Abstract

We fabricated a bright and thin Zn2SiO4 luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn2SiO4 luminescent thin film was fabricated by annealing a ZnO film on a Si3N4 substrate at 1000 °C in N2. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn2SiO4 luminescent thin film. This is the first report of the investigation and application of ZnO/Si3N4 annealed at a high temperature (1000 °C). The fabricated Zn2SiO4 film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free cellular structure imaging with 82 nm lateral resolution using an electron-beam excitation-assisted optical microscope

Masahiro Fukuta, Yuriko Masuda, Wataru Inami, and Yoshimasa Kawata
Opt. Express 24(15) 16487-16495 (2016)

Nanometric light spots of cathode luminescence in Y2O3:Eu3+ phosphor thin films excited by focused electron beams as ultra-small illumination source for high-resolution optical microscope

Atsushi Sugita, Masashi Kamiya, Chiyu Morita, Aki Miyake, Yasunori Nawa, Yuriko Masuda, Wataru Inami, Hiro-ko Kominami, Yoichiro Nakanishi, and Yoshimasa Kawata
Opt. Mater. Express 4(1) 155-161 (2014)

Electron beam excitation assisted optical microscope with ultra-high resolution

Wataru Inami, Kentaro Nakajima, Atsuo Miyakawa, and Yoshimasa Kawata
Opt. Express 18(12) 12897-12902 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  3. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref] [PubMed]
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  5. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  6. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [Crossref] [PubMed]
  7. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
    [Crossref]
  8. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
    [Crossref] [PubMed]
  9. T. Schuh and N. de Jonge, “Liquid scanning transmission electronmicroscopy: Nanoscale imaging in micrometers-thick liquids,” C. R. Phys. 15(2–3), 214–223 (2014).
    [Crossref]
  10. D. B. Peckys and N. de Jonge, “Liquid scanning transmission electron microscopy: Imaging protein complexes in their native environment in whole eukaryotic cells,” Microsc. Microanal. 20(2), 346–365 (2014).
    [Crossref] [PubMed]
  11. W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express 18(12), 12897–12902 (2010).
    [Crossref] [PubMed]
  12. A. Sugita, M. Kamiya, C. Morita, A. Miyake, Y. Nawa, Y. Masuda, W. Inami, H. Kominami, Y. Nakanishi, and Y. Kawata, “Nanometric light spots of cathode luminescence in Y2O3:Eu3+ phosphor thin films excited by focused electron beams as ultra-small illumination source for high-resolution optical microscope,” Opt. Mater. Express 4(1), 155–161 (2014).
    [Crossref]
  13. A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(4S), 04EH11 (2014).
    [Crossref]
  14. A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
    [Crossref]
  15. X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
    [Crossref]
  16. Z. T. Kang, Y. Liu, B. K. Wagner, R. Gilstrap, M. Liu, and C. J. Summers, “Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD,” J. Lumin. 121(2), 595–600 (2006).
    [Crossref]
  17. K. C. Peng, H. C. Kao, S. J. Liu, K. L. Tsai, and J. C. Lin, “Annealing effect on the microstructure and optical characterization of Zn2SiO4 thin film sputtered on quartz glass,” Jpn. J. Appl. Phys. 52(11S), 11NB04 (2013).
    [Crossref]
  18. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
    [Crossref]
  19. C. Li, Y. Bando, B. Dierre, T. Sekiguchi, Y. Huang, J. Lin, and D. Golberg, “Effect of size-dependent thermal instability on synthesis of Zn2SiO4-SiOx core-shell nanotube arrays and their cathodoluminescence properties,” Nanoscale Res. Lett. 5(4), 773–780 (2010).
    [Crossref] [PubMed]
  20. B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater. 11(4), 043001 (2010).
    [Crossref]
  21. X. Feng, X. Yuan, T. Sekiguchi, W. Lin, and J. Kang, “Aligned Zn-Zn2SiO4 core-shell nanocables with homogeneously intense ultraviolet emission at 300 nm,” J. Phys. Chem. B 109(33), 15786–15790 (2005).
    [Crossref] [PubMed]

2014 (4)

