Abstract

In this work, the simultaneous presence of saturable (SA) and two-photon absorption (TPA) in zinc nanoparticles (ZnNPs) photodeposited onto the core of an optical fiber was studied in the nanosecond regime with the P-scan method using a high gain pulsed erbium-doped fiber amplifier. An analysis based on Mie theory was carried out to demonstrate the influence of the absorption coefficient with the particles sizes in the proximity of surface plasmon resonance (SPR). The shift from TPA to SA has been observed as the irradiance is increased. It was found that for irradiances lower than 5 MW/cm2, TPA is dominant, whereas for irradiances higher than 5 MW/cm2, the SA becomes dominant. Furthermore, the values of the nonlinear absorption coefficient and the imaginary part of third-order nonlinear optical susceptibility were calculated numerically from the transmittance measured. Such TPA makes ZnNPs a candidate for optical limiting applications, and SA makes them a candidate for applications in pulsed fiber laser systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence on the saturable absorption of the induced losses by photodeposition of zinc nanoparticles in an optical fiber

L. C. Gómez-Pavón, G. J. Lozano-Perera, A. Luis-Ramos, J. M. Muñoz-Pacheco, J. P. Padilla-Martínez, and P. Zaca-Morán
Opt. Express 26(2) 1556-1563 (2018)

Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia
Opt. Express 21(5) 6509-6518 (2013)

Nondegenerate two-photon absorption in a zinc blende-type ZnS single crystal using the femtosecond pump–probe technique

Shu Chen, Mei-Ling Zheng, Xian-Zi Dong, Zhen-Sheng Zhao, and Xuan-Ming Duan
J. Opt. Soc. Am. B 30(12) 3117-3122 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. S. He, W.-C. Law, A. Baev, S. Liu, M. T. Swihart, and P. N. Prasad, “Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions,” J. Chem. Phys. 138(2), 024202 (2013).
    [Crossref] [PubMed]
  2. M. Halonen, A. A. Lipovskii, and Y. P. Svirko, “Femtosecond absorption dynamics in glass-metal nanocomposites,” Opt. Express 15(11), 6840–6845 (2007).
    [Crossref] [PubMed]
  3. R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low-and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
    [Crossref]
  4. P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
    [Crossref]
  5. J. Gupta, C. Vijayan, S. K. Maurya, and D. Goswami, “Efficient ultrafast optical limiting using single walled carbon nanotubes functionalized noncovalently with free base and metalloporphyrins,” J. Appl. Phys. 109(11), 113101 (2011).
    [Crossref]
  6. G. X. Chen and M. H. Hong, “Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles,” Appl. Phys., A Mater. Sci. Process. 101(3), 467–470 (2010).
    [Crossref]
  7. N. V. Kamanina, A. I. Plekhanov, S. V. Serov, V. P. Savinov, P. Shalin, and F. Kajzar, “Correlation between photoconductive and nonlinear optical characteristics of fullerene-and nanotubes-doped organic composites,” Nonlinear Opt., Quantum Opt. 40(1), 307–377 (2010).
  8. N. V. Kamanina, S. V. Serov, and V. P. Savinov, “Photorefractive properties of nanostructured organic materials doped with fullerenes and carbon nanotubes,” Tech. Phys. Lett. 36(1), 40–42 (2010).
    [Crossref]
  9. E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin, “The nature of enhanced linear and nonlinear optical effects in fullerene solutions,” J. Exp. Theor. Phys. 108(5), 738–750 (2009).
    [Crossref]
  10. M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
    [Crossref] [PubMed]
  11. A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Semiconductor-doped glass saturable absorbers for near-infrared solid state lasers,” J. Appl. Phys. 103(8), 081301 (2008).
    [Crossref]
  12. D. K. Mynbaev and V. Sukharenko, “Plasmonic-based devices for optical communications,” Int. J. High Speed Electron. Syst. 21(1), 1250006 (2012).
    [Crossref]
  13. Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
    [Crossref]
  14. C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
    [Crossref]
  15. G. Ma, J. He, S.-H. Tang, W. Sun, and Z. Shen, “Size-dependence of nonlinearity in metal: Dielectric composite system induced by local field enhancement,” J. Nonlinear Opt. Phys. Mater. 12(2), 149–155 (2003).
    [Crossref]
  16. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
    [Crossref]
  17. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [Crossref]
  18. S. Zhu and W. Zhou, “Optical properties and immunoassay applications of noble metal nanoparticles,” J. Nanomater. 2010, 1–12 (2010).
  19. H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
    [Crossref] [PubMed]
  20. J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
    [PubMed]
  21. I. Calizo, K. A. Alim, V. A. Fonoberov, S. Krishnakumar, M. Shamsa, A. A. Balandin, and R. Kurtz, “Micro-Raman spectroscopic characterization of ZnO quantum dots, nanocrystals and nanowires,” Proc. SPIE 6481, 64810N (2007).
  22. J. Zhu, J.-J. Li, and J.-W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99(10), 101901 (2011).
    [Crossref]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Chap. 4.
  24. M. P. Silverman, Waves and Grains (Princeton, 1998), Chap. 13.
  25. R. Rangel-Rojo, S. Yamada, H. Matsuda, H. Kasai, H. Nakanishi, A. K. Kar, and B. S. Wherrett, “Spectrally resolved third-order nonlinearities in polydiacetylene microcrystals: influence of particle size,” J. Opt. Soc. Am. B 15(12), 2937–2945 (1998).
    [Crossref]
  26. M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(7), 43–49 (2012).
  27. L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3–4), 547–556 (2008).
    [Crossref]
  28. J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
    [Crossref] [PubMed]
  29. R. Kuladeep, L. Jyothi, P. Prakash, S. M. Shekhar, M. D. Prasad, and D. N. Rao, “Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media,” J. Appl. Phys. 114(24), 243101 (2013).
    [Crossref]
  30. G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. Appl. Phys. 109(2), 023102 (2011).
    [Crossref]
  31. Y. H. Lee, Y. Yan, L. Polavarapu, and Q.-H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95(2), 023105 (2009).
    [Crossref]
  32. H. Morkoc and U. Ozgur, Zinc Oxide, Fundamentals, Materials and Device Technology (Wiley, 2007), Chap. 3.

