Abstract

We propose a new model for gain competition effects in high-power fiber amplifiers, which accounts for the thermal effects of heat load on the doped core overlap of the propagating light field. The full-vectorial nature of the fiber modes is modeled by an embedded finite-element method modal solver, and the temperature profile is calculated by a simple and efficient radial heat propagation solver. The model is applied to a Yb3+-doped LPF45 air-clad photonic-crystal fiber amplifier for coand counter-propagating pumping setups, showing gain competition in conditions of severe heat load.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermally resilient Tm-doped large mode area photonic crystal fiber with symmetry-free cladding

E. Coscelli, C. Molardi, M. Masruri, A. Cucinotta, and S. Selleri
Opt. Express 22(8) 9707-9714 (2014)

Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber

Lingchao Kong, Jinyong Leng, Pu Zhou, and Zongfu Jiang
Opt. Express 25(19) 23437-23450 (2017)

Mode discrimination criterion for effective differential amplification in Yb-doped fiber design for high power operation

C. Molardi, F. Poli, L. Rosa, S. Selleri, and A. Cucinotta
Opt. Express 25(23) 29013-29025 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Tünnermann, T. Schreiber, and J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt. 49, F71–F78 (2010).
    [Crossref] [PubMed]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [Crossref]
  3. M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
    [Crossref]
  4. F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers. Properties and Applications, Springer Series in Material Science (Springer, 2007).
  5. T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2, 369–381 (2013).
    [Crossref]
  6. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36, 689–691 (2011).
    [Crossref] [PubMed]
  7. M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express 20, 7263–7273 (2012).
    [Crossref] [PubMed]
  8. J. Limpert, O. Schmidt, J. Rothhardt, F. Rser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14, 2715–2720 (2006).
    [Crossref] [PubMed]
  9. M. Laurila, M. Jørgensen, K. Hansen, T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20, 5742–5753 (2012).
    [Crossref] [PubMed]
  10. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8 GW peak power,” Opt. Express 19, 255–260 (2011).
    [Crossref] [PubMed]
  11. F. Jansen, F. Stutzki, H. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20, 3997–4008 (2012).
    [Crossref] [PubMed]
  12. F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-mode propagation in Yb-doped large mode area fibers with reduced cladding symmetry,” IEEE Photon. Technol. Lett. 26, 2454–2457 (2014).
    [Crossref]
  13. F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1, 233–242 (2014).
    [Crossref]
  14. E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jorgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” J. Lightwave Technol. 30(22), 3494–3499 (2012).
    [Crossref]
  15. E. Coscelli and A. Cucinotta, “Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers,” Int. J. Mod. Phys. B 28(12), 1442002 (2014).
    [Crossref]
  16. F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15(1), 54–60 (2009).
    [Crossref]
  17. A. Cucinotta, F. Poli, and S. Selleri, “Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers,” IEEE Photon. Technol. Lett. 16(9), 2027–2029 (2004).
    [Crossref]
  18. E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Opt. Express 18(1), 27197–27204 (2010).
    [Crossref]
  19. F. Poli, J. Lægsgaard, D. Passaro, A. Cucinotta, S. Selleri, and J. Broeng, “Suppression of higher-order modes by segmented core doping in rod-type photonic crystal fibers,” J. Lightwave Technol. 27(22), 4935–4942 (2009).
    [Crossref]

2014 (4)

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-mode propagation in Yb-doped large mode area fibers with reduced cladding symmetry,” IEEE Photon. Technol. Lett. 26, 2454–2457 (2014).
[Crossref]

E. Coscelli and A. Cucinotta, “Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers,” Int. J. Mod. Phys. B 28(12), 1442002 (2014).
[Crossref]

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1, 233–242 (2014).
[Crossref]

2013 (1)

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2, 369–381 (2013).
[Crossref]

2012 (4)

2011 (2)

2010 (3)

2009 (2)

F. Poli, J. Lægsgaard, D. Passaro, A. Cucinotta, S. Selleri, and J. Broeng, “Suppression of higher-order modes by segmented core doping in rod-type photonic crystal fibers,” J. Lightwave Technol. 27(22), 4935–4942 (2009).
[Crossref]

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15(1), 54–60 (2009).
[Crossref]

2006 (1)

2004 (1)

A. Cucinotta, F. Poli, and S. Selleri, “Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers,” IEEE Photon. Technol. Lett. 16(9), 2027–2029 (2004).
[Crossref]

Alkeskjold, T.

