Abstract

We report on the successful demonstration of X-ray phase contrast microscopy and micro computed tomography (CT) with a Bragg magnifier microscope (BMM) in a laboratory setup. The Bragg magnifiers, constituted by two channel-cut crystals in asymmetric diffraction, produced a 15X magnification of the X-ray beam, thus enabling high resolution imaging to be attained. The angular sensitivity of the crystals was used to implement analyzer-based phase contrast imaging: acquiring images at different angular positions and the three parametric images (apparent absorption, differential phase and scattering) have been obtained. Micro-CT, with resolution of about 5 μm is demonstrated with the same system. The main limitations, as well as the ways to mitigate them, are discussed with the aid of the experimental data. The technique demonstrated herein extends high-resolution, multi-modal, x-ray imaging and micro-CT to compact laboratory setups, with the potential of broadening the reach of these techniques outside the community of synchrotron users.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
X-ray Bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. N. Gimenez, D. Korytár, K. M. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach
Opt. Express 22(18) 21508-21520 (2014)

X-ray phase contrast microscopy at 300 nm resolution with laboratory sources

Daniele Pelliccia, Andrea Sorrentino, Inna Bukreeva, Alessia Cedola, Fernando Scarinci, Mihaela Ilie, Anna Maria Gerardino, Michela Fratini, and Stefano Lagomarsino
Opt. Express 18(15) 15998-16004 (2010)

Dual scanning and full-field hard x-ray microscopy with a laboratory source

Cristoffer J. Blackhall, Kaye S. Morgan, and Daniele Pelliccia
Opt. Express 22(13) 15437-15446 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Boettinger, H. E. Burdette, and M. Kuriyama, “X-ray magnifier,” Rev. Sci. Instrum. 50, 26–30 (1979).
    [Crossref] [PubMed]
  2. E. Dobročka, “Geometrical principles of the monolithic x-ray magnifier,” J. Appl. Crystallogr. 24, 212–221 (1991).
    [Crossref]
  3. Y. Kagoshima, Y. Tsusaka, K. Yokoyama, K. Takai, S. Takeda, and J. Matsui, “Phase-contrast x-ray imaging using both vertically and horizontally expanded synchrotron radiation x-rays with asymmetric bragg reflection,” Japan. J. Appl. Phys. 38, L470 (1999).
    [Crossref]
  4. K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
    [Crossref]
  5. P. Schäfer and R. Köhler, “Asymmetric Bragg reflection as X-ray magnifier,” J. Phys. D: Appl. Phys. 36, A113–A117 (2003).
    [Crossref]
  6. D. Korytár, P. Mikulík, C. Ferrari, J. Hrdý, T. Baumbach, A. Freund, and A. Kuběna, “Two-dimensional x-ray magnification based on a monolithic beam conditioner,” J. Phys. D: Appl. Phys. 36, A65 (2003).
    [Crossref]
  7. A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
    [Crossref]
  8. P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
    [Crossref]
  9. M. Stampanoni, G. Borchert, and R. Abela, “Progress in microtomography with the bragg magnifier at {SLS},” Radiat. Phys. Chem. 75, 1956 – 1961 (2006).
    [Crossref]
  10. K. Hirano, “Application of x-ray image magnifier and demagnifier to parallel beam x-ray computed tomography,” J. Phys. D: Appl. Phys. 44, 055501 (2011).
    [Crossref]
  11. P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
    [Crossref]
  12. K. Hirano, Y. Takahashi, and H. Sugiyama, “Development and application of variable-magnification x-ray bragg magnifiers,” Nucl. Instrum. Meth. A 741, 78–83 (2014).
    [Crossref]
  13. P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
    [Crossref]
  14. M. Servidori, F. Cembali, and S. Milita, “3d dumond diagrams of multi-crystal bragg-case synchrotron topography. I. Flat sample,” Appl. Phys. A Mater. Sci. Process. 73, 75–82 (2001).
    [Crossref]
  15. T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
    [Crossref]
  16. D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
    [Crossref] [PubMed]
  17. M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
    [Crossref]
  18. L. Rigon, F. Arfelli, and R.-H. Menk, “Three-image diffraction enhanced imaging algorithm to extract absorption, refraction, and ultrasmall-angle scattering,” Appl. Phys. Lett. 90, 114102 (2007).
    [Crossref]
  19. P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90, 193501 (2007).
    [Crossref]
  20. M. Hönnicke and C. Cusatis, “Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals,” Rev. Sci. Instrum. 78, 113708 (2007).
    [Crossref] [PubMed]
  21. K. Hirano, Y. Takahashi, and H. Sugiyama, “Application of variable-magnification x-ray bragg magnifier to analyzer-based phase-contrast computed tomography,” Jpn. J. Appl. Phys. 53, 040302 (2014).
    [Crossref]
  22. D. Vine, D. Paganin, K. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
    [Crossref]
  23. W. Zhou, K. Majidi, and J. G. Brankov, “Analyzer-based phase-contrast imaging system using a micro focus x-ray source,” Rev. Sci. Instrum. 85, 085114 (2014).
    [Crossref] [PubMed]
  24. A. Authier, Dynamical Theory of X-ray Diffraction (Oxford University, 2004).
  25. D. Korytár, P. Vagovič, C. Ferrari, and P. Šiffalovič, “X-ray Crystal Optics based on Germanium Single Crystals,” in Germanium: Characteristics, Sources and Applications., (Nova Science Publishers, 2013), pp. 105–140.
  26. D. M. Paganin, “Coherent X-Ray Optics”, (Oxford University Press, New York, 2006).
    [Crossref]
  27. D. Sayre and H. N. Chapman, “X-ray microscopy,” Acta Crystallogr. Sect. A 51, 237 (1995).
    [Crossref]
  28. A. Momose, “Phase–sensitive imaging and phase tomography using X-ray interferometers,” Opt. Express 112303 (2003).
    [Crossref] [PubMed]
  29. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
    [Crossref] [PubMed]
  30. L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new dei algorithm capable of investigating sub-pixel structures,” J. Phys. D: Appl. Phys. 36, A107 (2003).
    [Crossref]
  31. M. M. Hall, V. G. Veeraraghavan, H. Rubin, and P. G. Winchell, “The approximation of symmetric X-ray peaks by Pearson type VII distributions,” J. Appl. Crystallogr. 10, 66–68 (1977).
    [Crossref]
  32. M. J. Kitchen, K. M. Pavlov, K. K. W. Siu, R. H. Menk, G. Tromba, and R. A. Lewis, “Analyser-based phase contrast image reconstruction using geometrical optics,” Phys. Med. Biol. 52, 4171 (2007).
    [Crossref] [PubMed]
  33. A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” IPOL 1, 217–246(2011).
    [Crossref]