2013 (4)

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

G. S. He, W.-C. Law, A. Baev, S. Liu, M. T. Swihart, and P. N. Prasad, “Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions,” J. Chem. Phys. 138(2), 024202 (2013).
[Crossref] [PubMed]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[PubMed]

R. Kuladeep, L. Jyothi, P. Prakash, S. M. Shekhar, M. D. Prasad, and D. N. Rao, “Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media,” J. Appl. Phys. 114(24), 243101 (2013).
[Crossref]

2012 (3)

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref] [PubMed]

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(7), 43–49 (2012).

D. K. Mynbaev and V. Sukharenko, “Plasmonic-based devices for optical communications,” Int. J. High Speed Electron. Syst. 21(1), 1250006 (2012).
[Crossref]

2011 (4)

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

J. Gupta, C. Vijayan, S. K. Maurya, and D. Goswami, “Efficient ultrafast optical limiting using single walled carbon nanotubes functionalized noncovalently with free base and metalloporphyrins,” J. Appl. Phys. 109(11), 113101 (2011).
[Crossref]

J. Zhu, J.-J. Li, and J.-W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99(10), 101901 (2011).
[Crossref]

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. Appl. Phys. 109(2), 023102 (2011).
[Crossref]

2010 (4)

G. X. Chen and M. H. Hong, “Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles,” Appl. Phys., A Mater. Sci. Process. 101(3), 467–470 (2010).
[Crossref]

N. V. Kamanina, A. I. Plekhanov, S. V. Serov, V. P. Savinov, P. Shalin, and F. Kajzar, “Correlation between photoconductive and nonlinear optical characteristics of fullerene-and nanotubes-doped organic composites,” Nonlinear Opt., Quantum Opt. 40(1), 307–377 (2010).

N. V. Kamanina, S. V. Serov, and V. P. Savinov, “Photorefractive properties of nanostructured organic materials doped with fullerenes and carbon nanotubes,” Tech. Phys. Lett. 36(1), 40–42 (2010).
[Crossref]

S. Zhu and W. Zhou, “Optical properties and immunoassay applications of noble metal nanoparticles,” J. Nanomater. 2010, 1–12 (2010).

2009 (2)

E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin, “The nature of enhanced linear and nonlinear optical effects in fullerene solutions,” J. Exp. Theor. Phys. 108(5), 738–750 (2009).
[Crossref]

Y. H. Lee, Y. Yan, L. Polavarapu, and Q.-H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95(2), 023105 (2009).
[Crossref]

2008 (4)

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3–4), 547–556 (2008).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low-and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Semiconductor-doped glass saturable absorbers for near-infrared solid state lasers,” J. Appl. Phys. 103(8), 081301 (2008).
[Crossref]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[Crossref]

2007 (3)

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

I. Calizo, K. A. Alim, V. A. Fonoberov, S. Krishnakumar, M. Shamsa, A. A. Balandin, and R. Kurtz, “Micro-Raman spectroscopic characterization of ZnO quantum dots, nanocrystals and nanowires,” Proc. SPIE 6481, 64810N (2007).

