Abstract

We demonstrate that a complementary metal-oxide-semiconductor (CMOS) compatible silicon (Si) surface passivation technique effectively suppress the dark current originating from the mesa sidewall of the Ge0.95Sn0.05 on Si (Ge0.95Sn0.05/Si) p-i-n photodiode. Current-voltage (I-V) characteristics show that the sidewall surface passivation technique could reduce the surface leakage current density (Jsurf) of the photodiode by ~100 times. A low dark current density (Jdark) of 0.073 A/cm2 at a bias voltage of −1 V is achieved, which is among the lowest reported values for Ge1-xSnx/Si p-i-n photodiodes. Temperature-dependent I-V measurement is performed for the Si-passivated and non-passivated photodiodes, from which the activation energies of dark current are extracted to be 0.304 eV and 0.142 eV, respectively. In addition, the optical responsivity of the Ge0.95Sn0.05/Si p-i-n photodiodes to light signals with wavelengths ranging from 1510 nm to 1877 nm is reported.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth

Yuan Dong, Wei Wang, Shengqiang Xu, Dian Lei, Xiao Gong, Xin Guo, Hong Wang, Shuh-Ying Lee, Wan-Khai Loke, Soon-Fatt Yoon, and Yee-Chia Yeo
Opt. Express 25(14) 15818-15827 (2017)

Monolithic integration of germanium-on-insulator p-i-n photodetector on silicon

Ju Hyung Nam, Farzaneh Afshinmanesh, Donguk Nam, Woo Shik Jung, Theodore I. Kamins, Mark L. Brongersma, and Krishna C. Saraswat
Opt. Express 23(12) 15816-15823 (2015)

Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range

Wei Wang, Yuan Dong, Shuh-Ying Lee, Wan-Khai Loke, Dian Lei, Soon-Fatt Yoon, Gengchiau Liang, Xiao Gong, and Yee-Chia Yeo
Opt. Express 25(16) 18502-18507 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
    [Crossref]
  2. G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79(10), 1937–1940 (1997).
    [Crossref]
  3. A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
    [Crossref] [PubMed]
  4. B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
    [Crossref]
  5. J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
    [Crossref]
  6. J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).
  7. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
    [Crossref]
  8. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
    [Crossref] [PubMed]
  9. M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
    [Crossref]
  10. H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
    [Crossref]
  11. R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
    [Crossref]
  12. M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
    [Crossref] [PubMed]
  13. M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
    [Crossref] [PubMed]
  14. Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
    [Crossref]
  15. D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
    [Crossref]
  16. Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
    [Crossref]
  17. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  18. Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWZ1.
    [Crossref]
  19. X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
    [Crossref]
  20. X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
    [Crossref]
  21. P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
    [Crossref]
  22. P. Guo, R. Cheng, W. Wang, Z. Zhang, J. Pan, E. S. Tok, and Y.-C. Yeo, “Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement,” ECS J. Solid State Sci. Technol. 3(8), Q162–Q168 (2014).
    [Crossref]
  23. D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
    [Crossref] [PubMed]
  24. N. Wu, Q. Zhang, N. Balasubramanian, D. S. H. Chan, and C. Zhu, “Characteristics of self-aligned gate-first Ge p- and n-channel MOSFETs using CVD HfO2 gate dielectric and Si surface passivation,” IEEE Trans. Electron. Dev. 54(4), 733–741 (2007).
    [Crossref]
  25. B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
    [Crossref]
  26. L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541–543 (2001).
    [Crossref]
  27. S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113(7), 073707 (2013).
    [Crossref]
  28. W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87(5), 835–842 (1952).
    [Crossref]
  29. R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87(2), 387 (1952).
    [Crossref]
  30. P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).
    [Crossref]
  31. P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Minority- and majority-carrier trapping in strain-relaxed Ge0.3Si0.7/Si heterostructure diodes grown by rapid thermal chemical-vapor deposition,” J. Appl. Phys. 77(2), 676–685 (1995).
    [Crossref]
  32. X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 562–567 (2005).
    [Crossref]
  33. L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
    [Crossref]

2015 (2)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

2014 (5)

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

P. Guo, R. Cheng, W. Wang, Z. Zhang, J. Pan, E. S. Tok, and Y.-C. Yeo, “Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement,” ECS J. Solid State Sci. Technol. 3(8), Q162–Q168 (2014).
[Crossref]

