotechnology 19(37), 375704 (2008).
[Crossref] [PubMed]

2007 (2)

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater. 8(3), 181–185 (2007).
[Crossref]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007).
[Crossref] [PubMed]

2006 (3)

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[Crossref]

2005 (2)

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

H. J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope: technique, interpretation and applications,” Surf. Sci. Rep. 59(1-6), 1–152 (2005).
[Crossref]

2004 (2)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. A Math. 362(1817), 787–805 (2004).
[Crossref]

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[Crossref] [PubMed]

2000 (1)

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

1999 (1)

R. García and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999).
[Crossref]

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Aizpurua, J.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114(16), 7341–7345 (2010).
[Crossref]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

Alkorta, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

Bechtel, H. A.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Bogy, D. B.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Boreman, G. D.

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105(16), 167403 (2010).
[Crossref] [PubMed]

Borisov, A.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114(16), 7341–7345 (2010).
[Crossref]

Bour, D.

Butt, H. J.

H. J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope: technique, interpretation and applications,” Surf. Sci. Rep. 59(1-6), 1–152 (2005).
[Crossref]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Capasso, F.

Cappella, B.

H. J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope: technique, interpretation and applications,” Surf. Sci. Rep. 59(1-6), 1–152 (2005).
[Crossref]

Chow, E. K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Corzine, S.

Crozier, K. B.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114(16), 7341–7345 (2010).
[Crossref]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007).
[Crossref] [PubMed]

Cubukcu, E.

Deryckx, K. S.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Diehl, L.

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

García, R.

R. García and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999).
[Crossref]

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114(16), 7341–7345 (2010).
[Crossref]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

Guo, R.

Hara, S.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater. 8(3), 181–185 (2007).
[Crossref]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[Crossref] [PubMed]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[Crossref] [PubMed]

Hillenbrand, R.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114(16), 7341–7345 (2010).
[Crossref]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. A Math. 362(1817), 787–805 (2004).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

Höfler, G.

Hu, S.

S. Hu and A. Raman, “Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy,” Nanotechnology 19(37), 375704 (2008).
[Crossref] [PubMed]

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Huber, A. J.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114(16), 7341–7345 (2010).
[Crossref]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[Crossref] [PubMed]

Inoue, H.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater. 8(3), 181–185 (2007).
[Crossref]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[Crossref] [PubMed]

Jin, E. X.

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[Crossref]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

Jones, A. C.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Kappl, M.

H. J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope: technique, interpretation and applications,” Surf. Sci. Rep. 59(1-6), 1–152 (2005).
[Crossref]

Kataoka, T.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater. 8(3), 181–185 (2007).
[Crossref]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[Crossref] [PubMed]

Keilmann, F.

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. A Math. 362(1817), 787–805 (2004).
[Crossref]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

Kinzel, E. C.

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Krenz, P. M.

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105(16), 167403 (2010).
[Crossref] [PubMed]

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Lail, B. A.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105(16), 167403 (2010).
[Crossref] [PubMed]

Li, Y.

Li, Z. Y.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Nakano, M.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater. 8(3), 181–185 (2007).
[Crossref]

Ocelic, N.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Okuda, M.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater. 8(3), 181–185 (2007).
[Crossref]

Olmon, R. L.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105(16), 167403 (2010).
[Crossref] [PubMed]

Oshikane, Y.

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater. 8(3), 181–185 (2007).
[Crossref]

Pan, L.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Park, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Raman, A.

R. Guo, E. C. Kinzel, Y. Li, S. M. Uppuluri, A. Raman, and X. Xu, “Three-dimensional mapping of optical near field of a nanoscale bowtie antenna,” Opt. Express 18(5), 4961–4971 (2010).
[Crossref] [PubMed]

S. Hu and A. Raman, “Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy,” Nanotechnology 19(37), 375704 (2008).
[Crossref] [PubMed]

Rang, M.

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105(16), 167403 (2010).
[Crossref] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Raschke, M. B.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105(16), 167403 (2010).
[Crossref] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Ren, X.

Rho, J.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

San Paulo, A.

R. García and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999).
[Crossref]

Saraf, L. V.

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105(16), 167403 (2010).
[Crossref] [PubMed]

Schnell, M.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114(16), 7341–7345 (2010).
[Crossref]

Sun, C.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Toussaint, K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Ulin-Avila, E.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Uppuluri, S. M.

Wang, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Wiley, B. J.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Xia, Y.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Xiong, S.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Xiong, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Xu, X.

Xu, X. G.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Xu, Y.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Yang, H. U.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Yu, N.

Zeng, L.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Zhang, X.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Zhou, F.

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

Zhou, N.

Zhu, J.

ACS Photonics (1)

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet’s principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Appl. Phys. B (1)

E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[Crossref]

Appl. Phys. Lett. (3)

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

J. Phys. Chem. C (1)

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, A. Borisov, J. Aizpurua, and R. Hillenbrand, “Amplitude- and phase-resolved near-field mapping of infrared antenna modes by transmission-mode scattering-type near-field microscopy,” J. Phys. Chem. C 114(16), 7341–7345 (2010).
[Crossref]

Nano Lett. (3)

M. Rang, A. C. Jones, F. Zhou, Z. Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[Crossref] [PubMed]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

S. Hu and A. Raman, “Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy,” Nanotechnology 19(37), 375704 (2008).
[Crossref] [PubMed]

Opt. Express (5)

Philos. Trans. A Math. (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. A Math. 362(1817), 787–805 (2004).
[Crossref]

Phys. Rev. B (1)

R. García and A. San Paulo, “Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy,” Phys. Rev. B 60(7), 4961–4967 (1999).
[Crossref]

Phys. Rev. Lett. (3)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004).
[Crossref] [PubMed]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[Crossref] [PubMed]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer,” Phys. Rev. Lett. 105(16), 167403 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe,” Sci. Technol. Adv. Mater. 8(3), 181–185 (2007).
[Crossref]

Surf. Sci. Rep. (1)

H. J. Butt, B. Cappella, and M. Kappl, “Force measurements with the atomic force microscope: technique, interpretation and applications,” Surf. Sci. Rep. 59(1-6), 1–152 (2005).
[Crossref]

Other (1)

G. Lérondel, S. Kostcheev, and J. Plain, “Nanofabrication for plasmonics,” in Plasmonics, S. Enoch and N. Bonod, eds., (Springer, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) An illustration of the scanning process. (b) SEM images of fabricated bowtie aperture taken at an angle of 52 degrees from the side.
Fig. 2
Fig. 2 The tip oscillation amplitude approach curve with the nearest tip-sample distance (a) and the tip oscillation phase approach curve with the nearest tip sample distance (b).
Fig. 3
Fig. 3 The optical amplitude (a) and phase (b) images in XZ plane across bowtie aperture. The optical amplitude (c) and phase (d) images in XY plane at Z = 0. The sizes of (c) and (d) are 400 nm × 100 nm. The white scale bar in (e) is 50 nm.
Fig. 4
Fig. 4 (a) The simulation model of the bowtie aperture and (b) the calculated optical Ez field in the XY plane. The simulated (c) amplitude and (d) phase of Ez above the top surface of the bowtie in the XZ plane. Scale bar in (a): 100 nm. The sizes of (c) and (d) are 400 nm × 30 nm.
Fig. 5
Fig. 5 The measured and calculated optical field curves in the Z direction.

Metrics