M. Halonen, A. A. Lipovskii, and Y. P. Svirko, “Femtosecond absorption dynamics in glass-metal nanocomposites,” Opt. Express 15(11), 6840–6845 (2007).
[Crossref] [PubMed]

2006 (1)

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[Crossref] [PubMed]

2004 (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

2003 (1)

G. Ma, J. He, S.-H. Tang, W. Sun, and Z. Shen, “Size-dependence of nonlinearity in metal: Dielectric composite system induced by local field enhancement,” J. Nonlinear Opt. Phys. Mater. 12(2), 149–155 (2003).
[Crossref]

1998 (2)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

R. Rangel-Rojo, S. Yamada, H. Matsuda, H. Kasai, H. Nakanishi, A. K. Kar, and B. S. Wherrett, “Spectrally resolved third-order nonlinearities in polydiacetylene microcrystals: influence of particle size,” J. Opt. Soc. Am. B 15(12), 2937–2945 (1998).
[Crossref]

Alim, K. A.

I. Calizo, K. A. Alim, V. A. Fonoberov, S. Krishnakumar, M. Shamsa, A. A. Balandin, and R. Kurtz, “Micro-Raman spectroscopic characterization of ZnO quantum dots, nanocrystals and nanowires,” Proc. SPIE 6481, 64810N (2007).

Amekura, H.

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Baba, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low-and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

Baev, A.

G. S. He, W.-C. Law, A. Baev, S. Liu, M. T. Swihart, and P. N. Prasad, “Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions,” J. Chem. Phys. 138(2), 024202 (2013).
[Crossref] [PubMed]

Balandin, A. A.

I. Calizo, K. A. Alim, V. A. Fonoberov, S. Krishnakumar, M. Shamsa, A. A. Balandin, and R. Kurtz, “Micro-Raman spectroscopic characterization of ZnO quantum dots, nanocrystals and nanowires,” Proc. SPIE 6481, 64810N (2007).

Beltran-Pérez, G.

Buchal, Ch.

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Calizo, I.

I. Calizo, K. A. Alim, V. A. Fonoberov, S. Krishnakumar, M. Shamsa, A. A. Balandin, and R. Kurtz, “Micro-Raman spectroscopic characterization of ZnO quantum dots, nanocrystals and nanowires,” Proc. SPIE 6481, 64810N (2007).

Chávez, F.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[PubMed]

Cheang-Wong, J. C.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[Crossref]

Chen, G. X.

G. X. Chen and M. H. Hong, “Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles,” Appl. Phys., A Mater. Sci. Process. 101(3), 467–470 (2010).
[Crossref]

Chen, H.-L.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[Crossref] [PubMed]

Chen, K.-H.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[Crossref] [PubMed]

Chen, L.-C.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[Crossref] [PubMed]

Crespo-Sosa, A.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[Crossref]

Deepthy, A.

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3–4), 547–556 (2008).
[Crossref]

Degunov, M. Yu.

E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin, “The nature of enhanced linear and nonlinear optical effects in fullerene solutions,” J. Exp. Theor. Phys. 108(5), 738–750 (2009).
[Crossref]

Fan, G.

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. Appl. Phys. 109(2), 023102 (2011).
[Crossref]

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Felipe, C.

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Fonoberov, V. A.

I. Calizo, K. A. Alim, V. A. Fonoberov, S. Krishnakumar, M. Shamsa, A. A. Balandin, and R. Kurtz, “Micro-Raman spectroscopic characterization of ZnO quantum dots, nanocrystals and nanowires,” Proc. SPIE 6481, 64810N (2007).

Ganeev, R. A.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low-and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

Goiz, O.

Gómez-Pavón, L. C.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Goswami, D.

J. Gupta, C. Vijayan, S. K. Maurya, and D. Goswami, “Efficient ultrafast optical limiting using single walled carbon nanotubes functionalized noncovalently with free base and metalloporphyrins,” J. Appl. Phys. 109(11), 113101 (2011).
[Crossref]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Gupta, J.

J. Gupta, C. Vijayan, S. K. Maurya, and D. Goswami, “Efficient ultrafast optical limiting using single walled carbon nanotubes functionalized noncovalently with free base and metalloporphyrins,” J. Appl. Phys. 109(11), 113101 (2011).
[Crossref]

Halonen, M.

Hari, M.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(7), 43–49 (2012).

He, G. S.

