Abstract

Previous reports of ultrafast laser welding of glass-to-glass have indicated that a pre-existing optical contact (or very close to) between the parts to be joined is essential. In this paper, the capability of picosecond laser welding to bridge micron-scale gaps is investigated, and successful welding, without cracking, of two glasses with a pre-existing gap of 3 µm is demonstrated. It is shown that the maximum gap that can be welded is not significantly affected by welding speeds, but is strongly dependent on the laser power and focal position relative to the interface between the materials. Five distinct types of material modification were observed over a range of different powers and surface separations, and a mechanism is proposed to explain the observations.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

Jianyong Chen, Richard M. Carter, Robert R. Thomson, and Duncan P. Hand, "Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding: erratum," Opt. Express 23, 28104-28105 (2015)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-21-28104

OSA Recommended Articles
Picosecond laser seal welding of glasses with a large gap

Hang Chen, Jun Duan, Zeqi Yang, Wei Xiong, and Leimin Deng
Opt. Express 27(21) 30297-30307 (2019)

Gap bridging in joining of glass using ultra short laser pulses

Kristian Cvecek, Rainer Odato, Sarah Dehmel, Isamu Miyamoto, and Michael Schmidt
Opt. Express 23(5) 5681-5693 (2015)

Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses

Isamu Miyamoto, Kristian Cvecek, Yasuhiro Okamoto, Michael Schmidt, and Henry Helvajian
Opt. Express 19(23) 22961-22973 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
    [Crossref] [PubMed]
  2. I. Miyamoto and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by Ps-laser pulses,” J. Laser Micro/Nanoen. 2(1), 7–14 (2007).
  3. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
    [Crossref]
  4. A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” App. Phys. Adv. Mater. 93(1), 171–175 (2008).
  5. Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
    [Crossref]
  6. S. Richter, S. Nolte, and A. Tünnermann, “Ultrashort pulse laser welding - a new wpproach for high- stability bonding of different glasses,” Phys. Procedia 39, 556–562 (2012).
    [Crossref]
  7. B. Goss, “Bonding glass and other substrates with UV curing adhesives,” Int. J. Adhes. Adhes. 22(5), 405–408 (2002).
    [Crossref]
  8. J. Bovatsek, A. Arai, and C. B. Schaffer, “Three-dimensional micromachining inside transparent materials using femtosecond laser pulses: new applications,” Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006.
  9. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
    [Crossref]
  10. I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
    [Crossref]
  11. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
    [Crossref]
  12. D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt. 51(12), 2098–2106 (2012).
    [Crossref] [PubMed]
  13. I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
    [Crossref] [PubMed]
  14. V. Greco, F. Marchesini, and G. Molesini, “Optical contact and Van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
    [Crossref]
  15. R. M. Carter, J. Chen, J. D. Shephard, R. R. Thomson, and D. P. Hand, “Picosecond laser welding of similar and dissimilar materials,” Appl. Opt. 53(19), 4233–4238 (2014).
    [Crossref] [PubMed]
  16. K. Cvecek, S. Dehmel, I. Miyamoto, and M. Schmidt, “Ridge formation on the surface of fused silica processed by ultra-short laser pulses,” in Proceedings of the 15th International Symposium on Laser Precision Microfabrication (JLPS, 2014), pp. 11–14.
  17. K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (1)

2012 (2)

D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt. 51(12), 2098–2106 (2012).
[Crossref] [PubMed]

S. Richter, S. Nolte, and A. Tünnermann, “Ultrashort pulse laser welding - a new wpproach for high- stability bonding of different glasses,” Phys. Procedia 39, 556–562 (2012).
[Crossref]

2010 (2)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

2008 (2)

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” App. Phys. Adv. Mater. 93(1), 171–175 (2008).

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

2007 (1)

I. Miyamoto and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by Ps-laser pulses,” J. Laser Micro/Nanoen. 2(1), 7–14 (2007).

2006 (2)

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

2005 (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

2002 (1)

B. Goss, “Bonding glass and other substrates with UV curing adhesives,” Int. J. Adhes. Adhes. 22(5), 405–408 (2002).
[Crossref]

2001 (1)

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and Van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[Crossref]

Bégin, M.

Brenk, U.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” App. Phys. Adv. Mater. 93(1), 171–175 (2008).

Carter, R. M.

Chen, J.

Cvecek, K.

K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

K. Cvecek, S. Dehmel, I. Miyamoto, and M. Schmidt, “Ridge formation on the surface of fused silica processed by ultra-short laser pulses,” in Proceedings of the 15th International Symposium on Laser Precision Microfabrication (JLPS, 2014), pp. 11–14.