T. Schuh and N. de Jonge, “Liquid scanning transmission electronmicroscopy: Nanoscale imaging in micrometers-thick liquids,” C. R. Phys. 15(2–3), 214–223 (2014).
[Crossref]

D. B. Peckys and N. de Jonge, “Liquid scanning transmission electron microscopy: Imaging protein complexes in their native environment in whole eukaryotic cells,” Microsc. Microanal. 20(2), 346–365 (2014).
[Crossref] [PubMed]

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(4S), 04EH11 (2014).
[Crossref]

A. Sugita, M. Kamiya, C. Morita, A. Miyake, Y. Nawa, Y. Masuda, W. Inami, H. Kominami, Y. Nakanishi, and Y. Kawata, “Nanometric light spots of cathode luminescence in Y2O3:Eu3+ phosphor thin films excited by focused electron beams as ultra-small illumination source for high-resolution optical microscope,” Opt. Mater. Express 4(1), 155–161 (2014).
[Crossref]

2013 (1)

K. C. Peng, H. C. Kao, S. J. Liu, K. L. Tsai, and J. C. Lin, “Annealing effect on the microstructure and optical characterization of Zn2SiO4 thin film sputtered on quartz glass,” Jpn. J. Appl. Phys. 52(11S), 11NB04 (2013).
[Crossref]

2010 (3)

W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express 18(12), 12897–12902 (2010).
[Crossref] [PubMed]

C. Li, Y. Bando, B. Dierre, T. Sekiguchi, Y. Huang, J. Lin, and D. Golberg, “Effect of size-dependent thermal instability on synthesis of Zn2SiO4-SiOx core-shell nanotube arrays and their cathodoluminescence properties,” Nanoscale Res. Lett. 5(4), 773–780 (2010).
[Crossref] [PubMed]

B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater. 11(4), 043001 (2010).
[Crossref]

2007 (1)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

2006 (4)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Z. T. Kang, Y. Liu, B. K. Wagner, R. Gilstrap, M. Liu, and C. J. Summers, “Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD,” J. Lumin. 121(2), 595–600 (2006).
[Crossref]

2005 (2)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

X. Feng, X. Yuan, T. Sekiguchi, W. Lin, and J. Kang, “Aligned Zn-Zn2SiO4 core-shell nanocables with homogeneously intense ultraviolet emission at 300 nm,” J. Phys. Chem. B 109(33), 15786–15790 (2005).
[Crossref] [PubMed]

2003 (1)

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

2001 (2)

A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
[Crossref]

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1994 (1)

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Bando, Y.

C. Li, Y. Bando, B. Dierre, T. Sekiguchi, Y. Huang, J. Lin, and D. Golberg, “Effect of size-dependent thermal instability on synthesis of Zn2SiO4-SiOx core-shell nanotube arrays and their cathodoluminescence properties,” Nanoscale Res. Lett. 5(4), 773–780 (2010).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

de Jonge, N.

T. Schuh and N. de Jonge, “Liquid scanning transmission electronmicroscopy: Nanoscale imaging in micrometers-thick liquids,” C. R. Phys. 15(2–3), 214–223 (2014).
[Crossref]

D. B. Peckys and N. de Jonge, “Liquid scanning transmission electron microscopy: Imaging protein complexes in their native environment in whole eukaryotic cells,” Microsc. Microanal. 20(2), 346–365 (2014).
[Crossref] [PubMed]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Dierre, B.

C. Li, Y. Bando, B. Dierre, T. Sekiguchi, Y. Huang, J. Lin, and D. Golberg, “Effect of size-dependent thermal instability on synthesis of Zn2SiO4-SiOx core-shell nanotube arrays and their cathodoluminescence properties,” Nanoscale Res. Lett. 5(4), 773–780 (2010).
[Crossref] [PubMed]

B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater. 11(4), 043001 (2010).
[Crossref]

Feng, X.

X. Feng, X. Yuan, T. Sekiguchi, W. Lin, and J. Kang, “Aligned Zn-Zn2SiO4 core-shell nanocables with homogeneously intense ultraviolet emission at 300 nm,” J. Phys. Chem. B 109(33), 15786–15790 (2005).
[Crossref] [PubMed]

Fu, C. L.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

Fujita, K.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Ge, W.

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

Gilstrap, R.