G. S. He, W.-C. Law, A. Baev, S. Liu, M. T. Swihart, and P. N. Prasad, “Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions,” J. Chem. Phys. 138(2), 024202 (2013).
[Crossref] [PubMed]

He, J.

G. Ma, J. He, S.-H. Tang, W. Sun, and Z. Shen, “Size-dependence of nonlinearity in metal: Dielectric composite system induced by local field enhancement,” J. Nonlinear Opt. Phys. Mater. 12(2), 149–155 (2003).
[Crossref]

He, X.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Hong, L.-S.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[Crossref] [PubMed]

Hong, M. H.

G. X. Chen and M. H. Hong, “Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles,” Appl. Phys., A Mater. Sci. Process. 101(3), 467–470 (2010).
[Crossref]

Hu, M.-S.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[Crossref] [PubMed]

Huang, B.-R.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[Crossref] [PubMed]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Ichihara, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low-and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

Irimpan, L.

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3–4), 547–556 (2008).
[Crossref]

Jiang, C.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Joseph, S. A.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(7), 43–49 (2012).

Jyothi, L.

R. Kuladeep, L. Jyothi, P. Prakash, S. M. Shekhar, M. D. Prasad, and D. N. Rao, “Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media,” J. Appl. Phys. 114(24), 243101 (2013).
[Crossref]

Kajzar, F.

N. V. Kamanina, A. I. Plekhanov, S. V. Serov, V. P. Savinov, P. Shalin, and F. Kajzar, “Correlation between photoconductive and nonlinear optical characteristics of fullerene-and nanotubes-doped organic composites,” Nonlinear Opt., Quantum Opt. 40(1), 307–377 (2010).

Kamanina, N. V.

N. V. Kamanina, S. V. Serov, and V. P. Savinov, “Photorefractive properties of nanostructured organic materials doped with fullerenes and carbon nanotubes,” Tech. Phys. Lett. 36(1), 40–42 (2010).
[Crossref]

N. V. Kamanina, A. I. Plekhanov, S. V. Serov, V. P. Savinov, P. Shalin, and F. Kajzar, “Correlation between photoconductive and nonlinear optical characteristics of fullerene-and nanotubes-doped organic composites,” Nonlinear Opt., Quantum Opt. 40(1), 307–377 (2010).

Kar, A. K.

Kasai, H.

Kishimoto, N.

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Kono, K.

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Krishnakumar, S.

I. Calizo, K. A. Alim, V. A. Fonoberov, S. Krishnakumar, M. Shamsa, A. A. Balandin, and R. Kurtz, “Micro-Raman spectroscopic characterization of ZnO quantum dots, nanocrystals and nanowires,” Proc. SPIE 6481, 64810N (2007).

Krishnan, B.

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3–4), 547–556 (2008).
[Crossref]

Kuladeep, R.

R. Kuladeep, L. Jyothi, P. Prakash, S. M. Shekhar, M. D. Prasad, and D. N. Rao, “Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media,” J. Appl. Phys. 114(24), 243101 (2013).
[Crossref]

Kuroda, H.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low-and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

Kurtz, R.

I. Calizo, K. A. Alim, V. A. Fonoberov, S. Krishnakumar, M. Shamsa, A. A. Balandin, and R. Kurtz, “Micro-Raman spectroscopic characterization of ZnO quantum dots, nanocrystals and nanowires,” Proc. SPIE 6481, 64810N (2007).

Kuzin, E.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Lancry, M.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Law, W.-C.

G. S. He, W.-C. Law, A. Baev, S. Liu, M. T. Swihart, and P. N. Prasad, “Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions,” J. Chem. Phys. 138(2), 024202 (2013).
[Crossref] [PubMed]

Lee, Y. H.

Y. H. Lee, Y. Yan, L. Polavarapu, and Q.-H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95(2), 023105 (2009).
[Crossref]

Li, J.-J.

J. Zhu, J.-J. Li, and J.-W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99(10), 101901 (2011).
[Crossref]

Li, Z.

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. Appl. Phys. 109(2), 023102 (2011).
[Crossref]

Lipovskii, A. A.

A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Semiconductor-doped glass saturable absorbers for near-infrared solid state lasers,” J. Appl. Phys. 103(8), 081301 (2008).
[Crossref]

M. Halonen, A. A. Lipovskii, and Y. P. Svirko, “Femtosecond absorption dynamics in glass-metal nanocomposites,” Opt. Express 15(11), 6840–6845 (2007).
[Crossref] [PubMed]

Liu, J.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Liu, S.

G. S. He, W.-C. Law, A. Baev, S. Liu, M. T. Swihart, and P. N. Prasad, “Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions,” J. Chem. Phys. 138(2), 024202 (2013).
[Crossref] [PubMed]

Lu, L.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Lyubovskaya, R. N.