Dehmel, S.

K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
[Crossref] [PubMed]

K. Cvecek, S. Dehmel, I. Miyamoto, and M. Schmidt, “Ridge formation on the surface of fused silica processed by ultra-short laser pulses,” in Proceedings of the 15th International Symposium on Laser Precision Microfabrication (JLPS, 2014), pp. 11–14.

Goss, B.

B. Goss, “Bonding glass and other substrates with UV curing adhesives,” Int. J. Adhes. Adhes. 22(5), 405–408 (2002).
[Crossref]

Gottmann, J.

I. Miyamoto and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by Ps-laser pulses,” J. Laser Micro/Nanoen. 2(1), 7–14 (2007).

Greco, V.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and Van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[Crossref]

Hand, D. P.

Hélie, D.

Hirao, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Hirose, A.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Horn, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” App. Phys. Adv. Mater. 93(1), 171–175 (2008).

Inoue, T.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Itoh, K.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Kachel, M.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” App. Phys. Adv. Mater. 93(1), 171–175 (2008).

Lacroix, F.

Marchesini, F.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and Van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[Crossref]

Mingareev, I.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” App. Phys. Adv. Mater. 93(1), 171–175 (2008).

Miura, K.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Miyamoto, I.

K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

I. Miyamoto and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by Ps-laser pulses,” J. Laser Micro/Nanoen. 2(1), 7–14 (2007).

K. Cvecek, S. Dehmel, I. Miyamoto, and M. Schmidt, “Ridge formation on the surface of fused silica processed by ultra-short laser pulses,” in Proceedings of the 15th International Symposium on Laser Precision Microfabrication (JLPS, 2014), pp. 11–14.

Molesini, G.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and Van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[Crossref]

Nakaya, T.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Nishii, J.

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Nishiuchi, S.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Nolte, S.

S. Richter, S. Nolte, and A. Tünnermann, “Ultrashort pulse laser welding - a new wpproach for high- stability bonding of different glasses,” Phys. Procedia 39, 556–562 (2012).
[Crossref]

Odato, R.

Ohnishi, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Okamoto, Y.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

Onda, S.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

Ozeki, Y.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Richter, S.

S. Richter, S. Nolte, and A. Tünnermann, “Ultrashort pulse laser welding - a new wpproach for high- stability bonding of different glasses,” Phys. Procedia 39, 556–562 (2012).
[Crossref]

Sakakura, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Sano, T.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Schmidt, M.

K. Cvecek, R. Odato, S. Dehmel, I. Miyamoto, and M. Schmidt, “Gap bridging in joining of glass using ultra short laser pulses,” Opt. Express 23(5), 5681–5693 (2015).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

K. Cvecek, S. Dehmel, I. Miyamoto, and M. Schmidt, “Ridge formation on the surface of fused silica processed by ultra-short laser pulses,” in Proceedings of the 15th International Symposium on Laser Precision Microfabrication (JLPS, 2014), pp. 11–14.

Shephard, J. D.

Shimizu, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Tamaki, T.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Thomson, R. R.

Tünnermann, A.

S. Richter, S. Nolte, and A. Tünnermann, “Ultrashort pulse laser welding - a new wpproach for high- stability bonding of different glasses,” Phys. Procedia 39, 556–562 (2012).
[Crossref]

Vallée, R.

Watanabe, W.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Werth, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” App. Phys. Adv. Mater. 93(1), 171–175 (2008).

Yamaguchi, H.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

App. Phys. Adv. Mater. (1)

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass–glass and glass–silicon,” App. Phys. Adv. Mater. 93(1), 171–175 (2008).

Appl. Opt. (2)

Appl. Phys. Express (1)

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Appl. Phys. Lett. (1)

W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89(2), 021106 (2006).
[Crossref]

Int. J. Adhes. Adhes. (1)

B. Goss, “Bonding glass and other substrates with UV curing adhesives,” Int. J. Adhes. Adhes. 22(5), 405–408 (2002).
[Crossref]

J. Appl. Phys. (1)

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

J. Laser Micro/Nanoen. (1)

I. Miyamoto and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by Ps-laser pulses,” J. Laser Micro/Nanoen. 2(1), 7–14 (2007).

J. Opt. A, Pure Appl. Opt. (1)

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and Van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(1), 85–88 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Opt. Express (3)

Phys. Procedia (2)

S. Richter, S. Nolte, and A. Tünnermann, “Ultrashort pulse laser welding - a new wpproach for high- stability bonding of different glasses,” Phys. Procedia 39, 556–562 (2012).
[Crossref]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Novel fusion welding technology of glass using ultrashort pulse lasers,” Phys. Procedia 5, 483–493 (2010).
[Crossref]

Other (2)

J. Bovatsek, A. Arai, and C. B. Schaffer, “Three-dimensional micromachining inside transparent materials using femtosecond laser pulses: new applications,” Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006.