Z. T. Kang, Y. Liu, B. K. Wagner, R. Gilstrap, M. Liu, and C. J. Summers, “Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD,” J. Lumin. 121(2), 595–600 (2006).
[Crossref]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Golberg, D.

C. Li, Y. Bando, B. Dierre, T. Sekiguchi, Y. Huang, J. Lin, and D. Golberg, “Effect of size-dependent thermal instability on synthesis of Zn2SiO4-SiOx core-shell nanotube arrays and their cathodoluminescence properties,” Nanoscale Res. Lett. 5(4), 773–780 (2010).
[Crossref] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Hell, S. W.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Huang, Y.

C. Li, Y. Bando, B. Dierre, T. Sekiguchi, Y. Huang, J. Lin, and D. Golberg, “Effect of size-dependent thermal instability on synthesis of Zn2SiO4-SiOx core-shell nanotube arrays and their cathodoluminescence properties,” Nanoscale Res. Lett. 5(4), 773–780 (2010).
[Crossref] [PubMed]

Inami, W.

Jahn, U.

A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
[Crossref]

Kamiya, M.

Kanamori, S.

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(4S), 04EH11 (2014).
[Crossref]

Kang, J.

X. Feng, X. Yuan, T. Sekiguchi, W. Lin, and J. Kang, “Aligned Zn-Zn2SiO4 core-shell nanocables with homogeneously intense ultraviolet emission at 300 nm,” J. Phys. Chem. B 109(33), 15786–15790 (2005).
[Crossref] [PubMed]

Kang, Z. T.

Z. T. Kang, Y. Liu, B. K. Wagner, R. Gilstrap, M. Liu, and C. J. Summers, “Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD,” J. Lumin. 121(2), 595–600 (2006).
[Crossref]

Kao, H. C.

K. C. Peng, H. C. Kao, S. J. Liu, K. L. Tsai, and J. C. Lin, “Annealing effect on the microstructure and optical characterization of Zn2SiO4 thin film sputtered on quartz glass,” Jpn. J. Appl. Phys. 52(11S), 11NB04 (2013).
[Crossref]

Kawano, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Kawata, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Kawata, Y.

Kobayashi, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Kominami, H.

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Li, C.

C. Li, Y. Bando, B. Dierre, T. Sekiguchi, Y. Huang, J. Lin, and D. Golberg, “Effect of size-dependent thermal instability on synthesis of Zn2SiO4-SiOx core-shell nanotube arrays and their cathodoluminescence properties,” Nanoscale Res. Lett. 5(4), 773–780 (2010).
[Crossref] [PubMed]

Lin, J.

C. Li, Y. Bando, B. Dierre, T. Sekiguchi, Y. Huang, J. Lin, and D. Golberg, “Effect of size-dependent thermal instability on synthesis of Zn2SiO4-SiOx core-shell nanotube arrays and their cathodoluminescence properties,” Nanoscale Res. Lett. 5(4), 773–780 (2010).
[Crossref] [PubMed]

Lin, J. C.

K. C. Peng, H. C. Kao, S. J. Liu, K. L. Tsai, and J. C. Lin, “Annealing effect on the microstructure and optical characterization of Zn2SiO4 thin film sputtered on quartz glass,” Jpn. J. Appl. Phys. 52(11S), 11NB04 (2013).
[Crossref]

Lin, W.

X. Feng, X. Yuan, T. Sekiguchi, W. Lin, and J. Kang, “Aligned Zn-Zn2SiO4 core-shell nanocables with homogeneously intense ultraviolet emission at 300 nm,” J. Phys. Chem. B 109(33), 15786–15790 (2005).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Liu, H.

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

Liu, M.

Z. T. Kang, Y. Liu, B. K. Wagner, R. Gilstrap, M. Liu, and C. J. Summers, “Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD,” J. Lumin. 121(2), 595–600 (2006).
[Crossref]

Liu, S. J.

K. C. Peng, H. C. Kao, S. J. Liu, K. L. Tsai, and J. C. Lin, “Annealing effect on the microstructure and optical characterization of Zn2SiO4 thin film sputtered on quartz glass,” Jpn. J. Appl. Phys. 52(11S), 11NB04 (2013).
[Crossref]

Liu, Y.

