Abstract

A universal, geometry-independent sensitivity is derived by using a black box model of surface plasmon excitation for two-dimensional nanostructures. It is shown that the resonant wavelength of surface plasmons and dielectric property of interfacial materials dominate the sensitivity. Sensitivity data of nanostructure arrays, widely collected from independent research groups, comply well with our results. This analysis provides a conceptual and intuitive insight into the plasmonic sensing, covering various excitation arrangements under the same umbrella. The universal sensitivity offers a quantitative tool to evaluate and predict the performance of plasmonic sensors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-sensitivity integrated devices based on surface plasmon resonance for sensing applications

Mahmoud H. Elshorbagy, Alexander Cuadrado, and Javier Alda
Photon. Res. 5(6) 654-661 (2017)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength

M. Tahmasebpour, M. Bahrami, and A. Asgari
Appl. Opt. 53(7) 1449-1458 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  4. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  6. A. Dmitriev, Nanoplasmonic Sensors (Springer, 2012)
  7. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743–1748 (1999).
    [Crossref]
  8. S. H. Lee, T. W. Johnson, N. C. Lindquist, H. Im, D. J. Norris, and S.-H. Oh, “Linewidth-optimized extraordinary optical transmission in water with template-stripped metallic nanohole arrays,” Adv. Funct. Mater. 22(21), 4439–4446 (2012).
    [Crossref]
  9. L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, “Rational design of high performance surface plasmon resonance sensors based on two-dimensional metallic hole arrays,” Opt. Express 20(11), 12610–12621 (2012).
    [Crossref] [PubMed]
  10. K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
    [Crossref] [PubMed]
  11. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensor. Actuat. Biol. Chem. 54(1–2), 16–24 (1999).
  12. W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
    [Crossref] [PubMed]
  13. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
  14. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
    [Crossref] [PubMed]
  15. J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
    [Crossref] [PubMed]
  16. H. Raether, Surface Plasmons (Springer, 1988).
  17. K.-L. Lee, W.-S. Wang, and P.-K. Wei, “Comparisons of surface plasmon sensitivities in periodic gold nanostructures,” Plasmonics 3(4), 119–125 (2008).
    [Crossref]
  18. T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
    [Crossref] [PubMed]
  19. M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst (Lond.) 137(18), 4162–4170 (2012).
    [Crossref] [PubMed]
  20. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  21. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A, Pure Appl. Opt. 8(4), S239–S249 (2006).
    [Crossref]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  23. K.-L. Lee and P.-K. Wei, “Optimization of periodic gold nanostructures for intensity-sensitive detection,” Appl. Phys. Lett. 99(8), 083108 (2011).
    [Crossref]
  24. B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
    [Crossref] [PubMed]
  25. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  26. M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
    [Crossref] [PubMed]
  27. F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
    [Crossref]
  28. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
    [Crossref] [PubMed]
  29. J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
    [Crossref] [PubMed]

2015 (1)

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

2012 (4)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst (Lond.) 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

S. H. Lee, T. W. Johnson, N. C. Lindquist, H. Im, D. J. Norris, and S.-H. Oh, “Linewidth-optimized extraordinary optical transmission in water with template-stripped metallic nanohole arrays,” Adv. Funct. Mater. 22(21), 4439–4446 (2012).
[Crossref]

L. Zhang, C. Y. Chan, J. Li, and H. C. Ong, “Rational design of high performance surface plasmon resonance sensors based on two-dimensional metallic hole arrays,” Opt. Express 20(11), 12610–12621 (2012).
[Crossref] [PubMed]

2011 (3)

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

K.-L. Lee and P.-K. Wei, “Optimization of periodic gold nanostructures for intensity-sensitive detection,” Appl. Phys. Lett. 99(8), 083108 (2011).
[Crossref]

2010 (2)

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

2009 (2)

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

2008 (3)

K.-L. Lee, W.-S. Wang, and P.-K. Wei, “Comparisons of surface plasmon sensitivities in periodic gold nanostructures,” Plasmonics 3(4), 119–125 (2008).
[Crossref]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2007 (2)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[Crossref] [PubMed]

2006 (2)

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A, Pure Appl. Opt. 8(4), S239–S249 (2006).
[Crossref]

2005 (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1999 (2)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensor. Actuat. Biol. Chem. 54(1–2), 16–24 (1999).