2014 (4)

K. Hirano, Y. Takahashi, and H. Sugiyama, “Development and application of variable-magnification x-ray bragg magnifiers,” Nucl. Instrum. Meth. A 741, 78–83 (2014).
[Crossref]

K. Hirano, Y. Takahashi, and H. Sugiyama, “Application of variable-magnification x-ray bragg magnifier to analyzer-based phase-contrast computed tomography,” Jpn. J. Appl. Phys. 53, 040302 (2014).
[Crossref]

W. Zhou, K. Majidi, and J. G. Brankov, “Analyzer-based phase-contrast imaging system using a micro focus x-ray source,” Rev. Sci. Instrum. 85, 085114 (2014).
[Crossref] [PubMed]

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

2013 (1)

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

2011 (3)

K. Hirano, “Application of x-ray image magnifier and demagnifier to parallel beam x-ray computed tomography,” J. Phys. D: Appl. Phys. 44, 055501 (2011).
[Crossref]

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” IPOL 1, 217–246(2011).
[Crossref]

2007 (7)

D. Vine, D. Paganin, K. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

M. J. Kitchen, K. M. Pavlov, K. K. W. Siu, R. H. Menk, G. Tromba, and R. A. Lewis, “Analyser-based phase contrast image reconstruction using geometrical optics,” Phys. Med. Biol. 52, 4171 (2007).
[Crossref] [PubMed]

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

L. Rigon, F. Arfelli, and R.-H. Menk, “Three-image diffraction enhanced imaging algorithm to extract absorption, refraction, and ultrasmall-angle scattering,” Appl. Phys. Lett. 90, 114102 (2007).
[Crossref]

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90, 193501 (2007).
[Crossref]

M. Hönnicke and C. Cusatis, “Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals,” Rev. Sci. Instrum. 78, 113708 (2007).
[Crossref] [PubMed]

2006 (1)

M. Stampanoni, G. Borchert, and R. Abela, “Progress in microtomography with the bragg magnifier at {SLS},” Radiat. Phys. Chem. 75, 1956 – 1961 (2006).
[Crossref]

2003 (5)

P. Schäfer and R. Köhler, “Asymmetric Bragg reflection as X-ray magnifier,” J. Phys. D: Appl. Phys. 36, A113–A117 (2003).
[Crossref]

D. Korytár, P. Mikulík, C. Ferrari, J. Hrdý, T. Baumbach, A. Freund, and A. Kuběna, “Two-dimensional x-ray magnification based on a monolithic beam conditioner,” J. Phys. D: Appl. Phys. 36, A65 (2003).
[Crossref]

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new dei algorithm capable of investigating sub-pixel structures,” J. Phys. D: Appl. Phys. 36, A107 (2003).
[Crossref]

A. Momose, “Phase–sensitive imaging and phase tomography using X-ray interferometers,” Opt. Express 112303 (2003).
[Crossref] [PubMed]

2001 (2)

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

M. Servidori, F. Cembali, and S. Milita, “3d dumond diagrams of multi-crystal bragg-case synchrotron topography. I. Flat sample,” Appl. Phys. A Mater. Sci. Process. 73, 75–82 (2001).
[Crossref]

1999 (1)