2013 (7)

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113(7), 073707 (2013).
[Crossref]

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

2012 (2)

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20(25), 27297–27303 (2012).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

2011 (2)

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

2010 (2)

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2009 (1)

J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

2007 (3)

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[Crossref]

D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
[Crossref] [PubMed]

N. Wu, Q. Zhang, N. Balasubramanian, D. S. H. Chan, and C. Zhu, “Characteristics of self-aligned gate-first Ge p- and n-channel MOSFETs using CVD HfO2 gate dielectric and Si surface passivation,” IEEE Trans. Electron. Dev. 54(4), 733–741 (2007).
[Crossref]

2005 (2)

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 562–567 (2005).
[Crossref]

2001 (1)

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541–543 (2001).
[Crossref]

1997 (1)

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79(10), 1937–1940 (1997).
[Crossref]

1995 (2)

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).
[Crossref]

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Minority- and majority-carrier trapping in strain-relaxed Ge0.3Si0.7/Si heterostructure diodes grown by rapid thermal chemical-vapor deposition,” J. Appl. Phys. 77(2), 676–685 (1995).
[Crossref]

1952 (2)

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87(5), 835–842 (1952).
[Crossref]

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87(2), 387 (1952).
[Crossref]

Agarwal, A. M.

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541–543 (2001).
[Crossref]

Ahn, D.

Antoniadis, D.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Assanto, G.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[Crossref]

Atwater, H. A.

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79(10), 1937–1940 (1997).
[Crossref]

Bai, F.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Balasubramanian, N.

N. Wu, Q. Zhang, N. Balasubramanian, D. S. H. Chan, and C. Zhu, “Characteristics of self-aligned gate-first Ge p- and n-channel MOSFETs using CVD HfO2 gate dielectric and Si surface passivation,” IEEE Trans. Electron. Dev. 54(4), 733–741 (2007).
[Crossref]

Beals, M.

Bechler, S.

Beck, A. L.

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 562–567 (2005).
[Crossref]

Beeler, R.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Beeler, R. T.

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

Billon, T.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Bonzom, R.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Buca, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Campbell, J. C.

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 562–567 (2005).
[Crossref]

Cao, Q.

Chan, D. S. H.

N. Wu, Q. Zhang, N. Balasubramanian, D. S. H. Chan, and C. Zhu, “Characteristics of self-aligned gate-first Ge p- and n-channel MOSFETs using CVD HfO2 gate dielectric and Si surface passivation,” IEEE Trans. Electron. Dev. 54(4), 733–741 (2007).
[Crossref]

Chang, G. E.

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Chang, G.-E.

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

Chen, J.

Cheng, B.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Cheng, H. H.

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Cheng, R.

P. Guo, R. Cheng, W. Wang, Z. Zhang, J. Pan, E. S. Tok, and Y.-C. Yeo, “Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement,” ECS J. Solid State Sci. Technol. 3(8), Q162–Q168 (2014).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Chizmeshya, A. V. G.

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

Colace, L.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[Crossref]

Conley, B. R.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

De Jaeger, B.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Dong, Y.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

Du, W.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

Emerson, D.

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 562–567 (2005).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Ferrara, P.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[Crossref]

Fitzgerald, E. A.

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Minority- and majority-carrier trapping in strain-relaxed Ge0.3Si0.7/Si heterostructure diodes grown by rapid thermal chemical-vapor deposition,” J. Appl. Phys. 77(2), 676–685 (1995).
[Crossref]

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).
[Crossref]

Fulgoni, D.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[Crossref]

Gallagher, J.

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

Gassenq, A.

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Gencarelli, F.

Ghetmiri, S. A.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

Giovane, L. M.

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541–543 (2001).
[Crossref]

Giziewicz, W.

Gollhofer, M.

Gong, X.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

Grillot, P. N.

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Minority- and majority-carrier trapping in strain-relaxed Ge0.3Si0.7/Si heterostructure diodes grown by rapid thermal chemical-vapor deposition,” J. Appl. Phys. 77(2), 676–685 (1995).
[Crossref]

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).
[Crossref]

Grützmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Guo, P.