E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin, “The nature of enhanced linear and nonlinear optical effects in fullerene solutions,” J. Exp. Theor. Phys. 108(5), 738–750 (2009).
[Crossref]

Ma, G.

G. Ma, J. He, S.-H. Tang, W. Sun, and Z. Shen, “Size-dependence of nonlinearity in metal: Dielectric composite system induced by local field enhancement,” J. Nonlinear Opt. Phys. Mater. 12(2), 149–155 (2003).
[Crossref]

Malyarevich, A. M.

A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Semiconductor-doped glass saturable absorbers for near-infrared solid state lasers,” J. Appl. Phys. 103(8), 081301 (2008).
[Crossref]

Mantl, S.

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Mathew, S.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(7), 43–49 (2012).

Matsuda, H.

Maurya, S. K.

J. Gupta, C. Vijayan, S. K. Maurya, and D. Goswami, “Efficient ultrafast optical limiting using single walled carbon nanotubes functionalized noncovalently with free base and metalloporphyrins,” J. Appl. Phys. 109(11), 113101 (2011).
[Crossref]

Mynbaev, D. K.

D. K. Mynbaev and V. Sukharenko, “Plasmonic-based devices for optical communications,” Int. J. High Speed Electron. Syst. 21(1), 1250006 (2012).
[Crossref]

Nakanishi, H.

Nampoori, V. P. N.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(7), 43–49 (2012).

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3–4), 547–556 (2008).
[Crossref]

Nelson, D. K.

E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin, “The nature of enhanced linear and nonlinear optical effects in fullerene solutions,” J. Exp. Theor. Phys. 108(5), 738–750 (2009).
[Crossref]

Nithyaja, B.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(7), 43–49 (2012).

Oliver, A.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[Crossref]

Ortega-Mendoza, J. G.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[PubMed]

Pérez-Sánchez, G. F.

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[PubMed]

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Plekhanov, A. I.

N. V. Kamanina, A. I. Plekhanov, S. V. Serov, V. P. Savinov, P. Shalin, and F. Kajzar, “Correlation between photoconductive and nonlinear optical characteristics of fullerene-and nanotubes-doped organic composites,” Nonlinear Opt., Quantum Opt. 40(1), 307–377 (2010).

Polavarapu, L.

Y. H. Lee, Y. Yan, L. Polavarapu, and Q.-H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95(2), 023105 (2009).
[Crossref]

Poumellec, B.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Prakash, P.

R. Kuladeep, L. Jyothi, P. Prakash, S. M. Shekhar, M. D. Prasad, and D. N. Rao, “Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media,” J. Appl. Phys. 114(24), 243101 (2013).
[Crossref]

Prasad, M. D.

R. Kuladeep, L. Jyothi, P. Prakash, S. M. Shekhar, M. D. Prasad, and D. N. Rao, “Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media,” J. Appl. Phys. 114(24), 243101 (2013).
[Crossref]

Prasad, P. N.

G. S. He, W.-C. Law, A. Baev, S. Liu, M. T. Swihart, and P. N. Prasad, “Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions,” J. Chem. Phys. 138(2), 024202 (2013).
[Crossref] [PubMed]

Qian, S.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Qu, S.

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. Appl. Phys. 109(2), 023102 (2011).
[Crossref]

Radhakrishnan, P.

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(7), 43–49 (2012).

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3–4), 547–556 (2008).
[Crossref]

Ramos-Garcia, R.

Rangel-Rojo, R.

Rao, D. N.

R. Kuladeep, L. Jyothi, P. Prakash, S. M. Shekhar, M. D. Prasad, and D. N. Rao, “Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media,” J. Appl. Phys. 114(24), 243101 (2013).
[Crossref]

Razbirin, B. S.

E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin, “The nature of enhanced linear and nonlinear optical effects in fullerene solutions,” J. Exp. Theor. Phys. 108(5), 738–750 (2009).
[Crossref]

Ren, F.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Reyes-Esqueda, J. A.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[Crossref]

Rodríguez-Fernández, L.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[Crossref]

Savinov, V. P.

N. V. Kamanina, A. I. Plekhanov, S. V. Serov, V. P. Savinov, P. Shalin, and F. Kajzar, “Correlation between photoconductive and nonlinear optical characteristics of fullerene-and nanotubes-doped organic composites,” Nonlinear Opt., Quantum Opt. 40(1), 307–377 (2010).

