Abstract

We propose a new class of optical resonator structures featuring one or two metasurface reflectors or metacavities and predict that such resonators support novel hyperbolic resonances. As an example of such resonances we introduce hyperbolic Tamm plasmons (HTPs) and hyperbolic Fabry-Perot resonances (HFPs). The hyperbolic optical modes feature low-loss incident power re-distribution over TM and TE polarization output channels, clover-leaf anisotropic dispersion, and other unique properties which are tunable and are useful for multiple applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors

K. Leosson, S. Shayestehaminzadeh, T. K. Tryggvason, A. Kossoy, B. Agnarsson, F. Magnus, S. Olafsson, J. T. Gudmundsson, E. B. Magnusson, and I. A. Shelykh
Opt. Lett. 37(19) 4026-4028 (2012)

Surface modes in “photonic cholesteric liquid crystal–phase plate–metal” structure

S. Ya. Vetrov, M. V. Pyatnov, and I. V. Timofeev
Opt. Lett. 39(9) 2743-2746 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
    [Crossref]
  2. M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
    [Crossref]
  3. C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
    [Crossref] [PubMed]
  4. H. Flayac, G. Pavlovic, M. A. Kaliteevski, and I. A. Shelykh, “Electric generation of vortices in polariton superfluids,” Phys. Rev. B 85(7), 075312 (2012).
    [Crossref]
  5. R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Hybrid optical Tamm states in a planar dielectric microcavity,” Phys. Rev. B 83(3), 033405 (2011).
    [Crossref]
  6. R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
    [Crossref]
  7. I. Iorsh, P. Panicheva, I. Slovinskii, and M. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett. 38(4), 351–353 (2012).
    [Crossref]
  8. M. Durach and A. Rusina, “Transforming Fabry-Perot resonances into a Tamm mode,” Phys. Rev. B 86(23), 235312 (2012).
    [Crossref]
  9. O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
    [Crossref] [PubMed]
  10. Z. Huang and E. E. Narimanov, “Zeroth-order transmission resonance in hyperbolic metamaterials,” Opt. Express 21(12), 15020–15025 (2013).
    [Crossref] [PubMed]
  11. A. Pors and S. I. Bozhevolnyi, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21(3), 2942–2952 (2013).
    [Crossref] [PubMed]
  12. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
    [Crossref] [PubMed]
  13. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
    [Crossref] [PubMed]
  14. M. Noginov, M. Lapine, V. Podolskiy, and Y. Kivshar, “Focus issue: hyperbolic metamaterials,” Opt. Express 21(12), 14895–14897 (2013).
    [Crossref] [PubMed]
  15. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  16. D. W. Berreman, “Optics in stratified and anisotropic media: 4× 4-matrix formulation,” JOSA 62(4), 502–510 (1972).
    [Crossref]
  17. M. Durach and D. Keene, “Hyperbolic Tamm plasmons,” in Frontiers in Optics. (Optical Society of America, 2014), pp. FTh3E–3.

2013 (5)

2012 (5)

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

H. Flayac, G. Pavlovic, M. A. Kaliteevski, and I. A. Shelykh, “Electric generation of vortices in polariton superfluids,” Phys. Rev. B 85(7), 075312 (2012).
[Crossref]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

I. Iorsh, P. Panicheva, I. Slovinskii, and M. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett. 38(4), 351–353 (2012).
[Crossref]

M. Durach and A. Rusina, “Transforming Fabry-Perot resonances into a Tamm mode,” Phys. Rev. B 86(23), 235312 (2012).
[Crossref]

2011 (2)

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Hybrid optical Tamm states in a planar dielectric microcavity,” Phys. Rev. B 83(3), 033405 (2011).
[Crossref]

2010 (1)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

1972 (1)

D. W. Berreman, “Optics in stratified and anisotropic media: 4× 4-matrix formulation,” JOSA 62(4), 502–510 (1972).
[Crossref]

Abram, R. A.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Bellessa, J.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Berreman, D. W.

D. W. Berreman, “Optics in stratified and anisotropic media: 4× 4-matrix formulation,” JOSA 62(4), 502–510 (1972).
[Crossref]

Bloch, J.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Brand, S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Brückner, R.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Hybrid optical Tamm states in a planar dielectric microcavity,” Phys. Rev. B 83(3), 033405 (2011).
[Crossref]

Brucoli, G.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Durach, M.