Alkeskjold, T. T.

Broeng, J.

Carstens, H.

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Coscelli, E.

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-mode propagation in Yb-doped large mode area fibers with reduced cladding symmetry,” IEEE Photon. Technol. Lett. 26, 2454–2457 (2014).
[Crossref]

E. Coscelli and A. Cucinotta, “Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers,” Int. J. Mod. Phys. B 28(12), 1442002 (2014).
[Crossref]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jorgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” J. Lightwave Technol. 30(22), 3494–3499 (2012).
[Crossref]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Opt. Express 18(1), 27197–27204 (2010).
[Crossref]

Cucinotta, A.

E. Coscelli and A. Cucinotta, “Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers,” Int. J. Mod. Phys. B 28(12), 1442002 (2014).
[Crossref]

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-mode propagation in Yb-doped large mode area fibers with reduced cladding symmetry,” IEEE Photon. Technol. Lett. 26, 2454–2457 (2014).
[Crossref]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jorgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” J. Lightwave Technol. 30(22), 3494–3499 (2012).
[Crossref]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Opt. Express 18(1), 27197–27204 (2010).
[Crossref]

F. Poli, J. Lægsgaard, D. Passaro, A. Cucinotta, S. Selleri, and J. Broeng, “Suppression of higher-order modes by segmented core doping in rod-type photonic crystal fibers,” J. Lightwave Technol. 27(22), 4935–4942 (2009).
[Crossref]

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15(1), 54–60 (2009).
[Crossref]

A. Cucinotta, F. Poli, and S. Selleri, “Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers,” IEEE Photon. Technol. Lett. 16(9), 2027–2029 (2004).
[Crossref]

F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers. Properties and Applications, Springer Series in Material Science (Springer, 2007).

Eidam, T.

Ermeneux, S.

Hädrich, S.

Hansen, K.

Jakobsen, C.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2, 369–381 (2013).
[Crossref]

Jansen, F.

Jauregui, C.

Johansen, M. M.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2, 369–381 (2013).
[Crossref]

Jorgensen, M. M.

Jørgensen, M.

Jørgensen, M. M.

Lægsgaard, J.

Laurila, M.

Leick, L.

Liem, A.

Limpert, J.

Lumholt, O.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2, 369–381 (2013).
[Crossref]

Maack, M. D.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2, 369–381 (2013).
[Crossref]

Nilsson, J.

Noordegraaf, D.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2, 369–381 (2013).
[Crossref]

Olausson, C. B.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2, 369–381 (2013).
[Crossref]

Otto, H.

Passaro, D.

Petersen, S. R.

Poli, F.

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-mode propagation in Yb-doped large mode area fibers with reduced cladding symmetry,” IEEE Photon. Technol. Lett. 26, 2454–2457 (2014).
[Crossref]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jorgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” J. Lightwave Technol. 30(22), 3494–3499 (2012).
[Crossref]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Opt. Express 18(1), 27197–27204 (2010).
[Crossref]

F. Poli, J. Lægsgaard, D. Passaro, A. Cucinotta, S. Selleri, and J. Broeng, “Suppression of higher-order modes by segmented core doping in rod-type photonic crystal fibers,” J. Lightwave Technol. 27(22), 4935–4942 (2009).
[Crossref]

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15(1), 54–60 (2009).
[Crossref]

A. Cucinotta, F. Poli, and S. Selleri, “Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers,” IEEE Photon. Technol. Lett. 16(9), 2027–2029 (2004).
[Crossref]

F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers. Properties and Applications, Springer Series in Material Science (Springer, 2007).

Richardson, D. J.

Rothhardt, J.

Rser, F.

Salin, F.

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-mode propagation in Yb-doped large mode area fibers with reduced cladding symmetry,” IEEE Photon. Technol. Lett. 26, 2454–2457 (2014).
[Crossref]

J. Limpert, O. Schmidt, J. Rothhardt, F. Rser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14, 2715–2720 (2006).
[Crossref] [PubMed]

Schmidt, O.