N. V. Kamanina, S. V. Serov, and V. P. Savinov, “Photorefractive properties of nanostructured organic materials doped with fullerenes and carbon nanotubes,” Tech. Phys. Lett. 36(1), 40–42 (2010).
[Crossref]

Serov, S. V.

N. V. Kamanina, S. V. Serov, and V. P. Savinov, “Photorefractive properties of nanostructured organic materials doped with fullerenes and carbon nanotubes,” Tech. Phys. Lett. 36(1), 40–42 (2010).
[Crossref]

N. V. Kamanina, A. I. Plekhanov, S. V. Serov, V. P. Savinov, P. Shalin, and F. Kajzar, “Correlation between photoconductive and nonlinear optical characteristics of fullerene-and nanotubes-doped organic composites,” Nonlinear Opt., Quantum Opt. 40(1), 307–377 (2010).

Shalin, P.

N. V. Kamanina, A. I. Plekhanov, S. V. Serov, V. P. Savinov, P. Shalin, and F. Kajzar, “Correlation between photoconductive and nonlinear optical characteristics of fullerene-and nanotubes-doped organic composites,” Nonlinear Opt., Quantum Opt. 40(1), 307–377 (2010).

Shamsa, M.

I. Calizo, K. A. Alim, V. A. Fonoberov, S. Krishnakumar, M. Shamsa, A. A. Balandin, and R. Kurtz, “Micro-Raman spectroscopic characterization of ZnO quantum dots, nanocrystals and nanowires,” Proc. SPIE 6481, 64810N (2007).

Sheka, E. F.

E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin, “The nature of enhanced linear and nonlinear optical effects in fullerene solutions,” J. Exp. Theor. Phys. 108(5), 738–750 (2009).
[Crossref]

Shekhar, S. M.

R. Kuladeep, L. Jyothi, P. Prakash, S. M. Shekhar, M. D. Prasad, and D. N. Rao, “Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media,” J. Appl. Phys. 114(24), 243101 (2013).
[Crossref]

Shen, C.-H.

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[Crossref] [PubMed]

Shen, Z.

G. Ma, J. He, S.-H. Tang, W. Sun, and Z. Shen, “Size-dependence of nonlinearity in metal: Dielectric composite system induced by local field enhancement,” J. Nonlinear Opt. Phys. Mater. 12(2), 149–155 (2003).
[Crossref]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Starukhin, A. N.

E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin, “The nature of enhanced linear and nonlinear optical effects in fullerene solutions,” J. Exp. Theor. Phys. 108(5), 738–750 (2009).
[Crossref]

Sukharenko, V.

D. K. Mynbaev and V. Sukharenko, “Plasmonic-based devices for optical communications,” Int. J. High Speed Electron. Syst. 21(1), 1250006 (2012).
[Crossref]

Sun, W.

G. Ma, J. He, S.-H. Tang, W. Sun, and Z. Shen, “Size-dependence of nonlinearity in metal: Dielectric composite system induced by local field enhancement,” J. Nonlinear Opt. Phys. Mater. 12(2), 149–155 (2003).
[Crossref]

Suzuki, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low-and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

Svirko, Y. P.

Swihart, M. T.

G. S. He, W.-C. Law, A. Baev, S. Liu, M. T. Swihart, and P. N. Prasad, “Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions,” J. Chem. Phys. 138(2), 024202 (2013).
[Crossref] [PubMed]

Takeda, Y.

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Tang, S.-H.

G. Ma, J. He, S.-H. Tang, W. Sun, and Z. Shen, “Size-dependence of nonlinearity in metal: Dielectric composite system induced by local field enhancement,” J. Nonlinear Opt. Phys. Mater. 12(2), 149–155 (2003).
[Crossref]

Torres-Torres, C.

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[Crossref]

Torres-Turiján, J.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Troshin, P. A.

E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin, “The nature of enhanced linear and nonlinear optical effects in fullerene solutions,” J. Exp. Theor. Phys. 108(5), 738–750 (2009).
[Crossref]

Umeda, N.

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Vijayan, C.

J. Gupta, C. Vijayan, S. K. Maurya, and D. Goswami, “Efficient ultrafast optical limiting using single walled carbon nanotubes functionalized noncovalently with free base and metalloporphyrins,” J. Appl. Phys. 109(11), 113101 (2011).
[Crossref]

von Plessen, G.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Wang, Q.

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. Appl. Phys. 109(2), 023102 (2011).
[Crossref]

Wherrett, B. S.

Xiao, X.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Xu, Q.-H.

Y. H. Lee, Y. Yan, L. Polavarapu, and Q.-H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95(2), 023105 (2009).
[Crossref]

Yamada, S.