P. Guo, R. Cheng, W. Wang, Z. Zhang, J. Pan, E. S. Tok, and Y.-C. Yeo, “Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement,” ECS J. Solid State Sci. Technol. 3(8), Q162–Q168 (2014).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Guo, X.

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 562–567 (2005).
[Crossref]

Gupta, S.

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113(7), 073707 (2013).
[Crossref]

Hall, R. N.

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87(2), 387 (1952).
[Crossref]

Han, G.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

Hartmann, J. M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

He, G.

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79(10), 1937–1940 (1997).
[Crossref]

Heyns, M.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Hong, C.-Y.

Hu, W.

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Jiang, L.

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

Kärtner, F. X.

Kaschel, M.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kasper, E.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kimerling, L. C.

D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
[Crossref] [PubMed]

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541–543 (2001).
[Crossref]

Kittler, M.

Koerner, R.

Kong, E. Y.-J.

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

Körner, R.

Kostecki, K.

Kouvetakis, J.

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Lei, D.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

Letertre, F.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Leys, F.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Li, B.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

Li, C.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Li, H.

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Li, X.

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 562–567 (2005).
[Crossref]

Liang, G.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

Liu, B.

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

Liu, J.

Liu, Z.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Loke, W. K.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

Loo, R.

Luan, H.-C.

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541–543 (2001).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Magyari-Köpe, B.

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113(7), 073707 (2013).
[Crossref]

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Margetis, J.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

Mashanov, V.

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Mashanov, V. I.

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

Mathews, J.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Menéndez, J.

J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Menéndéz, J.

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Meuris, M.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Michel, J.

Mosleh, A.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Narcy, G.

Naseem, H. A.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

Nash, L.

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[Crossref]

Nishi, Y.

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113(7), 073707 (2013).
[Crossref]

Oehme, M.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Pan, J.

P. Guo, R. Cheng, W. Wang, Z. Zhang, J. Pan, E. S. Tok, and Y.-C. Yeo, “Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement,” ECS J. Solid State Sci. Technol. 3(8), Q162–Q168 (2014).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Peng, Y.-H.

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

Raskin, G.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Read, W. T.

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87(5), 835–842 (1952).
[Crossref]

Richard, O.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Ringel, S. A.

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).
[Crossref]

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Minority- and majority-carrier trapping in strain-relaxed Ge0.3Si0.7/Si heterostructure diodes grown by rapid thermal chemical-vapor deposition,” J. Appl. Phys. 77(2), 676–685 (1995).
[Crossref]

Roelkens, G.

Roucka, R.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Saraswat, K. C.

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113(7), 073707 (2013).
[Crossref]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schmid, M.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schulze, J.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schwartz, B.

Senaratne, C. L.

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

Shimura, Y.

Shockley, W.

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87(5), 835–842 (1952).
[Crossref]

Sigg, H.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Smith, D. J.

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

Soref, R.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Soref, R. A.

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Su, S.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Sumakeris, J.

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 562–567 (2005).
[Crossref]

Sun, G.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Tok, E. S.

P. Guo, R. Cheng, W. Wang, Z. Zhang, J. Pan, E. S. Tok, and Y.-C. Yeo, “Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement,” ECS J. Solid State Sci. Technol. 3(8), Q162–Q168 (2014).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Tolle, J.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Tran, H.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

Tseng, H. H.

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Ulbricht, K.

Van Campenhout, J.

Van Moorhem, E.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Van Steenbergen, J.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Vincent, B.

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Wang, L.

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

Wang, Q.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Wang, W.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

P. Guo, R. Cheng, W. Wang, Z. Zhang, J. Pan, E. S. Tok, and Y.-C. Yeo, “Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement,” ECS J. Solid State Sci. Technol. 3(8), Q162–Q168 (2014).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Watson, G. P.

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).
[Crossref]

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Minority- and majority-carrier trapping in strain-relaxed Ge0.3Si0.7/Si heterostructure diodes grown by rapid thermal chemical-vapor deposition,” J. Appl. Phys. 77(2), 676–685 (1995).
[Crossref]

Weng, C.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Widmann, D.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Winderickx, G.

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Wu, N.

N. Wu, Q. Zhang, N. Balasubramanian, D. S. H. Chan, and C. Zhu, “Characteristics of self-aligned gate-first Ge p- and n-channel MOSFETs using CVD HfO2 gate dielectric and Si surface passivation,” IEEE Trans. Electron. Dev. 54(4), 733–741 (2007).
[Crossref]

Xie, J.