Y. Kagoshima, Y. Tsusaka, K. Yokoyama, K. Takai, S. Takeda, and J. Matsui, “Phase-contrast x-ray imaging using both vertically and horizontally expanded synchrotron radiation x-rays with asymmetric bragg reflection,” Japan. J. Appl. Phys. 38, L470 (1999).
[Crossref]

1997 (1)

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

1995 (2)

T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[Crossref]

D. Sayre and H. N. Chapman, “X-ray microscopy,” Acta Crystallogr. Sect. A 51, 237 (1995).
[Crossref]

1991 (1)

E. Dobročka, “Geometrical principles of the monolithic x-ray magnifier,” J. Appl. Crystallogr. 24, 212–221 (1991).
[Crossref]

1979 (1)

W. J. Boettinger, H. E. Burdette, and M. Kuriyama, “X-ray magnifier,” Rev. Sci. Instrum. 50, 26–30 (1979).
[Crossref] [PubMed]

1977 (1)

M. M. Hall, V. G. Veeraraghavan, H. Rubin, and P. G. Winchell, “The approximation of symmetric X-ray peaks by Pearson type VII distributions,” J. Appl. Crystallogr. 10, 66–68 (1977).
[Crossref]

Abela, R.

M. Stampanoni, G. Borchert, and R. Abela, “Progress in microtomography with the bragg magnifier at {SLS},” Radiat. Phys. Chem. 75, 1956 – 1961 (2006).
[Crossref]

Anastasio, M. A.

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

Andreev, A.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Arfelli, F.

L. Rigon, F. Arfelli, and R.-H. Menk, “Three-image diffraction enhanced imaging algorithm to extract absorption, refraction, and ultrasmall-angle scattering,” Appl. Phys. Lett. 90, 114102 (2007).
[Crossref]

L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new dei algorithm capable of investigating sub-pixel structures,” J. Phys. D: Appl. Phys. 36, A107 (2003).
[Crossref]

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

Asadchikov, V.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Authier, A.

A. Authier, Dynamical Theory of X-ray Diffraction (Oxford University, 2004).

Baumbach, T.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

D. Korytár, P. Mikulík, C. Ferrari, J. Hrdý, T. Baumbach, A. Freund, and A. Kuběna, “Two-dimensional x-ray magnification based on a monolithic beam conditioner,” J. Phys. D: Appl. Phys. 36, A65 (2003).
[Crossref]

Besch, H.-J.

L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new dei algorithm capable of investigating sub-pixel structures,” J. Phys. D: Appl. Phys. 36, A107 (2003).
[Crossref]

Boettinger, W. J.

W. J. Boettinger, H. E. Burdette, and M. Kuriyama, “X-ray magnifier,” Rev. Sci. Instrum. 50, 26–30 (1979).
[Crossref] [PubMed]

Borchert, G.

M. Stampanoni, G. Borchert, and R. Abela, “Progress in microtomography with the bragg magnifier at {SLS},” Radiat. Phys. Chem. 75, 1956 – 1961 (2006).
[Crossref]

Brankov, J. G.

W. Zhou, K. Majidi, and J. G. Brankov, “Analyzer-based phase-contrast imaging system using a micro focus x-ray source,” Rev. Sci. Instrum. 85, 085114 (2014).
[Crossref] [PubMed]

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

Buades, A.

A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” IPOL 1, 217–246(2011).
[Crossref]

Bunk, O.

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

Burdette, H. E.

W. J. Boettinger, H. E. Burdette, and M. Kuriyama, “X-ray magnifier,” Rev. Sci. Instrum. 50, 26–30 (1979).
[Crossref] [PubMed]

Buzmakov, A.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Cecilia, A.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

Cembali, F.

M. Servidori, F. Cembali, and S. Milita, “3d dumond diagrams of multi-crystal bragg-case synchrotron topography. I. Flat sample,” Appl. Phys. A Mater. Sci. Process. 73, 75–82 (2001).
[Crossref]

Chapman, D.

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

Chapman, H. N.

D. Sayre and H. N. Chapman, “X-ray microscopy,” Acta Crystallogr. Sect. A 51, 237 (1995).
[Crossref]

Coll, B.

A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” IPOL 1, 217–246(2011).
[Crossref]

Cusatis, C.

M. Hönnicke and C. Cusatis, “Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals,” Rev. Sci. Instrum. 78, 113708 (2007).
[Crossref] [PubMed]

David, C.

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

Davis, T.

T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[Crossref]

Dobrocka, E.

E. Dobročka, “Geometrical principles of the monolithic x-ray magnifier,” J. Appl. Crystallogr. 24, 212–221 (1991).
[Crossref]

Dolbnya, I.

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Ferrari, C.

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

D. Korytár, P. Mikulík, C. Ferrari, J. Hrdý, T. Baumbach, A. Freund, and A. Kuběna, “Two-dimensional x-ray magnification based on a monolithic beam conditioner,” J. Phys. D: Appl. Phys. 36, A65 (2003).
[Crossref]

D. Korytár, P. Vagovič, C. Ferrari, and P. Šiffalovič, “X-ray Crystal Optics based on Germanium Single Crystals,” in Germanium: Characteristics, Sources and Applications., (Nova Science Publishers, 2013), pp. 105–140.

