Abstract

We report on the characterization of Cs vapor microfabricated cells filled with a Ne-He buffer gas mixture using coherent population trapping (CPT) spectroscopy. The temperature dependence of the Cs clock frequency is found to be canceled at the first order around a so-called inversion temperature higher than 80°C whose value depends on the buffer gas partial pressure ratio. This buffer gas mixture could be well-adapted for the development of miniature atomic clocks devoted to be used in specific applications such as defense and avionic systems with high operating temperature environment (typically higher than 85°C). This solution suggests an alternative to buffer gas mixtures generally used in optically-pumped vapor cell atomic clocks.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture

R. Boudot, D. Miletic, P. Dziuban, C. Affolderbach, P. Knapkiewicz, J. Dziuban, G. Mileti, V. Giordano, and C. Gorecki
Opt. Express 19(4) 3106-3114 (2011)

Pulsed coherent population trapping spectroscopy in microfabricated Cs–Ne vapor cells

Rodolphe Boudot, Vincent Maurice, Christophe Gorecki, and Emeric de Clercq
J. Opt. Soc. Am. B 35(5) 1004-1010 (2018)

Effect of atomic diffusion on the Raman–Ramsey coherent population trapping resonances

Elena Kuchina, Eugeniy E. Mikhailov, and Irina Novikova
J. Opt. Soc. Am. B 33(4) 610-614 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Dicke, “New technique for high-resolution microwave spectroscopy,” Phys. Rev. 99(2), 532–536 (1955).
    [Crossref]
  2. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, 1989).
    [Crossref]
  3. F. Strumia, N. Beverini, A. Moretti, and G. Rovera, “Optimization of the buffer gas mixture for optically pumped Cs frequency standard,” in 30th Annual Symposium on Frequency Control (IEEE, 1976), pp. 468–472.
  4. N. Beverini, F. Strumia, and G. Rovera, “Buffer gas pressure shift in the mF = 0 → mF = 0 ground state hyperfine line in Cs,” Opt. Comm. 37(6), 394–396 (1981).
    [Crossref]
  5. O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A 83, 062714 (2011).
    [Crossref]
  6. J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53(8), 5387–5391 (1982).
    [Crossref]
  7. S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, “Characterization of coherent population-trapping resonances as atomic frequency references,” J. Opt. Soc. Am. B 18(11), 1545–1553 (2001).
    [Crossref]
  8. R. Boudot, D. Miletic, P. Dziuban, C. Affolderbach, P. Knapkiewicz, J. Dziuban, G. Mileti, V. Giordano, and C. Gorecki, “First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture,” Opt. Express 19(4), 3106–3114 (2011).
    [Crossref] [PubMed]
  9. S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
    [Crossref]
  10. S. Knappe, “Emerging topics: MEMS atomic clocks,” Comp. Microsys. 3, 571–612 (2007).
  11. Microsemi, http://www.symmetricom.com .
  12. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
    [Crossref]
  13. “MEMS Atomic Clocks for Timing, Frequency Control and Communications,” http://www.mac-tfc.eu .
  14. M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
    [Crossref]
  15. L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, “New approach of fabrication and dispensing of micromachined cesium vapor cell,” J. Micro. Nanolithigr. 7, 033013 (2008).
  16. D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
    [Crossref]
  17. O. Kozlova, R. Boudot, S. Guérandel, and E. De Clercq, “Temperature dependence cancellation of the Cs clock frequency in the presence of Ne buffer gas,” IEEE Trans. Instrum. Meas. 60(7), 2262–2266 (2011).
    [Crossref]
  18. R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications,” J. Appl. Phys. 109, 014912 (2011).
    [Crossref]
  19. The present study is subject to patent pending proposal, France, Ref. 14/02343, DI 07123- P3415.
  20. X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instrum. Meas. 61(10), 2852–2855 (2012).
    [Crossref]
  21. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27(16), 1472–1474 (2002).
    [Crossref]
  22. A. Sargsyana, C. Leroy, Y. Pashayan-Leroy, S. Cartaleva, and D. Sarkisyan, “High-contrast dark resonances on the D1 line in cesium nanocell: the advantages compared with the other alkali D lines,” J. Mod. Opt. 62(10), 769–777 (2015).
    [Crossref]
  23. R. Boudot, S. Guérandel, and E. De Clercq, “Simple-design low-noise NLTL-based frequency synthesizers for a CPT Cs clock,” IEEE Trans. Instr. Meas. 58(10), 3659–3665 (2009).
    [Crossref]
  24. X. Liu, J. M. Mérolla, S. Guérandel, C. Gorecki, E. De Clercq, and R. Boudot, “Coherent population trapping resonances in buffer gas-filled Cs vapor cells with push-pull optical pumping,” Phys. Rev. A 87, 013416 (2013).
    [Crossref]
  25. Y. Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Pull-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93(16), 160802 (2004).
    [Crossref] [PubMed]
  26. S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, “Temperature dependence of coherent population trapping resonances,” Appl. Phys. B 47, 217–222 (2002).
    [Crossref]
  27. F. J. Norton, “Helium diffusion through glass,” J. Am. Ceram. Soc. 36(3), 90–96 (1953).
    [Crossref]
  28. G. L. Harding, “Helium permeation in all-glass tubular evacuated solar energy collectors,” Sol. Energy Mater. 5(2), 141–147 (1981).
    [Crossref]
  29. S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
    [Crossref]
  30. A. B. Scholes, “Low helium permeability atomic frequency standard cell and method for forming same,” US Patent, US5256995 A (October26, 1993).
  31. L. Holland, W. Sreckelmacher, and J. Yarwood, Vacuum Manual (Science, 1974).
    [Crossref]
  32. A. Dellis, S. Knappe, E. Donley, and J. Kitching, “Low He permeation cells for CSACs,” in Proceedings of the 2015 IEEE Frequency Control Symposium - European Frequency Time Forum Joint Meeting (IEEE, 2015), ID5165.

