Abstract

We present a five-channel wavelength division multiplexed modulator module that heterogeneously integrates a 200 GHz channel-spacing silicon arrayed-waveguide grating multiplexer and a 20 Gbps electro-absorption modulator array, showing the potential for 100 Gbps transmission capacity on a 1.5x0.5 mm2 footprint.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A low-power, high-speed, 9-channel germanium-silicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer

A. V. Krishnamoorthy, X. Zheng, D. Feng, J. Lexau, J. F. Buckwalter, H. D. Thacker, F. Liu, Y. Luo, E. Chang, P. Amberg, I. Shubin, S. S. Djordjevic, J. H. Lee, S. Lin, H. Liang, A. Abed, R. Shafiiha, K. Raj, R. Ho, M. Asghari, and J. E. Cunningham
Opt. Express 22(10) 12289-12295 (2014)

25 × 50  Gbps wavelength division multiplexing silicon photonics receiver chip based on a silicon nanowire-arrayed waveguide grating

Zhi Liu, Jiashun Zhang, Xiuli Li, Liangliang Wang, Jianguang Li, Chunlai Xue, Junming An, and Buwen Cheng
Photon. Res. 7(6) 659-663 (2019)

Co-integrated 1.3µm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25Gb/s

Thomas Ferrotti, Benjamin Blampey, Christophe Jany, Hélène Duprez, Alain Chantre, Frédéric Boeuf, Christian Seassal, and Badhise Ben Bakir
Opt. Express 24(26) 30379-30401 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, R. Ding, Y. Ma, Y. Yang, Z. Xuan, Q. Li, A. E. Lim, G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s,” Opt. Express 22(13), 16431–16438 (2014).
    [Crossref] [PubMed]
  2. L. Chen, C. R. Doerr, P. Dong, and Y. K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express 19(26), B946–B951 (2011).
    [Crossref] [PubMed]
  3. J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
    [Crossref]
  4. Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
    [Crossref]
  5. K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
    [Crossref]
  6. A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
    [Crossref] [PubMed]
  7. Y. Tang, J. D. Peters, and J. E. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Express 20(10), 11529–11535 (2012).
    [Crossref] [PubMed]
  8. H. Park, Y. H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15(21), 13539–13546 (2007).
    [Crossref] [PubMed]
  9. S. R. Jain, Y. Tang, H. Chen, M. N. Sysak, and J. E. Bowers, “Integrated hybrid silicon transmitter,” IEEE Photonics Technol. Lett. 30(5), 671–678 (2012).
  10. M. Piels, J. F. Bauters, M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/silicon photodetectors,” J. Lightwave Technol. 32(4), 817–823 (2014).
    [Crossref]
  11. S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
    [Crossref]
  12. F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. Harmand, “Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAIAs and InGaAsP/InGaAsP MQW,” Semicond. Sci. Technol. 10(7), 887–901 (1995).
    [Crossref]
  13. Y. Tang, H. W. Chen, S. Jain, J. D. Peters, U. Westergren, and J. E. Bowers, “50 Gb/s hybrid silicon traveling-wave electroabsorption modulator,” Opt. Express 19(7), 5811–5816 (2011).
    [Crossref] [PubMed]
  14. FIMMWAVE, “Photon Design,” http://www.photond.com/products/fimmwave.htm
  15. G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
    [Crossref]

2014 (2)

2013 (2)

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
[Crossref]

K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
[Crossref]

2012 (2)

Y. Tang, J. D. Peters, and J. E. Bowers, “Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission,” Opt. Express 20(10), 11529–11535 (2012).
[Crossref] [PubMed]

S. R. Jain, Y. Tang, H. Chen, M. N. Sysak, and J. E. Bowers, “Integrated hybrid silicon transmitter,” IEEE Photonics Technol. Lett. 30(5), 671–678 (2012).

2011 (2)

2008 (2)

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[Crossref]

1999 (1)

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[Crossref]

1995 (1)

F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. Harmand, “Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAIAs and InGaAsP/InGaAsP MQW,” Semicond. Sci. Technol. 10(7), 887–901 (1995).
[Crossref]

Baehr-Jones, T.

Basak, J.

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

Bauters, J. F.

Bergman, K.

Bowers, J. E.

Chelles, S.

F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. Harmand, “Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAIAs and InGaAsP/InGaAsP MQW,” Semicond. Sci. Technol. 10(7), 887–901 (1995).
[Crossref]

Chen, H.

S. R. Jain, Y. Tang, H. Chen, M. N. Sysak, and J. E. Bowers, “Integrated hybrid silicon transmitter,” IEEE Photonics Technol. Lett. 30(5), 671–678 (2012).

Chen, H. W.

Chen, L.

Chen, W. X.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[Crossref]

Chen, Y. K.

Chetrit, Y.

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

Cohen, O.

Cohen, R.

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

Davenport, M. L.

Devaux, F.

F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. Harmand, “Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAIAs and InGaAsP/InGaAsP MQW,” Semicond. Sci. Technol. 10(7), 887–901 (1995).
[Crossref]

Ding, R.

Doerr, C. R.

Dong, P.

Fang, A. W.

Harmand, J.

F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. Harmand, “Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAIAs and InGaAsP/InGaAsP MQW,” Semicond. Sci. Technol. 10(7), 887–901 (1995).
[Crossref]

Heck, M. J. R.

