Abstract

Integral imaging (InIm) has been widely investigated for three-dimensional (3-D) display applications. Aliasing due to the lenslet arrays is one of the limitations of InIm displays. In this paper, we propose a dynamic InIm display using electrically movable liquid crystal (LC) lens array to implement the moving array lenslet technique (MALT) and to eliminate the multifacet the 3-D images. The improvement of the viewing quality of dynamic InIm display is experimentally verified.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional integral imaging with electronically synthesized lenslet arrays

Ju-Song Jang and Bahram Javidi
Opt. Lett. 27(20) 1767-1769 (2002)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Épreuvesréversiblesdonnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
    [Crossref]
  2. H. E. Ives, “Optical properties of a lippmannlenticuled sheet,” J. Opt. Soc. Am. 21(3), 171–176 (1931).
    [Crossref]
  3. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58(1), 71–74 (1968).
    [Crossref]
  4. A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
    [Crossref]
  5. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
    [Crossref]
  6. M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
    [Crossref]
  7. J. Y. Son, W. H. Son, S. K. Kim, K. H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-likeenvironments,” Proc. IEEE 101(1), 190–205 (2013).
    [Crossref]
  8. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  9. J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension / two-dimension convertible display based on integral imaging,” Opt. Express 13(6), 1875–1884 (2005).
    [Crossref] [PubMed]
  10. C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array,” J. Display Techonol. 10(3), 198–203 (2014).
    [Crossref]
  11. X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
    [Crossref] [PubMed]
  12. H. K. Hong, S. M. Jung, B. J. Lee, and H. H. Shin, “Electric-field-driven LC lens for 3D/2D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
    [Crossref]
  13. Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
    [Crossref]
  14. C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display,” J. Display Technol. 8(10), 559–561 (2012).
    [Crossref]
  15. Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto- stereoscopic display,” J. Display Techonol. 8(11), 650–655 (2012).
    [Crossref]
  16. J. S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002).
    [Crossref] [PubMed]
  17. J. S. Jang and B. Javidi, “Three-dimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett. 27(20), 1767–1769 (2002).
    [Crossref] [PubMed]
  18. S. H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12(19), 4579–4588 (2004).
    [Crossref] [PubMed]
  19. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22(4), 597–603 (2005).
    [Crossref] [PubMed]
  20. J. S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28(16), 1421–1423 (2003).
    [Crossref] [PubMed]
  21. J. S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42(11), 1996–2002 (2003).
    [Crossref] [PubMed]
  22. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons, 2001).
  23. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of polymer-stablized blue-phase liquid crystal,” J. Display Technol. 6(2), 49–51 (2010).
    [Crossref]
  24. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanatotolane liquid crystals,” Jpn. J. Appl. Phys. 42(6), 3463–3466 (2003).
    [Crossref]

2015 (1)

2014 (1)

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array,” J. Display Techonol. 10(3), 198–203 (2014).
[Crossref]

2013 (2)

J. Y. Son, W. H. Son, S. K. Kim, K. H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-likeenvironments,” Proc. IEEE 101(1), 190–205 (2013).
[Crossref]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

2012 (2)

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display,” J. Display Technol. 8(10), 559–561 (2012).
[Crossref]

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto- stereoscopic display,” J. Display Techonol. 8(11), 650–655 (2012).
[Crossref]

2011 (1)

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

2010 (2)

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of polymer-stablized blue-phase liquid crystal,” J. Display Technol. 6(2), 49–51 (2010).
[Crossref]

2009 (2)

H. K. Hong, S. M. Jung, B. J. Lee, and H. H. Shin, “Electric-field-driven LC lens for 3D/2D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[Crossref]

2006 (1)

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
[Crossref]

2005 (2)

2004 (1)

2003 (3)

2002 (2)

1968 (1)

1931 (1)

1908 (1)

G. Lippmann, “Épreuvesréversiblesdonnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Burckhardt, C. B.

Chen, C. W.

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array,” J. Display Techonol. 10(3), 198–203 (2014).
[Crossref]

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display,” J. Display Technol. 8(10), 559–561 (2012).
[Crossref]

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto- stereoscopic display,” J. Display Techonol. 8(11), 650–655 (2012).
[Crossref]

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Chen, H. S.

Chen, K. M.

Chen, P. C.

Cho, M.

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array,” J. Display Techonol. 10(3), 198–203 (2014).
[Crossref]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

Dabrowski, R.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanatotolane liquid crystals,” Jpn. J. Appl. Phys. 42(6), 3463–3466 (2003).
[Crossref]

Daneshpanah, M.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

Gauza, S.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of polymer-stablized blue-phase liquid crystal,” J. Display Technol. 6(2), 49–51 (2010).
[Crossref]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanatotolane liquid crystals,” Jpn. J. Appl. Phys. 42(6), 3463–3466 (2003).
[Crossref]

Hong, H. K.

H. K. Hong, S. M. Jung, B. J. Lee, and H. H. Shin, “Electric-field-driven LC lens for 3D/2D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

Hong, S. H.

Huang, Y. C.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto- stereoscopic display,” J. Display Techonol. 8(11), 650–655 (2012).
[Crossref]

Huang, Y. P.

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array,” J. Display Techonol. 10(3), 198–203 (2014).
[Crossref]

C. W. Chen, Y. P. Huang, and P. C. Chen, “Dual direction overdriving method for accelerating 2D/3D switching time of liquid crystal lens on auto-stereoscopic display,” J. Display Technol. 8(10), 559–561 (2012).
[Crossref]

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto- stereoscopic display,” J. Display Techonol. 8(11), 650–655 (2012).
[Crossref]

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Ives, H. E.

Jang, J. S.

Javidi, B.