M. Durach and A. Rusina, “Transforming Fabry-Perot resonances into a Tamm mode,” Phys. Rev. B 86(23), 235312 (2012).
[Crossref]

Egorov, A. Yu.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Flayac, H.

H. Flayac, G. Pavlovic, M. A. Kaliteevski, and I. A. Shelykh, “Electric generation of vortices in polariton superfluids,” Phys. Rev. B 85(7), 075312 (2012).
[Crossref]

Fröb, H.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Hybrid optical Tamm states in a planar dielectric microcavity,” Phys. Rev. B 83(3), 033405 (2011).
[Crossref]

Gauthron, K.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Gazzano, O.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Greffet, J. J.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Hintschich, S. I.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Hybrid optical Tamm states in a planar dielectric microcavity,” Phys. Rev. B 83(3), 033405 (2011).
[Crossref]

Huang, Z.

Hugonin, J. P.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Iorsh, I.

I. Iorsh, P. Panicheva, I. Slovinskii, and M. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett. 38(4), 351–353 (2012).
[Crossref]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Iorsh, I. V.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Jacob, Z.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Kaliteevski, M.

I. Iorsh, P. Panicheva, I. Slovinskii, and M. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett. 38(4), 351–353 (2012).
[Crossref]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kaliteevski, M. A.

H. Flayac, G. Pavlovic, M. A. Kaliteevski, and I. A. Shelykh, “Electric generation of vortices in polariton superfluids,” Phys. Rev. B 85(7), 075312 (2012).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Kavokin, A. V.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Kivshar, Y.

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Lapine, M.

Laverdant, J.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Lemaitre, A.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Lemaître, A.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Leo, K.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Hybrid optical Tamm states in a planar dielectric microcavity,” Phys. Rev. B 83(3), 033405 (2011).
[Crossref]

Lheureux, G.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Lyssenko, V. G.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Hybrid optical Tamm states in a planar dielectric microcavity,” Phys. Rev. B 83(3), 033405 (2011).
[Crossref]

Menon, V. M.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Michaelis de Vasconcellos, S.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Narimanov, E. E.

Nielsen, M. G.

Noginov, M.

Panicheva, P.

I. Iorsh, P. Panicheva, I. Slovinskii, and M. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett. 38(4), 351–353 (2012).
[Crossref]

Pavlovic, G.

H. Flayac, G. Pavlovic, M. A. Kaliteevski, and I. A. Shelykh, “Electric generation of vortices in polariton superfluids,” Phys. Rev. B 85(7), 075312 (2012).
[Crossref]

Podolskiy, V.

Pors, A.

Rusina, A.

M. Durach and A. Rusina, “Transforming Fabry-Perot resonances into a Tamm mode,” Phys. Rev. B 86(23), 235312 (2012).
[Crossref]

Sasin, M. E.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Senellart, P.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Shelykh, I. A.

H. Flayac, G. Pavlovic, M. A. Kaliteevski, and I. A. Shelykh, “Electric generation of vortices in polariton superfluids,” Phys. Rev. B 85(7), 075312 (2012).
[Crossref]

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

Slovinskii, I.

I. Iorsh, P. Panicheva, I. Slovinskii, and M. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett. 38(4), 351–353 (2012).
[Crossref]

Sudzius, M.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Hybrid optical Tamm states in a planar dielectric microcavity,” Phys. Rev. B 83(3), 033405 (2011).
[Crossref]

Symonds, C.

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Voisin, P.

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett. 100(6), 062101 (2012).
[Crossref]

JOSA (1)

D. W. Berreman, “Optics in stratified and anisotropic media: 4× 4-matrix formulation,” JOSA 62(4), 502–510 (1972).
[Crossref]

Nano Lett. (1)

C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (4)

H. Flayac, G. Pavlovic, M. A. Kaliteevski, and I. A. Shelykh, “Electric generation of vortices in polariton superfluids,” Phys. Rev. B 85(7), 075312 (2012).
[Crossref]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, and K. Leo, “Hybrid optical Tamm states in a planar dielectric microcavity,” Phys. Rev. B 83(3), 033405 (2011).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76(16), 165415 (2007).
[Crossref]