Hochberg, M.

Iga, R.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[Crossref]

Izhaky, N.

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

Jain, S.

Jain, S. R.

S. R. Jain, Y. Tang, H. Chen, M. N. Sysak, and J. E. Bowers, “Integrated hybrid silicon transmitter,” IEEE Photonics Technol. Lett. 30(5), 671–678 (2012).

Jones, R.

Kawaguchi, Y.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[Crossref]

Kazmierski, C.

K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
[Crossref]

Keyvaninia, S.

Kuo, Y. H.

Lawniczuk, K.

K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
[Crossref]

Leijtens, X. J. M.

K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
[Crossref]

Li, G. L.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[Crossref]

Li, Q.

Liang, D.

Liao, L.

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

Lim, A. E.

Liu, A.

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

Liu, Y.

Lively, E.

Lo, G. Q.

Ma, Y.

Mawatari, H.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[Crossref]

Mircea, A.

F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. Harmand, “Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAIAs and InGaAsP/InGaAsP MQW,” Semicond. Sci. Technol. 10(7), 887–901 (1995).
[Crossref]

Muneeb, M.

Nguyen, H.

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

Okamoto, H.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[Crossref]

Oku, S.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[Crossref]

Ougazzaden, A.

F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. Harmand, “Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAIAs and InGaAsP/InGaAsP MQW,” Semicond. Sci. Technol. 10(7), 887–901 (1995).
[Crossref]

Paniccia, M.

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

Paniccia, M. J.

Pappert, S. A.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[Crossref]

Park, H.

Peters, J. D.

Piels, M.

Piramidowicz, R.

K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
[Crossref]

Provost, J. G.

K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
[Crossref]

Roelkens, G.

Rubin, D.

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

Samara-Rubio, D.

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

Smit, M. K.

K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
[Crossref]

Stankovic, S.

Sun, C. K.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[Crossref]

Suzaki, Y.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[Crossref]

Sysak, M. N.

S. R. Jain, Y. Tang, H. Chen, M. N. Sysak, and J. E. Bowers, “Integrated hybrid silicon transmitter,” IEEE Photonics Technol. Lett. 30(5), 671–678 (2012).

Szczepa’nski, P.

K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
[Crossref]

Tang, Y.

Van Thourhout, D.

Van Veldhoven, P. J.

Wale, M. J.

K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
[Crossref]

Westergren, U.

Xuan, Z.

Yang, Y.

Yasaka, H.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[Crossref]

Yoshino, K.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[Crossref]

Yu, P. K. L.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[Crossref]

Adv. Opt. Technol. (1)

J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, and M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 1–10 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (2)

K. Ławniczuk, C. Kazmierski, J. G. Provost, M. J. Wale, R. Piramidowicz, P. Szczepa’nski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photonics Technol. Lett. 25(4), 352–354 (2013).
[Crossref]

S. R. Jain, Y. Tang, H. Chen, M. N. Sysak, and J. E. Bowers, “Integrated hybrid silicon transmitter,” IEEE Photonics Technol. Lett. 30(5), 671–678 (2012).

IEEE Trans. Microw. Theory Tech. (1)

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (6)

Opt. Mater. Express (1)

Semicond. Sci. Technol. (1)

F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. Harmand, “Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAIAs and InGaAsP/InGaAsP MQW,” Semicond. Sci. Technol. 10(7), 887–901 (1995).
[Crossref]

Other (1)

FIMMWAVE, “Photon Design,” http://www.photond.com/products/fimmwave.htm

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The schematic diagram of the chip layout.
Fig. 2
Fig. 2 (a) Schematic cross-sectional view; (b) Top-view of the structure.
Fig. 3
Fig. 3 (a) The coupling efficiency as Lt1 varies for different thicknesses of the BCB layer (from 0 to 0.08 μm) when Lt2 = 20 µm; (b) The coupling efficiency as Lt2 varies for different thicknesses of the BCB layer (from 0 to 0.08 μm) when Lt1 = 30 µm; (c) Mode transformation in the bi-sectional tapered coupler with Lt1 = 30 µm, Lt2 = 15 µm, hBCB = 0.03 µm.
Fig. 4
Fig. 4 Schematic diagram of the fabrication process (a) BCB bonding; (b) Substrate removal; (c) III-V process; (d) Planarization; (e) Metallization; (f) Final device.
Fig. 5
Fig. 5 (a) SEM picture of the top-view of a III-V on silicon EAM, the inset shows the narrow taper tips; (b) SEM picture of the cross section.
Fig. 6
Fig. 6 Optical spectra of the AWG before (a) and after (b) the heterogeneous integration (including the EAMs).
Fig. 7
Fig. 7 Bias dependent normalized transmission of each channel.
Fig. 8
Fig. 8 (a) Small signal E/O response and (b) the microwave reflection to the RF source (S11) for the hybrid EAM of channel 2; the inset of (b) shows the equivalent circuit.
Fig. 9
Fig. 9 Eye diagram of channel 2 at (a) 20 Gb/s; (b) 28 Gb/s.
Fig. 10
Fig. 10 Optical eye diagrams at 20 Gb/s for each channel.

Tables (1)

Tables Icon

Table 1 Detailed III-V epitaxy stack.

Metrics