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743–1748 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Alaverdyan, Y.

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bravo-Abad, J.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[Crossref] [PubMed]

Brian, B.

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Chan, C. Y.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Couture, M.

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst (Lond.) 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

Dahlin, A. B.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dhawan, A.

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst (Lond.) 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

Ebbesen, T. W.

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743–1748 (1999).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[Crossref] [PubMed]

Fujii, T.

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[Crossref] [PubMed]

Genet, C.

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

Ghaemi, H. F.

Giessen, H.

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Hafner, C.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Hillier, A. C.

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Homola, J.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensor. Actuat. Biol. Chem. 54(1–2), 16–24 (1999).

Im, H.

S. H. Lee, T. W. Johnson, N. C. Lindquist, H. Im, D. J. Norris, and S.-H. Oh, “Linewidth-optimized extraordinary optical transmission in water with template-stripped metallic nanohole arrays,” Adv. Funct. Mater. 22(21), 4439–4446 (2012).
[Crossref]

Jefimovs, K.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnson, T. W.

S. H. Lee, T. W. Johnson, N. C. Lindquist, H. Im, D. J. Norris, and S.-H. Oh, “Linewidth-optimized extraordinary optical transmission in water with template-stripped metallic nanohole arrays,” Adv. Funct. Mater. 22(21), 4439–4446 (2012).
[Crossref]

Juste, J. P.

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Käll, M.

Kleingartner, J.

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensor. Actuat. Biol. Chem. 54(1–2), 16–24 (1999).

Kurita, R.

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Lalanne, P.

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A, Pure Appl. Opt. 8(4), S239–S249 (2006).
[Crossref]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Lechuga, L. M.

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[Crossref] [PubMed]

Lee, K.-L.

K.-L. Lee and P.-K. Wei, “Optimization of periodic gold nanostructures for intensity-sensitive detection,” Appl. Phys. Lett. 99(8), 083108 (2011).
[Crossref]

K.-L. Lee, W.-S. Wang, and P.-K. Wei, “Comparisons of surface plasmon sensitivities in periodic gold nanostructures,” Plasmonics 3(4), 119–125 (2008).
[Crossref]

Lee, S. H.

S. H. Lee, T. W. Johnson, N. C. Lindquist, H. Im, D. J. Norris, and S.-H. Oh, “Linewidth-optimized extraordinary optical transmission in water with template-stripped metallic nanohole arrays,” Adv. Funct. Mater. 22(21), 4439–4446 (2012).
[Crossref]

Lezec, H. J.

Li, J.

Lindquist, N. C.

S. H. Lee, T. W. Johnson, N. C. Lindquist, H. Im, D. J. Norris, and S.-H. Oh, “Linewidth-optimized extraordinary optical transmission in water with template-stripped metallic nanohole arrays,” Adv. Funct. Mater. 22(21), 4439–4446 (2012).
[Crossref]

Live, L. S.

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst (Lond.) 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

Liz-Marzán, L. M.

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Martín-Moreno, L.

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Masson, J.-F.

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst (Lond.) 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A, Pure Appl. Opt. 8(4), S239–S249 (2006).
[Crossref]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Nakamoto, K.

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Ni, W.

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Nishida, M.

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Niwa, O.

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Norris, D. J.

S. H. Lee, T. W. Johnson, N. C. Lindquist, H. Im, D. J. Norris, and S.-H. Oh, “Linewidth-optimized extraordinary optical transmission in water with template-stripped metallic nanohole arrays,” Adv. Funct. Mater. 22(21), 4439–4446 (2012).
[Crossref]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Oh, S.-H.

S. H. Lee, T. W. Johnson, N. C. Lindquist, H. Im, D. J. Norris, and S.-H. Oh, “Linewidth-optimized extraordinary optical transmission in water with template-stripped metallic nanohole arrays,” Adv. Funct. Mater. 22(21), 4439–4446 (2012).
[Crossref]

Ong, H. C.

Otte, M. A.

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Przybilla, F.

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Sannomiya, T.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Scholder, O.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Sepúlveda, B.

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express 17(3), 2015–2023 (2009).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Thio, T.

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Wang, W.-S.