K. Cvecek, S. Dehmel, I. Miyamoto, and M. Schmidt, “Ridge formation on the surface of fused silica processed by ultra-short laser pulses,” in Proceedings of the 15th International Symposium on Laser Precision Microfabrication (JLPS, 2014), pp. 11–14.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of cylindrical lens setup used for the gap welding experiments. The cylindrical lens is N-BK7 and the flat glass wafer is 1 mm thick BOROFLOAT 33. The lens radius of curvature R, is 516.8 mm. Individual weld lines are created perpendicular to the line of optical contact (A) scanning from left to right.
Fig. 2
Fig. 2 Schematic of cross-section of planar substrate arrangement. The fused silica wafers are 1 mm thickness, with etched grooves depths of 1.0 µm, 2.0 µm, 3.0 µm, 4.0 µm and 5.0 µm, widths of 1 mm and separations of 2 mm.
Fig. 3
Fig. 3 Welds of flat borosilicate glass (1 mm thickness) to N-BK7 cylindrical lens with different parameters. Each parameter consists of a set of 5 welding lines (100 µm separation) of identical welding parameters. A) 7 sets of welding lines (250 µm separation) with a pulse energy of 2.95 µJ, and different scanning speeds (left-to-right: 0.6, 1.0, 1.4, 1.8, 2.2, 2.6 and 3.0 mm s−1). B) 9 sets of welding lines (250 µm separation) with the same scanning speed of 1 mm s−1, and different pulse energy (left-to-right 2.45, 2.70, 2.95, 3.20, 3.45, 3.70, 3.93, 4.18 and 4.43 µJ). The focal position of the laser is 72.7 µm below the bottom surface of the flat glass wafer. In both images, the red arrows indicate the direction of the laser translation.
Fig. 4
Fig. 4 Comparison of start-gaps and end-gaps for different incident average powers used in Fig. 3(b). Linear fits indicate that end gaps are roughly twice as large as start gaps.
Fig. 5
Fig. 5 Parameter map illustrating the classification of weld results with varying gap distance and average laser power. Plotted points indicate changes between the different process classifications with a resolution of 1.0 µm in depth and 0.28 µJ in pulse energy. The blue dashed line indicates the average power used in Fig. 6. The inset shows different welding patterns of (a) Plasma ablation, (b) HAZ ablation, (c) Intermittently welded and (d) Continuously welded. The cross-sections of these example welds are shown in Fig. 9. The red stars indicate the position of these results.
Fig. 6
Fig. 6 Parameter map illustrating classification of weld results with varying gap distance and focal position with a constant pulse energy of 18.23 µJ. Plotted points indicate the position of the change between the different result classifications with a resolution of 1.0 µm in depth and 2.97 µm in focal position. The blue line indicates the focal position used in Fig. 5. The fifth state appeared when the focal position was too deep and the laser induced modification is below the interface. a, b, c, d in the graph indicate the positions of cross-sections in Fig. 10.
Fig. 7
Fig. 7 Diagram of welding formation between two surfaces (the insert welding figure: fused silica and fused silica, 18.29 µJ, 2 mm s−1 with a 2 µm gap).
Fig. 8
Fig. 8 Evolution of plasma affected region and HAZ with increasing incident pulses of 21.25 µJ in a single fused silica sample. The nominal focal position is indicated by the blue line. There is no visible (permanent) modification to the fused silica for 240 pulses or less. Phase contrast imaging has been used to provide clearer images.
Fig. 9
Fig. 9 Left: cross-sections of different welding patterns of etched grooves experiments label-marked points in Fig. 5. A to D: pulse energy used was 10.1, 11.23, 12.9 and 18.8 µJ respectively. Right: illustration of the evolution of the weld structure with varying incident average power. 1) low power without HAZ; a neat plasma modification line in the bottom glass. 2) plasma escapes with ejecting melt creating irregular ablation, 3) plasma generated at both the top and bottom material but neither of them are strong enough to generate a stable bond, 4) melt bridging the gap providing a bridging corridor for the plasma and a continuous weld.
Fig. 10
Fig. 10 Left: cross-sections of different welding patterns of etched grooves experiments label-marked point in Fig. 6. A-D.: focal position is −24.1 µm, −40.0 µm, −86.5 µm and −107.3 µm respectively. Right: illustration of mechanism of left photo.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

AB= B C 2 2RAB A D 2 2R

Metrics