Schreiber, T.

Selleri, S.

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-mode propagation in Yb-doped large mode area fibers with reduced cladding symmetry,” IEEE Photon. Technol. Lett. 26, 2454–2457 (2014).
[Crossref]

E. Coscelli, F. Poli, T. T. Alkeskjold, M. M. Jorgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal effects on the single-mode regime of distributed modal filtering rod fiber,” J. Lightwave Technol. 30(22), 3494–3499 (2012).
[Crossref]

E. Coscelli, F. Poli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri, “Single-mode analysis of Yb-doped double-cladding distributed spectral filtering photonic crystal fibers,” Opt. Express 18(1), 27197–27204 (2010).
[Crossref]

F. Poli, J. Lægsgaard, D. Passaro, A. Cucinotta, S. Selleri, and J. Broeng, “Suppression of higher-order modes by segmented core doping in rod-type photonic crystal fibers,” J. Lightwave Technol. 27(22), 4935–4942 (2009).
[Crossref]

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15(1), 54–60 (2009).
[Crossref]

A. Cucinotta, F. Poli, and S. Selleri, “Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers,” IEEE Photon. Technol. Lett. 16(9), 2027–2029 (2004).
[Crossref]

F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers. Properties and Applications, Springer Series in Material Science (Springer, 2007).

Steinmetz, A.

Stutzki, F.

Tünnermann, A.

Weirich, J.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2, 369–381 (2013).
[Crossref]

Yvernault, P.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

F. Poli, A. Cucinotta, D. Passaro, S. Selleri, J. Lægsgaard, and J. Broeng, “Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs,” IEEE J. Sel. Top. Quantum Electron. 15(1), 54–60 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Cucinotta, F. Poli, and S. Selleri, “Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers,” IEEE Photon. Technol. Lett. 16(9), 2027–2029 (2004).
[Crossref]

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-mode propagation in Yb-doped large mode area fibers with reduced cladding symmetry,” IEEE Photon. Technol. Lett. 26, 2454–2457 (2014).
[Crossref]

Int. J. Mod. Phys. B (1)

E. Coscelli and A. Cucinotta, “Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers,” Int. J. Mod. Phys. B 28(12), 1442002 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nanophotonics (1)

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2, 369–381 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Optica (1)

Other (1)

F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers. Properties and Applications, Springer Series in Material Science (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Workflow of the amplifier simulator, including the full-vectorial FEM modal solver and the radial thermal model. The inner loop cycles over the fiber length divided in n steps, with the signals and pump powers updated at every length step i, while the outer loop works alternately in the forward and backward direction until convergence.
Fig. 2
Fig. 2 FM and HOMs doped core overlap Γ for varying heat density Q0. Notice the dispersion curves crossing with hybridization of HOM2 and HOM3 for Q0 = 2.1 × 109 W/m3. On the right side, the LPF45 structure (pitch 45 μm, air-hole diameter 9 μm) and the cold-fiber magnitude of the mode magnetic field y-component Hy at 1032 nm wavelength.
Fig. 3
Fig. 3 Generated heat density Q0, maximum ΔT, and maximum Δn across the fiber cross-section as a function of fiber length for (a) co-propagating pumping and (b) counter-propagating pumping (Pp = 400 W, PFM = 5 W, PHOM,i = 50 mW).
Fig. 4
Fig. 4 FM and HOMs doped core overlap Γ vs. length for (a) co- and (b) counter-propagating pumping (same conditions as Fig. 3). Notice the field distributions in the insets.
Fig. 5
Fig. 5 Pump and FM power as a function of fiber length for (a) co-propagating pumping and (b) counter-propagating pumping (same conditions as Fig. 3).
Fig. 6
Fig. 6 HOMs power as a function of fiber length for (a) co-propagating pumping and (b) counter-propagating pumping (same conditions as Fig. 3).
Fig. 7
Fig. 7 HOMs power as a function of fiber length for (a) co-propagating pumping and (b) counter-propagating pumping (without thermal effects).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ = S i ( x , y ) d x d y ,
Q 0 = 1 d L A core ( A λ p λ s ) Δ P p ,

Metrics