Fiederle, M.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

Fleschig, U.

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Foerster, E.

D. Vine, D. Paganin, K. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Freund, A.

D. Korytár, P. Mikulík, C. Ferrari, J. Hrdý, T. Baumbach, A. Freund, and A. Kuběna, “Two-dimensional x-ray magnification based on a monolithic beam conditioner,” J. Phys. D: Appl. Phys. 36, A65 (2003).
[Crossref]

Galatsanos, N. P.

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

Gao, D.

T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[Crossref]

Gimenez, E.

Gmür, N.

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

Gureyev, T.

T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[Crossref]

Hall, M. M.

M. M. Hall, V. G. Veeraraghavan, H. Rubin, and P. G. Winchell, “The approximation of symmetric X-ray peaks by Pearson type VII distributions,” J. Appl. Crystallogr. 10, 66–68 (1977).
[Crossref]

Hamann, E.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

Hänschke, D.

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

Härtwig, J.

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Heitner, G.

L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new dei algorithm capable of investigating sub-pixel structures,” J. Phys. D: Appl. Phys. 36, A107 (2003).
[Crossref]

Hirano, K.

K. Hirano, Y. Takahashi, and H. Sugiyama, “Development and application of variable-magnification x-ray bragg magnifiers,” Nucl. Instrum. Meth. A 741, 78–83 (2014).
[Crossref]

K. Hirano, Y. Takahashi, and H. Sugiyama, “Application of variable-magnification x-ray bragg magnifier to analyzer-based phase-contrast computed tomography,” Jpn. J. Appl. Phys. 53, 040302 (2014).
[Crossref]

K. Hirano, “Application of x-ray image magnifier and demagnifier to parallel beam x-ray computed tomography,” J. Phys. D: Appl. Phys. 44, 055501 (2011).
[Crossref]

Hönnicke, M.

M. Hönnicke and C. Cusatis, “Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals,” Rev. Sci. Instrum. 78, 113708 (2007).
[Crossref] [PubMed]

Hrdý, J.

D. Korytár, P. Mikulík, C. Ferrari, J. Hrdý, T. Baumbach, A. Freund, and A. Kuběna, “Two-dimensional x-ray magnification based on a monolithic beam conditioner,” J. Phys. D: Appl. Phys. 36, A65 (2003).
[Crossref]

Ibuki, T.

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

Izumi, K.

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

Johnston, R.

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

Kagoshima, Y.

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

Y. Kagoshima, Y. Tsusaka, K. Yokoyama, K. Takai, S. Takeda, and J. Matsui, “Phase-contrast x-ray imaging using both vertically and horizontally expanded synchrotron radiation x-rays with asymmetric bragg reflection,” Japan. J. Appl. Phys. 38, L470 (1999).
[Crossref]

Kimura, H.

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

Kimura, S.

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

Kitchen, M. J.

M. J. Kitchen, K. M. Pavlov, K. K. W. Siu, R. H. Menk, G. Tromba, and R. A. Lewis, “Analyser-based phase contrast image reconstruction using geometrical optics,” Phys. Med. Biol. 52, 4171 (2007).
[Crossref] [PubMed]

Kobayashi, K.

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

Koenig, T.

Köhler, R.

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90, 193501 (2007).
[Crossref]

P. Schäfer and R. Köhler, “Asymmetric Bragg reflection as X-ray magnifier,” J. Phys. D: Appl. Phys. 36, A113–A117 (2003).
[Crossref]

Konovko, A.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Korytár, D.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

D. Korytár, P. Mikulík, C. Ferrari, J. Hrdý, T. Baumbach, A. Freund, and A. Kuběna, “Two-dimensional x-ray magnification based on a monolithic beam conditioner,” J. Phys. D: Appl. Phys. 36, A65 (2003).
[Crossref]

D. Korytár, P. Vagovič, C. Ferrari, and P. Šiffalovič, “X-ray Crystal Optics based on Germanium Single Crystals,” in Germanium: Characteristics, Sources and Applications., (Nova Science Publishers, 2013), pp. 105–140.

Kottler, C.

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

Kraeusslich, J.

D. Vine, D. Paganin, K. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Kubena, A.

D. Korytár, P. Mikulík, C. Ferrari, J. Hrdý, T. Baumbach, A. Freund, and A. Kuběna, “Two-dimensional x-ray magnification based on a monolithic beam conditioner,” J. Phys. D: Appl. Phys. 36, A65 (2003).
[Crossref]

Kuriyama, M.

W. J. Boettinger, H. E. Burdette, and M. Kuriyama, “X-ray magnifier,” Rev. Sci. Instrum. 50, 26–30 (1979).
[Crossref] [PubMed]

Kuzin, S.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Lafford, T. A.

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

Lewis, R. A.