J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Xie, Y. H.

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Minority- and majority-carrier trapping in strain-relaxed Ge0.3Si0.7/Si heterostructure diodes grown by rapid thermal chemical-vapor deposition,” J. Appl. Phys. 77(2), 676–685 (1995).
[Crossref]

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).
[Crossref]

Xu, C.

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

Xu, X.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

Xu, Z.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

Xue, C.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Xue, H.

Yang, Y.

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

Yang, Y. J.

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Ye, K.

Yeo, Y.-C.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

P. Guo, R. Cheng, W. Wang, Z. Zhang, J. Pan, E. S. Tok, and Y.-C. Yeo, “Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement,” ECS J. Solid State Sci. Technol. 3(8), Q162–Q168 (2014).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

Yoon, S.-F.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

Yu, S.

J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Yu, S.-Q.

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

Zaumseil, P.

Zhang, D.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Zhang, G.

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Zhang, Q.

N. Wu, Q. Zhang, N. Balasubramanian, D. S. H. Chan, and C. Zhu, “Characteristics of self-aligned gate-first Ge p- and n-channel MOSFETs using CVD HfO2 gate dielectric and Si surface passivation,” IEEE Trans. Electron. Dev. 54(4), 733–741 (2007).
[Crossref]

Zhang, W.

Zhang, X.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Zhang, Z.

P. Guo, R. Cheng, W. Wang, Z. Zhang, J. Pan, E. S. Tok, and Y.-C. Yeo, “Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement,” ECS J. Solid State Sci. Technol. 3(8), Q162–Q168 (2014).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

Zhou, Q.

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

Zhu, C.

N. Wu, Q. Zhang, N. Balasubramanian, D. S. H. Chan, and C. Zhu, “Characteristics of self-aligned gate-first Ge p- and n-channel MOSFETs using CVD HfO2 gate dielectric and Si surface passivation,” IEEE Trans. Electron. Dev. 54(4), 733–741 (2007).
[Crossref]

Zuo, Y.

Appl. Phys. Lett. (8)

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared p-i-n photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

L. M. Giovane, H.-C. Luan, A. M. Agarwal, and L. C. Kimerling, “Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers,” Appl. Phys. Lett. 78(4), 541–543 (2001).
[Crossref]

ECS J. Solid State Sci. Technol. (2)

P. Guo, R. Cheng, W. Wang, Z. Zhang, J. Pan, E. S. Tok, and Y.-C. Yeo, “Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement,” ECS J. Solid State Sci. Technol. 3(8), Q162–Q168 (2014).
[Crossref]

R. T. Beeler, J. Gallagher, C. Xu, L. Jiang, C. L. Senaratne, D. J. Smith, J. Menéndéz, A. V. G. Chizmeshya, and J. Kouvetakis, “Band gap-engineered group-IV optoelectronic semiconductors, photodiodes and prototype photovoltaic devices,” ECS J. Solid State Sci. Technol. 2(9), Q172–Q177 (2013).
[Crossref]

ECS Trans. (1)

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

IEEE Electron Device Lett. (1)

X. Gong, G. Han, F. Bai, S. Su, P. Guo, Y. Yang, R. Cheng, D. Zhang, G. Zhang, C. Xue, B. Cheng, J. Pan, Z. Zhang, E. S. Tok, D. Antoniadis, and Y.-C. Yeo, “Germanium-tin (GeSn) p-channel MOSFETs fabricated on (100) and (111) surface orientations with sub-400 °C Si2H6 passivation,” IEEE Electron Device Lett. 34(3), 339–341 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Guo, A. L. Beck, X. Li, J. C. Campbell, D. Emerson, and J. Sumakeris, “Study of reverse dark current in 4H-SiC avalanche photodiodes,” IEEE J. Quantum Electron. 41(4), 562–567 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Colace, P. Ferrara, G. Assanto, D. Fulgoni, and L. Nash, “Low dark-current germanium-on-silicon near-infrared detectors,” IEEE Photon. Technol. Lett. 19(22), 1813–1815 (2007).
[Crossref]

IEEE Trans. Electron. Dev. (3)