M. Durach and A. Rusina, “Transforming Fabry-Perot resonances into a Tamm mode,” Phys. Rev. B 86(23), 235312 (2012).
[Crossref]

Phys. Rev. Lett. (1)

O. Gazzano, S. Michaelis de Vasconcellos, K. Gauthron, C. Symonds, J. Bloch, P. Voisin, J. Bellessa, A. Lemaître, and P. Senellart, “Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission,” Phys. Rev. Lett. 107(24), 247402 (2011).
[Crossref] [PubMed]

Science (1)

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336(6078), 205–209 (2012).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon-polaritons: first experimental observation,” Superlattices Microstruct. 47(1), 44–49 (2010).
[Crossref]

Tech. Phys. Lett. (1)

I. Iorsh, P. Panicheva, I. Slovinskii, and M. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett. 38(4), 351–353 (2012).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

M. Durach and D. Keene, “Hyperbolic Tamm plasmons,” in Frontiers in Optics. (Optical Society of America, 2014), pp. FTh3E–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Resonances of the metacavities. (a) Schematic of the resonances in Type I Metacavities (b) Schematic of the example structure, which is a Type I Metacavity at strong contrast in the DBR and a Type II Metacavity at no contrast.
Fig. 2
Fig. 2 Optical properties of the structure supporting HTPs. (a) TM reflectivity, | r p | 2 , as a function of excitation frequency ω and metal fraction f ; (b) the same as (a), but for TE reflectivity, | r s | 2 .
Fig. 3
Fig. 3 Anisotropic nature of HTPs. (a)-(c) Formation of HTP resonance at ϕ = 45° due to difference of reflectivity at ϕ = 0° and ϕ = 90° in accordance with Polarization Rotation Equations (Eqs. (3)). (d) Clover-leaf parabolic dispersion of HTP modes.
Fig. 4
Fig. 4 Splitting of HTPs and formation of HFP resonances. (a) TM reflectivity spectrum, | r p | 2 , at intermediate contrast in the DBR (nl = 3.1), (b) The same at no contrast in the DBR.
Fig. 5
Fig. 5 Electric field and power distribution channels in hyperbolic resonances. (a) Electric field at HFP in a Type II Metacavity. (b) Evolution of power distribution in Hyperbolic Metacavities.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