M. J. Kitchen, K. M. Pavlov, K. K. W. Siu, R. H. Menk, G. Tromba, and R. A. Lewis, “Analyser-based phase contrast image reconstruction using geometrical optics,” Phys. Med. Biol. 52, 4171 (2007).
[Crossref] [PubMed]

Lübbert, D.

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90, 193501 (2007).
[Crossref]

Majidi, K.

W. Zhou, K. Majidi, and J. G. Brankov, “Analyzer-based phase-contrast imaging system using a micro focus x-ray source,” Rev. Sci. Instrum. 85, 085114 (2014).
[Crossref] [PubMed]

Matsui, J.

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

Y. Kagoshima, Y. Tsusaka, K. Yokoyama, K. Takai, S. Takeda, and J. Matsui, “Phase-contrast x-ray imaging using both vertically and horizontally expanded synchrotron radiation x-rays with asymmetric bragg reflection,” Japan. J. Appl. Phys. 38, L470 (1999).
[Crossref]

Menk, R.

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

Menk, R. H.

M. J. Kitchen, K. M. Pavlov, K. K. W. Siu, R. H. Menk, G. Tromba, and R. A. Lewis, “Analyser-based phase contrast image reconstruction using geometrical optics,” Phys. Med. Biol. 52, 4171 (2007).
[Crossref] [PubMed]

Menk, R.-H.

L. Rigon, F. Arfelli, and R.-H. Menk, “Three-image diffraction enhanced imaging algorithm to extract absorption, refraction, and ultrasmall-angle scattering,” Appl. Phys. Lett. 90, 114102 (2007).
[Crossref]

L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new dei algorithm capable of investigating sub-pixel structures,” J. Phys. D: Appl. Phys. 36, A107 (2003).
[Crossref]

Mikulík, P.

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

D. Korytár, P. Mikulík, C. Ferrari, J. Hrdý, T. Baumbach, A. Freund, and A. Kuběna, “Two-dimensional x-ray magnification based on a monolithic beam conditioner,” J. Phys. D: Appl. Phys. 36, A65 (2003).
[Crossref]

Milita, S.

M. Servidori, F. Cembali, and S. Milita, “3d dumond diagrams of multi-crystal bragg-case synchrotron topography. I. Flat sample,” Appl. Phys. A Mater. Sci. Process. 73, 75–82 (2001).
[Crossref]

Modregger, P.

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90, 193501 (2007).
[Crossref]

Momose, A.

Morel, J.-M.

A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” IPOL 1, 217–246(2011).
[Crossref]

Muehleman, C.

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

Oberta, P.

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Olbinado, M.

Oltulu, O.

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

Paganin, D.

D. Vine, D. Paganin, K. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Paganin, D. M.

D. M. Paganin, “Coherent X-Ray Optics”, (Oxford University Press, New York, 2006).
[Crossref]

Pavlov, K.

Pavlov, K. M.

M. J. Kitchen, K. M. Pavlov, K. K. W. Siu, R. H. Menk, G. Tromba, and R. A. Lewis, “Analyser-based phase contrast image reconstruction using geometrical optics,” Phys. Med. Biol. 52, 4171 (2007).
[Crossref] [PubMed]

Pelliccia, D.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

Pertsov, A.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Pfeiffer, F.

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

Pisano, E.

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

Plothow-Besch, H.

L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new dei algorithm capable of investigating sub-pixel structures,” J. Phys. D: Appl. Phys. 36, A107 (2003).
[Crossref]

Ponomarev, Y.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Rigon, L.

L. Rigon, F. Arfelli, and R.-H. Menk, “Three-image diffraction enhanced imaging algorithm to extract absorption, refraction, and ultrasmall-angle scattering,” Appl. Phys. Lett. 90, 114102 (2007).
[Crossref]

L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new dei algorithm capable of investigating sub-pixel structures,” J. Phys. D: Appl. Phys. 36, A107 (2003).
[Crossref]

Rubin, H.

M. M. Hall, V. G. Veeraraghavan, H. Rubin, and P. G. Winchell, “The approximation of symmetric X-ray peaks by Pearson type VII distributions,” J. Appl. Crystallogr. 10, 66–68 (1977).
[Crossref]

Sayers, D.

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

Sayre, D.

D. Sayre and H. N. Chapman, “X-ray microscopy,” Acta Crystallogr. Sect. A 51, 237 (1995).
[Crossref]

Schäfer, P.

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90, 193501 (2007).
[Crossref]

P. Schäfer and R. Köhler, “Asymmetric Bragg reflection as X-ray magnifier,” J. Phys. D: Appl. Phys. 36, A113–A117 (2003).
[Crossref]

Senin, R.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Servidori, M.

M. Servidori, F. Cembali, and S. Milita, “3d dumond diagrams of multi-crystal bragg-case synchrotron topography. I. Flat sample,” Appl. Phys. A Mater. Sci. Process. 73, 75–82 (2001).
[Crossref]

Shawney, K.

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Shestov, S.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Shkurko, V.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Šiffalovic, P.