K.-L. Lee, W.-S. Wang, and P.-K. Wei, “Comparisons of surface plasmon sensitivities in periodic gold nanostructures,” Plasmonics 3(4), 119–125 (2008).
[Crossref]

Wei, P.-K.

K.-L. Lee and P.-K. Wei, “Optimization of periodic gold nanostructures for intensity-sensitive detection,” Appl. Phys. Lett. 99(8), 083108 (2011).
[Crossref]

K.-L. Lee, W.-S. Wang, and P.-K. Wei, “Comparisons of surface plasmon sensitivities in periodic gold nanostructures,” Plasmonics 3(4), 119–125 (2008).
[Crossref]

Wolff, P. A.

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Yang, J.

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensor. Actuat. Biol. Chem. 54(1–2), 16–24 (1999).

Yeh, W. H.

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zhang, L.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

ACS Nano (1)

M. A. Otte, B. Sepúlveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano 4(1), 349–357 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

S. H. Lee, T. W. Johnson, N. C. Lindquist, H. Im, D. J. Norris, and S.-H. Oh, “Linewidth-optimized extraordinary optical transmission in water with template-stripped metallic nanohole arrays,” Adv. Funct. Mater. 22(21), 4439–4446 (2012).
[Crossref]

Anal. Chem. (1)

W. H. Yeh, J. Kleingartner, and A. C. Hillier, “Wavelength tunable surface plasmon resonance-enhanced optical transmission through a chirped diffraction grating,” Anal. Chem. 82(12), 4988–4993 (2010).
[Crossref] [PubMed]

Analyst (Lond.) (1)

M. Couture, L. S. Live, A. Dhawan, and J.-F. Masson, “EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays,” Analyst (Lond.) 137(18), 4162–4170 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

K.-L. Lee and P.-K. Wei, “Optimization of periodic gold nanostructures for intensity-sensitive detection,” Appl. Phys. Lett. 99(8), 083108 (2011).
[Crossref]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[Crossref]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering,” J. Opt. A, Pure Appl. Opt. 8(4), S239–S249 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Nano Lett. (1)

J. Yang, H. Giessen, and P. Lalanne, “Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing,” Nano Lett. 15(5), 3439–3444 (2015).
[Crossref] [PubMed]

Nanoscale (1)

K. Nakamoto, R. Kurita, O. Niwa, T. Fujii, and M. Nishida, “Development of a mass-producible on-chip plasmonic nanohole array biosensor,” Nanoscale 3(12), 5067–5075 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett. 99(20), 203905 (2007).
[Crossref] [PubMed]

Plasmonics (1)

K.-L. Lee, W.-S. Wang, and P.-K. Wei, “Comparisons of surface plasmon sensitivities in periodic gold nanostructures,” Plasmonics 3(4), 119–125 (2008).
[Crossref]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Sensor. Actuat. Biol. Chem. (1)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensor. Actuat. Biol. Chem. 54(1–2), 16–24 (1999).

Small (1)

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Other (4)

H. Raether, Surface Plasmons (Springer, 1988).

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

A. Dmitriev, Nanoplasmonic Sensors (Springer, 2012)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Black box model of SP excitation. (a) Schematic diagram of a general three-dimensional SP black box. Except for the metal/dielectric interface, the plasmonic structures are invisible and simplified into a transfer function of adding momentum Δ�� to light. ω is the frequency of light and c is the velocity of light in vacuum. ε m is the real dielectric constant of the metal and n is the refractive index of the dielectric. (b) Dispersion relation of SP. The momentum gap between the collinear wave vector component ��eff of incident light and SP requires additional momentum Δ��.

Fig. 2
Fig. 2

Sensitivities of Au and Ag plasmonic sensors in air and water respectively.

Fig. 3
Fig. 3

Theoretical and experimental sensitivities of plasmonic nanostructure arrays.

Fig. 4
Fig. 4

Sensitivity comparison between two-dimensional plasmonic array structures and nanoparticles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω c sinθcosψ+Δk= k sp = ω c ( ε m n 2 ε m + n 2 ) 1/2
S= 2π ε m 2 Δk ε m 1/2 ( ε m + n 2 ) 3/2 π n 3 d ε m dλ
S= 2λ ε m 2 n( 2 ε m 2 + ε m n 2 +b n 2 )

Metrics