Yan, Y.

Y. H. Lee, Y. Yan, L. Polavarapu, and Q.-H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95(2), 023105 (2009).
[Crossref]

Yu, M.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref] [PubMed]

Yumashev, K. V.

A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Semiconductor-doped glass saturable absorbers for near-infrared solid state lasers,” J. Appl. Phys. 103(8), 081301 (2008).
[Crossref]

Zaca-Morán, P.

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, “Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber,” Opt. Express 21(5), 6509–6518 (2013).
[PubMed]

Zhang, L.

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. Appl. Phys. 109(2), 023102 (2011).
[Crossref]

Zhao, C.

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. Appl. Phys. 109(2), 023102 (2011).
[Crossref]

Zhao, J.-W.

J. Zhu, J.-J. Li, and J.-W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99(10), 101901 (2011).
[Crossref]

Zhao, X.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Zheng, J.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref] [PubMed]

Zhou, C.

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref] [PubMed]

Zhou, H.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Zhou, W.

S. Zhu and W. Zhou, “Optical properties and immunoassay applications of noble metal nanoparticles,” J. Nanomater. 2010, 1–12 (2010).

Zhou, X.

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

Zhu, J.

J. Zhu, J.-J. Li, and J.-W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99(10), 101901 (2011).
[Crossref]

Zhu, S.

S. Zhu and W. Zhou, “Optical properties and immunoassay applications of noble metal nanoparticles,” J. Nanomater. 2010, 1–12 (2010).

Adv. Mater. (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Appl. Phys. B (1)

L. Irimpan, A. Deepthy, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, “Nonlinear optical characteristics of self-assembled films of ZnO,” Appl. Phys. B 90(3–4), 547–556 (2008).
[Crossref]

Appl. Phys. Lett. (2)

J. Zhu, J.-J. Li, and J.-W. Zhao, “Tuning the wavelength drift between resonance light absorption and scattering of plasmonic nanoparticle,” Appl. Phys. Lett. 99(10), 101901 (2011).
[Crossref]

Y. H. Lee, Y. Yan, L. Polavarapu, and Q.-H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95(2), 023105 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

G. X. Chen and M. H. Hong, “Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles,” Appl. Phys., A Mater. Sci. Process. 101(3), 467–470 (2010).
[Crossref]

Int. J. High Speed Electron. Syst. (1)

D. K. Mynbaev and V. Sukharenko, “Plasmonic-based devices for optical communications,” Int. J. High Speed Electron. Syst. 21(1), 1250006 (2012).
[Crossref]

J. Appl. Phys. (6)

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008).
[Crossref]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low-and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103(6), 063102 (2008).
[Crossref]

J. Gupta, C. Vijayan, S. K. Maurya, and D. Goswami, “Efficient ultrafast optical limiting using single walled carbon nanotubes functionalized noncovalently with free base and metalloporphyrins,” J. Appl. Phys. 109(11), 113101 (2011).
[Crossref]

A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Semiconductor-doped glass saturable absorbers for near-infrared solid state lasers,” J. Appl. Phys. 103(8), 081301 (2008).
[Crossref]

R. Kuladeep, L. Jyothi, P. Prakash, S. M. Shekhar, M. D. Prasad, and D. N. Rao, “Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media,” J. Appl. Phys. 114(24), 243101 (2013).
[Crossref]

G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, and Z. Li, “Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses,” J. Appl. Phys. 109(2), 023102 (2011).
[Crossref]

J. Chem. Phys. (1)

G. S. He, W.-C. Law, A. Baev, S. Liu, M. T. Swihart, and P. N. Prasad, “Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions,” J. Chem. Phys. 138(2), 024202 (2013).
[Crossref] [PubMed]

J. Exp. Theor. Phys. (1)

E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin, “The nature of enhanced linear and nonlinear optical effects in fullerene solutions,” J. Exp. Theor. Phys. 108(5), 738–750 (2009).
[Crossref]

J. Nanomater. (1)

S. Zhu and W. Zhou, “Optical properties and immunoassay applications of noble metal nanoparticles,” J. Nanomater. 2010, 1–12 (2010).