D. Korytár, P. Vagovič, C. Ferrari, and P. Šiffalovič, “X-ray Crystal Optics based on Germanium Single Crystals,” in Germanium: Characteristics, Sources and Applications., (Nova Science Publishers, 2013), pp. 105–140.

Siu, K. K. W.

M. J. Kitchen, K. M. Pavlov, K. K. W. Siu, R. H. Menk, G. Tromba, and R. A. Lewis, “Analyser-based phase contrast image reconstruction using geometrical optics,” Phys. Med. Biol. 52, 4171 (2007).
[Crossref] [PubMed]

Smirnov, I.

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Stampanoni, M.

M. Stampanoni, G. Borchert, and R. Abela, “Progress in microtomography with the bragg magnifier at {SLS},” Radiat. Phys. Chem. 75, 1956 – 1961 (2006).
[Crossref]

Stevenson, A.

T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[Crossref]

Sugiyama, H.

K. Hirano, Y. Takahashi, and H. Sugiyama, “Development and application of variable-magnification x-ray bragg magnifiers,” Nucl. Instrum. Meth. A 741, 78–83 (2014).
[Crossref]

K. Hirano, Y. Takahashi, and H. Sugiyama, “Application of variable-magnification x-ray bragg magnifier to analyzer-based phase-contrast computed tomography,” Jpn. J. Appl. Phys. 53, 040302 (2014).
[Crossref]

Švéda, L.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Takahashi, Y.

K. Hirano, Y. Takahashi, and H. Sugiyama, “Development and application of variable-magnification x-ray bragg magnifiers,” Nucl. Instrum. Meth. A 741, 78–83 (2014).
[Crossref]

K. Hirano, Y. Takahashi, and H. Sugiyama, “Application of variable-magnification x-ray bragg magnifier to analyzer-based phase-contrast computed tomography,” Jpn. J. Appl. Phys. 53, 040302 (2014).
[Crossref]

Takai, K.

Y. Kagoshima, Y. Tsusaka, K. Yokoyama, K. Takai, S. Takeda, and J. Matsui, “Phase-contrast x-ray imaging using both vertically and horizontally expanded synchrotron radiation x-rays with asymmetric bragg reflection,” Japan. J. Appl. Phys. 38, L470 (1999).
[Crossref]

Takeda, S.

Y. Kagoshima, Y. Tsusaka, K. Yokoyama, K. Takai, S. Takeda, and J. Matsui, “Phase-contrast x-ray imaging using both vertically and horizontally expanded synchrotron radiation x-rays with asymmetric bragg reflection,” Japan. J. Appl. Phys. 38, L470 (1999).
[Crossref]

Thomlinson, W.

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

Tromba, G.

M. J. Kitchen, K. M. Pavlov, K. K. W. Siu, R. H. Menk, G. Tromba, and R. A. Lewis, “Analyser-based phase contrast image reconstruction using geometrical optics,” Phys. Med. Biol. 52, 4171 (2007).
[Crossref] [PubMed]

Tsusaka, Y.

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

Y. Kagoshima, Y. Tsusaka, K. Yokoyama, K. Takai, S. Takeda, and J. Matsui, “Phase-contrast x-ray imaging using both vertically and horizontally expanded synchrotron radiation x-rays with asymmetric bragg reflection,” Japan. J. Appl. Phys. 38, L470 (1999).
[Crossref]

Uschmann, I.

D. Vine, D. Paganin, K. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Vagovic, P.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

D. Korytár, P. Vagovič, C. Ferrari, and P. Šiffalovič, “X-ray Crystal Optics based on Germanium Single Crystals,” in Germanium: Characteristics, Sources and Applications., (Nova Science Publishers, 2013), pp. 105–140.

Veeraraghavan, V. G.

M. M. Hall, V. G. Veeraraghavan, H. Rubin, and P. G. Winchell, “The approximation of symmetric X-ray peaks by Pearson type VII distributions,” J. Appl. Crystallogr. 10, 66–68 (1977).
[Crossref]

Vine, D.

D. Vine, D. Paganin, K. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Washburn, D.

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

Wehrhan, O.

D. Vine, D. Paganin, K. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

Wernick, M. N.

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

Wilkins, S.

T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[Crossref]

Winchell, P. G.

M. M. Hall, V. G. Veeraraghavan, H. Rubin, and P. G. Winchell, “The approximation of symmetric X-ray peaks by Pearson type VII distributions,” J. Appl. Crystallogr. 10, 66–68 (1977).
[Crossref]

Wirjadi, O.

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

Yang, Y.

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

Yashiro, W.

Yokoyama, K.

Y. Kagoshima, Y. Tsusaka, K. Yokoyama, K. Takai, S. Takeda, and J. Matsui, “Phase-contrast x-ray imaging using both vertically and horizontally expanded synchrotron radiation x-rays with asymmetric bragg reflection,” Japan. J. Appl. Phys. 38, L470 (1999).
[Crossref]

Yokoyama, Y.

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

Zápražný, Z.