( H y ( z 0 ) E x ( z 0 ) E y ( z 0 ) H x ( z 0 ) )= M ^ ( H y (z) E x (z) E y (z) H x (z) )
( 1+ r p p p0 (1 r p ) r s p s0 r s )= M ^ ( t p p ps t p t s p ss t s )
r p ϕ = r p 0° cos 2 ϕ+ r p 90° sin 2 ϕ t p ϕ = t p 0° cos 2 ϕ+ t p 90° sin 2 ϕ r s ϕ =( r p 0° r p 90° )sinϕcosϕ t s ϕ =( t p 90° t p 0° )sinϕcosϕ
( A p A p r pp L + A s r sp L A s A p r ps L + A s r ss L )=( e iφ 0 0 0 0 e iφ 0 0 0 0 e iφ 0 0 0 0 e iφ )( B p r p R B p B s r s R B s )
( r pp L + r ps L r s R r sp L e 2iφ 1 r ss L r s R e 2iφ ) r p R e 2iφ 1=( r ss L + r sp L r p R r ps L e 2iφ 1 r pp L r p R e 2iφ ) r s R e 2iφ 1=0
( A p A p r pp L + A s r sp L A s A p r ps L + A s r ss L )=( e iφ 0 0 0 0 e iφ 0 0 0 0 e iφ 0 0 0 0 e iφ )( B p r pp R + B s r ss R B p B p r ps R + B s r ss R B s )
( r pp L r pp R + r sp L r ps R + ( r pp L r sp R + r sp L r ss R )( r pp R r ps L + r ps R r ss L ) e 2iφ 1 r ps L r sp R e 2iφ r ss L r ss R e 2iφ ) e 2iφ 1=0 ( r ss L r ss R + r ps L r sp R + ( r pp L r sp R + r sp L r ss R )( r pp R r ps L + r ps R r ss L ) e 2iφ 1 r pp L r pp R e 2iφ r sp L r ps R e 2iφ ) e 2iφ 1=0
ϵ ^ =( ϵ cos ϕ 2 + ϵ sin ϕ 2 ( ϵ ϵ )cosϕsinϕ 0 ( ϵ ϵ )cosϕsinϕ ϵ cos ϕ 2 + ϵ sin ϕ 2 0 0 0 ϵ )=( ϵ 11 ϵ 12 0 ϵ 21 ϵ 22 0 0 0 ϵ )
z Ψ=i k 0 Δ ^ Ψ
Δ ^ =( 0 ϵ 11 ϵ 12 0 1 X 2 / ϵ 0 0 0 0 0 0 1 0 ϵ 12 ( ϵ 22 X 2 ) 0 )
Δ ^ Ψ=QΨ
M ^ = 1 1+Y ( tanϕ ) 2 ( M ^ 0 +( M ^ 1e M ^ 10 )tanϕ+ M ^ 2 ( tanϕ ) 2 )
( H y ( z=0 ) E x ( z=0 ) E y ( z=0 ) H x ( z=0 ) )= M ^ ( H y ( z=d ) E x ( z=d ) E y ( z=d ) H x ( z=d ) )
M ^ 0 =( cos( Q e k 0 d ) iY Q e sin( Q e k 0 d ) 0 0 i Y Q e sin( Q e k 0 d ) cos( Q e k 0 d ) 0 0 0 0 cos( Q 0 k 0 d ) i Q 0 sin( Q 0 k 0 d ) 0 0 i Q 0 sin( Q 0 k 0 d ) cos( Q 0 k 0 d ) )
M ^ 1e =( 0 0 iY Q e sin( Q e k 0 d ) Ycos( Q e k 0 d ) 0 0 cos( Q e k 0 d ) i Q e sin( Q e k 0 d ) i Q e sin( Q e k 0 d ) Ycos( Q e k 0 d ) 0 0 cos( Q e k 0 d ) Y Q e sin( Q e k 0 d ) 0 0 )
M ^ 10 =( 0 0 iY Q 0 sin( Q 0 k 0 d ) Ycos( Q 0 k 0 d ) 0 0 cos( Q 0 k 0 d ) i Q 0 sin( Q 0 k 0 d ) i Q 0 sin( Q 0 k 0 d ) Ycos( Q 0 k 0 d ) 0 0 cos( Q 0 k 0 d ) iY Q 0 sin( Q 0 k 0 d ) 0 0 )
M ^ 2 =( Ycos( Q 0 k 0 d ) i Y 2 Q 0 sin( Q 0 k 0 d ) 0 0 i Q 0 sin( Q 0 k 0 d ) Ycos( Q 0 k 0 d ) 0 0 0 0 Ycos( Q e k 0 d ) iY Q e sin( Q e k 0 d ) 0 0 iY Q e sin( Q e k 0 d ) Ycos( Q e k 0 d ) )
( E x(0°) inc E x(90°) inc )= M ^ ( E x'(TM) inc E y'(TE) inc )= M ^ ( p p0 0 ), M ^ =( cosϕ sinϕ sinϕ cosϕ )
( E x(0°) ref E x(90°) ref )=( r p 0° 0 0 r p 90° )( E x(0°) inc E x(90°) inc ), ( E x(0°) tr E x(90°) tr )=( p ps t p 0° / p p0 0 0 p ps t p 90° )( E x(0°) inc E x(90°) inc )
( E x'(TM) ref E y'(TE) ref )=( p p0 r p ϕ r s ϕ )= M ^ 1 ( E x(0°) ref E x(90°) ref )= M ^ 1 ( r p 0° 0 0 r p 90° ) M ^ ( p p0 0 )
( E x'(TM) tr E y'(TE) tr )=( p ps t p ϕ t s ϕ )= M ^ 1 ( E x(0°) tr E x(90°) tr )= M ^ 1 ( p ps t p 0° / p p0 0 0 p ps t p 90° / p p0 ) M ^ ( p p0 0 )
M ^ 1 ( a 1 0 0 a 2 ) M ^ =( a 1 cos 2 ϕ+ a 2 sin 2 ϕ ( a 2 a 1 )sinϕcosϕ ( a 2 a 1 )sinϕcosϕ a 1 sin 2 ϕ+ a 2 sin 2 ϕ )

Metrics