Z. T. Kang, Y. Liu, B. K. Wagner, R. Gilstrap, M. Liu, and C. J. Summers, “Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD,” J. Lumin. 121(2), 595–600 (2006).
[Crossref]

Lu, G.

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Masuda, Y.

Ming, H.

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

Miyakawa, A.

Miyake, A.

Morita, C.

Nakajima, K.

Nakanishi, Y.

Nawa, Y.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Ong, H. C.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Peckys, D. B.

D. B. Peckys and N. de Jonge, “Liquid scanning transmission electron microscopy: Imaging protein complexes in their native environment in whole eukaryotic cells,” Microsc. Microanal. 20(2), 346–365 (2014).
[Crossref] [PubMed]

Peng, K. C.

K. C. Peng, H. C. Kao, S. J. Liu, K. L. Tsai, and J. C. Lin, “Annealing effect on the microstructure and optical characterization of Zn2SiO4 thin film sputtered on quartz glass,” Jpn. J. Appl. Phys. 52(11S), 11NB04 (2013).
[Crossref]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Qi, Z.

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

Ribeiro, C. T. M.

A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Schuh, T.

T. Schuh and N. de Jonge, “Liquid scanning transmission electronmicroscopy: Nanoscale imaging in micrometers-thick liquids,” C. R. Phys. 15(2–3), 214–223 (2014).
[Crossref]

Sekiguchi, T.

C. Li, Y. Bando, B. Dierre, T. Sekiguchi, Y. Huang, J. Lin, and D. Golberg, “Effect of size-dependent thermal instability on synthesis of Zn2SiO4-SiOx core-shell nanotube arrays and their cathodoluminescence properties,” Nanoscale Res. Lett. 5(4), 773–780 (2010).
[Crossref] [PubMed]

B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater. 11(4), 043001 (2010).
[Crossref]

X. Feng, X. Yuan, T. Sekiguchi, W. Lin, and J. Kang, “Aligned Zn-Zn2SiO4 core-shell nanocables with homogeneously intense ultraviolet emission at 300 nm,” J. Phys. Chem. B 109(33), 15786–15790 (2005).
[Crossref] [PubMed]

Shi, C.

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

Siu, G. G.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Sugita, A.

Summers, C. J.

Z. T. Kang, Y. Liu, B. K. Wagner, R. Gilstrap, M. Liu, and C. J. Summers, “Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD,” J. Lumin. 121(2), 595–600 (2006).
[Crossref]

Tsai, K. L.

K. C. Peng, H. C. Kao, S. J. Liu, K. L. Tsai, and J. C. Lin, “Annealing effect on the microstructure and optical characterization of Zn2SiO4 thin film sputtered on quartz glass,” Jpn. J. Appl. Phys. 52(11S), 11NB04 (2013).
[Crossref]

Wagner, B. K.

Z. T. Kang, Y. Liu, B. K. Wagner, R. Gilstrap, M. Liu, and C. J. Summers, “Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD,” J. Lumin. 121(2), 595–600 (2006).
[Crossref]

Wang, P.

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

Wichmann, J.

Wu, X. L.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

Xu, J.

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

Xu, X.

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

Yamanaka, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Yuan, X.

B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater. 11(4), 043001 (2010).
[Crossref]

X. Feng, X. Yuan, T. Sekiguchi, W. Lin, and J. Kang, “Aligned Zn-Zn2SiO4 core-shell nanocables with homogeneously intense ultraviolet emission at 300 nm,” J. Phys. Chem. B 109(33), 15786–15790 (2005).
[Crossref] [PubMed]

Zanatta, A. R.