P. Vagovič, L. Švéda, A. Cecilia, E. Hamann, D. Pelliccia, E. Gimenez, D. Korytár, K. Pavlov, Z. Zápražný, M. Zuber, T. Koenig, M. Olbinado, W. Yashiro, A. Momose, M. Fiederle, and T. Baumbach, “X-ray bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval,” Opt. Express 22, 21508–21520 (2014).
[Crossref]

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

Zhong, Z.

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, K. Majidi, and J. G. Brankov, “Analyzer-based phase-contrast imaging system using a micro focus x-ray source,” Rev. Sci. Instrum. 85, 085114 (2014).
[Crossref] [PubMed]

Zuber, M.

Acta Crystallogr. Sect. A (1)

D. Sayre and H. N. Chapman, “X-ray microscopy,” Acta Crystallogr. Sect. A 51, 237 (1995).
[Crossref]

Appl. Phys. A Mater. Sci. Process. (1)

M. Servidori, F. Cembali, and S. Milita, “3d dumond diagrams of multi-crystal bragg-case synchrotron topography. I. Flat sample,” Appl. Phys. A Mater. Sci. Process. 73, 75–82 (2001).
[Crossref]

Appl. Phys. Lett. (4)

L. Rigon, F. Arfelli, and R.-H. Menk, “Three-image diffraction enhanced imaging algorithm to extract absorption, refraction, and ultrasmall-angle scattering,” Appl. Phys. Lett. 90, 114102 (2007).
[Crossref]

P. Modregger, D. Lübbert, P. Schäfer, and R. Köhler, “Two dimensional diffraction enhanced imaging algorithm,” Appl. Phys. Lett. 90, 193501 (2007).
[Crossref]

K. Kobayashi, K. Izumi, H. Kimura, S. Kimura, T. Ibuki, Y. Yokoyama, Y. Tsusaka, Y. Kagoshima, and J. Matsui, “X-ray phase-contrast imaging with submicron resolution by using extremely asymmetric Bragg diffractions,” Appl. Phys. Lett. 78, 132–134 (2001).
[Crossref]

D. Vine, D. Paganin, K. Pavlov, J. Kraeusslich, O. Wehrhan, I. Uschmann, and E. Foerster, “Analyzer-based phase contrast imaging and phase retrieval using a rotating anode x-ray source,” Appl. Phys. Lett. 91, 254110 (2007).
[Crossref]

IPOL (1)

A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” IPOL 1, 217–246(2011).
[Crossref]

J. Appl. Crystallogr. (2)

M. M. Hall, V. G. Veeraraghavan, H. Rubin, and P. G. Winchell, “The approximation of symmetric X-ray peaks by Pearson type VII distributions,” J. Appl. Crystallogr. 10, 66–68 (1977).
[Crossref]

E. Dobročka, “Geometrical principles of the monolithic x-ray magnifier,” J. Appl. Crystallogr. 24, 212–221 (1991).
[Crossref]

J. Phys. D: Appl. Phys. (4)

P. Schäfer and R. Köhler, “Asymmetric Bragg reflection as X-ray magnifier,” J. Phys. D: Appl. Phys. 36, A113–A117 (2003).
[Crossref]

D. Korytár, P. Mikulík, C. Ferrari, J. Hrdý, T. Baumbach, A. Freund, and A. Kuběna, “Two-dimensional x-ray magnification based on a monolithic beam conditioner,” J. Phys. D: Appl. Phys. 36, A65 (2003).
[Crossref]

K. Hirano, “Application of x-ray image magnifier and demagnifier to parallel beam x-ray computed tomography,” J. Phys. D: Appl. Phys. 44, 055501 (2011).
[Crossref]

L. Rigon, H.-J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. Plothow-Besch, “A new dei algorithm capable of investigating sub-pixel structures,” J. Phys. D: Appl. Phys. 36, A107 (2003).
[Crossref]

J. Synchrotron Radiat. (2)

P. Vagovič, D. Korytár, A. Cecilia, E. Hamann, L. Švéda, D. Pelliccia, J. Härtwig, Z. Zápražný, P. Oberta, I. Dolbnya, K. Shawney, U. Fleschig, M. Fiederle, and T. Baumbach, “High-resolution high-efficiency x-ray imaging system based on the in-line bragg magnifier and the medipix detector,” J. Synchrotron Radiat. 20, 153–159 (2013).
[Crossref]

P. Vagovič, D. Korytár, P. Mikulík, A. Cecilia, C. Ferrari, Y. Yang, D. Hänschke, E. Hamann, D. Pelliccia, T. A. Lafford, M. Fiederle, and T. Baumbach, “In-line bragg magnifier based on v-shaped germanium crystals,” J. Synchrotron Radiat. 18, 753–760 (2011).
[Crossref]

Japan. J. Appl. Phys. (1)

Y. Kagoshima, Y. Tsusaka, K. Yokoyama, K. Takai, S. Takeda, and J. Matsui, “Phase-contrast x-ray imaging using both vertically and horizontally expanded synchrotron radiation x-rays with asymmetric bragg reflection,” Japan. J. Appl. Phys. 38, L470 (1999).
[Crossref]