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array,” J. Display Techonol. 10(3), 198–203 (2014).
[Crossref]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

J. Y. Son, W. H. Son, S. K. Kim, K. H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-likeenvironments,” Proc. IEEE 101(1), 190–205 (2013).
[Crossref]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[Crossref]

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
[Crossref]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22(4), 597–603 (2005).
[Crossref] [PubMed]

S. H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12(19), 4579–4588 (2004).
[Crossref] [PubMed]

J. S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42(11), 1996–2002 (2003).
[Crossref] [PubMed]

J. S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28(16), 1421–1423 (2003).
[Crossref] [PubMed]

J. S. Jang and B. Javidi, “Three-dimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett. 27(20), 1767–1769 (2002).
[Crossref] [PubMed]

J. S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002).
[Crossref] [PubMed]

Jin, F.

Jung, S. M.

H. K. Hong, S. M. Jung, B. J. Lee, and H. H. Shin, “Electric-field-driven LC lens for 3D/2D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

Kim, J.

Kim, S. K.

J. Y. Son, W. H. Son, S. K. Kim, K. H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-likeenvironments,” Proc. IEEE 101(1), 190–205 (2013).
[Crossref]

Kim, Y.

Lee, B.

Lee, B. J.

H. K. Hong, S. M. Jung, B. J. Lee, and H. H. Shin, “Electric-field-driven LC lens for 3D/2D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

Lee, K. H.

J. Y. Son, W. H. Son, S. K. Kim, K. H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-likeenvironments,” Proc. IEEE 101(1), 190–205 (2013).
[Crossref]

Liao, L. Y.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Lin, Y. H.

Lippmann, G.

G. Lippmann, “Épreuvesréversiblesdonnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Martinez-Corral, M.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[Crossref]

Martínez-Corral, M.

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[Crossref]

Martínez-Cuenca, R.

Moon, I.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

Park, J.-H.

Saavedra, G.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[Crossref]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22(4), 597–603 (2005).
[Crossref] [PubMed]

Seed, A. J.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanatotolane liquid crystals,” Jpn. J. Appl. Phys. 42(6), 3463–3466 (2003).
[Crossref]

Shen, X.

Shin, H. H.

H. K. Hong, S. M. Jung, B. J. Lee, and H. H. Shin, “Electric-field-driven LC lens for 3D/2D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

Son, J. Y.

J. Y. Son, W. H. Son, S. K. Kim, K. H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-likeenvironments,” Proc. IEEE 101(1), 190–205 (2013).
[Crossref]

Son, W. H.

J. Y. Son, W. H. Son, S. K. Kim, K. H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-likeenvironments,” Proc. IEEE 101(1), 190–205 (2013).
[Crossref]

Stern, A.

Wang, H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanatotolane liquid crystals,” Jpn. J. Appl. Phys. 42(6), 3463–3466 (2003).
[Crossref]

Wang, Y. J.

Wen, C. H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanatotolane liquid crystals,” Jpn. J. Appl. Phys. 42(6), 3463–3466 (2003).
[Crossref]

Wu, S. T.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of polymer-stablized blue-phase liquid crystal,” J. Display Technol. 6(2), 49–51 (2010).
[Crossref]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanatotolane liquid crystals,” Jpn. J. Appl. Phys. 42(6), 3463–3466 (2003).
[Crossref]

Xianyu, H.

Xiao, X.

Appl. Opt. (2)

J. Display Technol. (2)

J. Display Techonol. (2)

C. W. Chen, M. Cho, Y. P. Huang, and B. Javidi, “Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array,” J. Display Techonol. 10(3), 198–203 (2014).
[Crossref]

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto- stereoscopic display,” J. Display Techonol. 8(11), 650–655 (2012).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Phys. Theor. Appl. (1)

G. Lippmann, “Épreuvesréversiblesdonnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

J. Soc. Inf. Disp. (2)

H. K. Hong, S. M. Jung, B. J. Lee, and H. H. Shin, “Electric-field-driven LC lens for 3D/2D autostereoscopic display,” J. Soc. Inf. Disp. 17(5), 399–406 (2009).
[Crossref]

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanatotolane liquid crystals,” Jpn. J. Appl. Phys. 42(6), 3463–3466 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. IEEE (4)

A. Stern and B. Javidi, “3D image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94(3), 591–607 (2006).
[Crossref]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97(6), 1067–1077 (2009).
[Crossref]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

J. Y. Son, W. H. Son, S. K. Kim, K. H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-likeenvironments,” Proc. IEEE 101(1), 190–205 (2013).
[Crossref]

Other (1)

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The illustration of the multifacet phenomenon of InIm system [19]. EFOVS are the elemental field of views. (b) The principle of the moving array lenslet technique [16].
Fig. 2
Fig. 2 (a) The components, and(b)the optical system diagram of the electrically movable LC lens array. The focal points pattern of the LC lens array is illustrated.
Fig. 3
Fig. 3 (a) The electrode structure and (b) the driving method of moving lenticular LC lens array.
Fig. 4
Fig. 4 (a) The simulated 3-D scene, (b) the computationally generated EIs from the 3-D scene, and (c) the reconstructed images of InIm display using the electrically movable LC lens array observed from 9 different viewpoints without MALT.
Fig. 5
Fig. 5 The reconstructed images of the 3-D scene.(a) without MALT, and (b) with MALT.(c) Two balls with the diameters of 3 mm used as the 3-D scene; the reconstructed images of the two balls using the electrically movable LC lens array.(d) Without MALT, and (e) with MALT; (f) the intensity profile along the white line in (d), and (g) the intensity profile along the white line in (e).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f nyq = L 2p ,
Δx= Δp g+z zΔp,
V= p Scosθ
τ= γ d 2 /K π 2 (V/ V th ) 2 1

Metrics