A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

A. R. Zanatta, C. T. M. Ribeiro, and U. Jahn, “Visible luminescence from a-SiN films doped with Er and Sm,” Appl. Phys. Lett. 79(4), 488–490 (2001).
[Crossref]

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett. 78(16), 2285–2287 (2001).
[Crossref]

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

C. R. Phys. (1)

T. Schuh and N. de Jonge, “Liquid scanning transmission electronmicroscopy: Nanoscale imaging in micrometers-thick liquids,” C. R. Phys. 15(2–3), 214–223 (2014).
[Crossref]

J. Lumin. (1)

Z. T. Kang, Y. Liu, B. K. Wagner, R. Gilstrap, M. Liu, and C. J. Summers, “Luminescence properties of Mn2+ doped Zn2SiO4 phosphor films synthesized by combustion CVD,” J. Lumin. 121(2), 595–600 (2006).
[Crossref]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

X. Feng, X. Yuan, T. Sekiguchi, W. Lin, and J. Kang, “Aligned Zn-Zn2SiO4 core-shell nanocables with homogeneously intense ultraviolet emission at 300 nm,” J. Phys. Chem. B 109(33), 15786–15790 (2005).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

X. Xu, P. Wang, Z. Qi, H. Ming, J. Xu, H. Liu, C. Shi, G. Lu, and W. Ge, “Formation mechanism of Zn2SiO4 crystal and amorphous SiO2 in ZnO/Si system,” J. Phys. Condens. Matter 15(40), L607–L613 (2003).
[Crossref]

Jpn. J. Appl. Phys. (2)

K. C. Peng, H. C. Kao, S. J. Liu, K. L. Tsai, and J. C. Lin, “Annealing effect on the microstructure and optical characterization of Zn2SiO4 thin film sputtered on quartz glass,” Jpn. J. Appl. Phys. 52(11S), 11NB04 (2013).
[Crossref]

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(4S), 04EH11 (2014).
[Crossref]

Microsc. Microanal. (1)

D. B. Peckys and N. de Jonge, “Liquid scanning transmission electron microscopy: Imaging protein complexes in their native environment in whole eukaryotic cells,” Microsc. Microanal. 20(2), 346–365 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

C. Li, Y. Bando, B. Dierre, T. Sekiguchi, Y. Huang, J. Lin, and D. Golberg, “Effect of size-dependent thermal instability on synthesis of Zn2SiO4-SiOx core-shell nanotube arrays and their cathodoluminescence properties,” Nanoscale Res. Lett. 5(4), 773–780 (2010).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

B. Dierre, X. Yuan, and T. Sekiguchi, “Low-energy cathodoluminescence microscopy for the characterization of nanostructures,” Sci. Technol. Adv. Mater. 11(4), 043001 (2010).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Photograph of the prototype EXA microscope we developed. The EXA microscope is a combination of an electron microscope for excitation and an optical microscope for detection. (b) Schematic diagram of the EXA microscope. The inset shows an enlarged schematic diagram of a specimen irradiated with a nanometric light spot from a luminescent thin film excited by an electron beam. The nanometric light spot excited by the electron beam illuminates the specimen, and the transmitted light is detected with the optical microscope.
Fig. 2
Fig. 2 Configurations of luminescent thin films on Si3N4 substrate. (a) Before annealing. (b) After annealing. After annealing at 1000 °C in N2, the film thickness of the ZnO had decreased from 50 nm to 20 nm due to evaporation of the ZnO.
Fig. 3
Fig. 3 (a) XRD spectra of Si3N4 / Si substrate, as-deposited ZnO film, and ZnO film annealed at 1000 °C in N2. (b) Magnified view of XRD spectra in low-intensity region. In the annealed film, diffraction peaks of Zn2SiO4 were found due to the diffusion of Si ions from the Si3N4/Si substrate.
Fig. 4
Fig. 4 AFM images of (a) ZnO film annealed at 1000 °C and (b) as-deposited film. Grain size of annealed film was about 20 nm to 50 nm. Surface roughness of annealed film was almost the same as that of as-deposited film (2.3 nm root mean square).
Fig. 5
Fig. 5 CL spectra of as-deposited ZnO film and film annealed at 1000 °C. After annealing at 1000 °C, the total intensity of the annealed film was 15 times larger than that of the as-deposited film, and a new peak was observed at around 300 nm, which originated from Zn2SiO4 (not band gap emission).
Fig. 6
Fig. 6 (a) (b) EXA microscopy and SEM images of 100 nm gold nanoparticles in air. (c) (d) Line profiles of single gold nanoparticle at same position. High-SNR imaging was achieved using the Zn2SiO4 film, and the spatial resolution of the EXA image was comparable to that of the SEM image.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D= Kλ βcosθ

Metrics