JETP Lett. (1)

A. Andreev, V. Asadchikov, A. Buzmakov, A. Konovko, S. Kuzin, A. Pertsov, Y. Ponomarev, R. Senin, I. Smirnov, S. Shestov, and V. Shkurko, “Two-dimensional image magnification in an asymmetric-reflection x-ray microscope,” JETP Lett. 85, 98–100 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Hirano, Y. Takahashi, and H. Sugiyama, “Application of variable-magnification x-ray bragg magnifier to analyzer-based phase-contrast computed tomography,” Jpn. J. Appl. Phys. 53, 040302 (2014).
[Crossref]

Nature (1)

T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995).
[Crossref]

Nucl. Instrum. Meth. A (1)

K. Hirano, Y. Takahashi, and H. Sugiyama, “Development and application of variable-magnification x-ray bragg magnifiers,” Nucl. Instrum. Meth. A 741, 78–83 (2014).
[Crossref]

Opt. Express (2)

Phys. Med. Biol. (3)

M. J. Kitchen, K. M. Pavlov, K. K. W. Siu, R. H. Menk, G. Tromba, and R. A. Lewis, “Analyser-based phase contrast image reconstruction using geometrical optics,” Phys. Med. Biol. 52, 4171 (2007).
[Crossref] [PubMed]

D. Chapman, W. Thomlinson, R. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015 (1997).
[Crossref] [PubMed]

M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48, 3875 (2003).
[Crossref]

Phys. Rev. Lett. (1)

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

Radiat. Phys. Chem. (1)

M. Stampanoni, G. Borchert, and R. Abela, “Progress in microtomography with the bragg magnifier at {SLS},” Radiat. Phys. Chem. 75, 1956 – 1961 (2006).
[Crossref]

Rev. Sci. Instrum. (3)

M. Hönnicke and C. Cusatis, “Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals,” Rev. Sci. Instrum. 78, 113708 (2007).
[Crossref] [PubMed]

W. J. Boettinger, H. E. Burdette, and M. Kuriyama, “X-ray magnifier,” Rev. Sci. Instrum. 50, 26–30 (1979).
[Crossref] [PubMed]

W. Zhou, K. Majidi, and J. G. Brankov, “Analyzer-based phase-contrast imaging system using a micro focus x-ray source,” Rev. Sci. Instrum. 85, 085114 (2014).
[Crossref] [PubMed]

Other (3)

A. Authier, Dynamical Theory of X-ray Diffraction (Oxford University, 2004).

D. Korytár, P. Vagovič, C. Ferrari, and P. Šiffalovič, “X-ray Crystal Optics based on Germanium Single Crystals,” in Germanium: Characteristics, Sources and Applications., (Nova Science Publishers, 2013), pp. 105–140.

D. M. Paganin, “Coherent X-Ray Optics”, (Oxford University Press, New York, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics sketch of the experimental setup (top view). Two channel-cut crystals are placed just after the sample, first one is magnifying in horizontal direction and the second in vertical direction. The magnification was 15-fold.

Fig. 2
Fig. 2

The image of the TEM mesh (G600TT, SPI Supplies) (a) and the line profiles extracted from the image indicated by the lines in (a). The contrast of the grid pattern measured in horizontal direction is ∼74% while in vertical direction ∼45%. The derivatives of the profiles (c) suggest the spatial resolution in horizontal direction of ∼4μm and in the vertical direction ∼5μm.

Fig. 3
Fig. 3

Modulation of the detected intensity diference at the flank of the rocking curve by the refraction angle difference.

Fig. 4
Fig. 4

Phase difference as a function of the asymmetry angle for Ge(220) reflection at photon energy 8047.78 eV, where C is the detectable contrast.

Fig. 5
Fig. 5

Images taken at different angular positions of the rocking curves (a,b,c,d,f). Corresponding angle θ is shown in each image. The scale bars correspond to 100μm. Global rocking curve taken from full detector area without the sample (open circles) and the numerical fit with Pearson function of type VII (solid line) are shown in figure (e).

Fig. 6
Fig. 6

Apparent absorption image (a), refraction angle image (b) and the scattering image (c) extracted from three images recorded at the peak position (θ = 0), at θ = −30 arcsec and at θ = +30 arcsec using GDEI algorithm. The marked areas at (a) and (b) were used to plot the profile indicated as inlets in corresponding images.

Fig. 7
Fig. 7

Figure (a) is showing the negative logarithm projection image normalized by the empty beam image and the 3D rendering is shown on figure (b). Figures (c) and (d) are the reconstructed axial slices before and after NLM filtering at the position indicated by the line on figure (a). CT reconstruction was done using FBP algorithm. Scale bars correspond to 100 μm. The rendering was done using NLM filtered axial slices.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ α = λ 2 π d ϕ ( x ) d x ,
d ϕ ( x ) d x = 2 π λ Δ I k ,

Metrics