N. Wu, Q. Zhang, N. Balasubramanian, D. S. H. Chan, and C. Zhu, “Characteristics of self-aligned gate-first Ge p- and n-channel MOSFETs using CVD HfO2 gate dielectric and Si surface passivation,” IEEE Trans. Electron. Dev. 54(4), 733–741 (2007).
[Crossref]

X. Gong, G. Han, B. Liu, L. Wang, W. Wang, Y. Yang, E. Y.-J. Kong, S. Su, C. Xue, B. Cheng, and Y.-C. Yeo, “Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: a common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS,” IEEE Trans. Electron. Dev. 60(5), 1640–1648 (2013).
[Crossref]

Y. Dong, W. Wang, X. Xu, X. Gong, D. Lei, Q. Zhou, Z. Xu, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin on Si avalanche photodiode: device design and technology demonstration,” IEEE Trans. Electron. Dev. 62(1), 128–135 (2015).
[Crossref]

J. Appl. Phys. (4)

P. Guo, G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, E. S. Tok, and Y.-C. Yeo, “Ge0.97Sn0.03 p-channel metal-oxide-semiconductor field-effect transistors: impact of Si surface passivation layer thickness and post metal annealing,” J. Appl. Phys. 114(4), 044510 (2013).
[Crossref]

S. Gupta, B. Magyari-Köpe, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain,” J. Appl. Phys. 113(7), 073707 (2013).
[Crossref]

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Electron trapping kinetics at dislocations in relaxed Ge0.3Si0.7/Si heterostructures,” J. Appl. Phys. 77(7), 3248–3256 (1995).
[Crossref]

P. N. Grillot, S. A. Ringel, E. A. Fitzgerald, G. P. Watson, and Y. H. Xie, “Minority- and majority-carrier trapping in strain-relaxed Ge0.3Si0.7/Si heterostructure diodes grown by rapid thermal chemical-vapor deposition,” J. Appl. Phys. 77(2), 676–685 (1995).
[Crossref]

Microelectron. Eng. (1)

B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectron. Eng. 80, 26–29 (2005).
[Crossref]

Nat. Photonics (2)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (2)

W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87(5), 835–842 (1952).
[Crossref]

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87(2), 387 (1952).
[Crossref]

Phys. Rev. Lett. (1)

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett. 79(10), 1937–1940 (1997).
[Crossref]

Other (1)

Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, and M. J. Paniccia, “High performance Ge/Si avalanche photodiodes development in Intel,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWZ1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Top view SEM image of the Ge0.95Sn0.05/Si p-i-n photodiode with a diameter of 40 μm. (b) Cross-sectional schematic of the photodiode along the A-A’ dash line shown in (a).
Fig. 2
Fig. 2 (a) HRXRD rocking curve of the Ge0.95Sn0.05/Si sample at (004) orientation. (b) AFM image of Ge0.95Sn0.05 surface. (c) HRTEM image of the sample at Ge0.95Sn0.05/Ge interface.
Fig. 3
Fig. 3 Illustration of Si surface passivation procedures in an UHVCVD system.
Fig. 4
Fig. 4 Idark-Vbias characteristics of the Ge0.95Sn0.05/Si p-i-n photodiodes (a) with and (b) without Si passivation. The diameter D of the photodiode ranges from 20 to 70 μm.
Fig. 5
Fig. 5 (a) Jdark vs. 1/D characteristics of the Ge0.95Sn0.05/Si p-i-n photodiodes biased at −1 V. (b) Plot of ln(Idark/T3/2) vs. 1/kT for the photodiodes at −1 V. The extracted activation energies of the photodiodes with and without Si passivation are 0.304 eV and 0.142 eV, respectively.
Fig. 6
Fig. 6 Benchmarking of dark current density Jdark of Ge1-xSnx/Si p-i-n photodiodes at Vbias = −1V.
Fig. 7
Fig. 7 Optical responsivity of the Ge0.95Sn0.05/Si p-i-n photodiodes (a) with and (b) without Si passivation. The light wavelength λ ranges from 1550 to 1877 nm. The incident light power is fixed at 0.25 mW.
Fig. 8
Fig. 8 Wavelength-dependent responsivity of the Ge0.95Sn0.05/Si p-i-n photodiodes at Vbias = −1V.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J dark = J bulk + 4 J surf D ,
I dark =B T 3/2 e E a kT ( e q V a 2kT 1),

Metrics