J. Nanopart. Res. (1)

Q. Liu, X. He, X. Zhao, F. Ren, X. Xiao, C. Jiang, X. Zhou, L. Lu, H. Zhou, S. Qian, B. Poumellec, and M. Lancry, “Enhancement of third-order nonlinearity in Ag-nanoparticles-contained chalcohalide glasses,” J. Nanopart. Res. 13(9), 3693–3697 (2011).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

G. Ma, J. He, S.-H. Tang, W. Sun, and Z. Shen, “Size-dependence of nonlinearity in metal: Dielectric composite system induced by local field enhancement,” J. Nonlinear Opt. Phys. Mater. 12(2), 149–155 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanoscale (1)

J. Zheng, C. Zhou, M. Yu, and J. Liu, “Different sized luminescent gold nanoparticles,” Nanoscale 4(14), 4073–4083 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Nat. Mater. (1)

M.-S. Hu, H.-L. Chen, C.-H. Shen, L.-S. Hong, B.-R. Huang, K.-H. Chen, and L.-C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006).
[Crossref] [PubMed]

Nonlinear Opt., Quantum Opt. (1)

N. V. Kamanina, A. I. Plekhanov, S. V. Serov, V. P. Savinov, P. Shalin, and F. Kajzar, “Correlation between photoconductive and nonlinear optical characteristics of fullerene-and nanotubes-doped organic composites,” Nonlinear Opt., Quantum Opt. 40(1), 307–377 (2010).

Opt. Express (2)

Opt. Laser Technol. (1)

P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J. G. Ortega-Mendoza, F. Chávez, G. F. Pérez-Sánchez, and L. C. Gómez-Pavón, “High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers,” Opt. Laser Technol. 52, 15–20 (2013).
[Crossref]

Opt. Quantum Electron. (1)

M. Hari, S. Mathew, B. Nithyaja, S. A. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43(7), 43–49 (2012).

Phys. Rev. Lett. (1)

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[Crossref]

Proc. SPIE (1)

I. Calizo, K. A. Alim, V. A. Fonoberov, S. Krishnakumar, M. Shamsa, A. A. Balandin, and R. Kurtz, “Micro-Raman spectroscopic characterization of ZnO quantum dots, nanocrystals and nanowires,” Proc. SPIE 6481, 64810N (2007).

Tech. Phys. Lett. (1)

N. V. Kamanina, S. V. Serov, and V. P. Savinov, “Photorefractive properties of nanostructured organic materials doped with fullerenes and carbon nanotubes,” Tech. Phys. Lett. 36(1), 40–42 (2010).
[Crossref]

Other (3)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Chap. 4.

M. P. Silverman, Waves and Grains (Princeton, 1998), Chap. 13.

H. Morkoc and U. Ozgur, Zinc Oxide, Fundamentals, Materials and Device Technology (Wiley, 2007), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Experimental setup for the photodeposition of ZnNPs onto an optical fiber end (b) Representation of the model where the light is propagating along -z axis. The scattering and absorption forces are directed along the -z axis and Stokes and gradient forces are directed along the z axis.
Fig. 2
Fig. 2 (a) SEM image of the ZnNPs deposited on the core of an optical fiber, the circle is a closer view of the core. (b) Micro-Raman spectrum recorded on the core region of the optical fiber at room-temperature.
Fig. 3
Fig. 3 Dependence of the extinction for zinc spheres: (a) scattering and absorption are separated for r = 40 nm, and (b) comparative extinction for r < 40 nm.
Fig. 4
Fig. 4 Dependence of the extinction for zinc spheres: (a) scattering and absorption are separated for   r = 256 nm, and (b) comparative extinction for r > 100 nm.
Fig. 5
Fig. 5 Dependence of the transmittance of ZnNPs deposited on the core of an optical fiber.
Fig. 6
Fig. 6 Dependence of the transmittance as a function of the irradiance to ZnNP, a) Irradiance less to 5 MW/cm2, b) irradiance less to 70 MW/cm2.
Fig. 7
Fig. 7 Dependence of the extinction as a function of the particle radius.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

C ext = 2 πr 2 x 2 l = 1 ( 2 l + 1 ) Re ( a l + b l ) ,
C sca = 2 πr 2 x 2 l = 1 ( 2 l + 1 ) ( | a l | 2 + | b l | 2 ) ,
C a b s = C e x t C s c a ,
a l = m ψ l ( m x ) ψ l ' ( x ) ψ l ( x ) ψ l ' ( m x ) m ψ l ( m x ) ξ l ' ( x ) ξ l ( x ) ψ l ' ( m x ) ,
b l = ψ l ( m x ) ψ l ' ( x ) m ψ l ( x ) ψ l ' ( m x ) ψ l ( m x ) ξ l ' ( x ) m ξ l ( x ) ψ l ' ( m x ) ,
α ( I ) = α 0 ( I ) + β T P A I ,
α ( I ) = α 0 1 + I / I s a t ,
T = e α ( I ) L ,
I m ( χ ( 3 ) ) = λ ε 0 n 0 2 c β 4 π ,

Metrics