2015 (2)

A. Sargsyana, C. Leroy, Y. Pashayan-Leroy, S. Cartaleva, and D. Sarkisyan, “High-contrast dark resonances on the D1 line in cesium nanocell: the advantages compared with the other alkali D lines,” J. Mod. Opt. 62(10), 769–777 (2015).
[Crossref]

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

2013 (1)

X. Liu, J. M. Mérolla, S. Guérandel, C. Gorecki, E. De Clercq, and R. Boudot, “Coherent population trapping resonances in buffer gas-filled Cs vapor cells with push-pull optical pumping,” Phys. Rev. A 87, 013416 (2013).
[Crossref]

2012 (2)

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instrum. Meas. 61(10), 2852–2855 (2012).
[Crossref]

2011 (5)

O. Kozlova, R. Boudot, S. Guérandel, and E. De Clercq, “Temperature dependence cancellation of the Cs clock frequency in the presence of Ne buffer gas,” IEEE Trans. Instrum. Meas. 60(7), 2262–2266 (2011).
[Crossref]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications,” J. Appl. Phys. 109, 014912 (2011).
[Crossref]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
[Crossref]

O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A 83, 062714 (2011).
[Crossref]

R. Boudot, D. Miletic, P. Dziuban, C. Affolderbach, P. Knapkiewicz, J. Dziuban, G. Mileti, V. Giordano, and C. Gorecki, “First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture,” Opt. Express 19(4), 3106–3114 (2011).
[Crossref] [PubMed]

2010 (1)

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
[Crossref]

2009 (1)

R. Boudot, S. Guérandel, and E. De Clercq, “Simple-design low-noise NLTL-based frequency synthesizers for a CPT Cs clock,” IEEE Trans. Instr. Meas. 58(10), 3659–3665 (2009).
[Crossref]

2008 (1)

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, “New approach of fabrication and dispensing of micromachined cesium vapor cell,” J. Micro. Nanolithigr. 7, 033013 (2008).

2007 (1)

S. Knappe, “Emerging topics: MEMS atomic clocks,” Comp. Microsys. 3, 571–612 (2007).

2005 (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

2004 (1)

Y. Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Pull-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93(16), 160802 (2004).
[Crossref] [PubMed]

2002 (2)

2001 (1)

1982 (1)

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53(8), 5387–5391 (1982).
[Crossref]

1981 (2)

G. L. Harding, “Helium permeation in all-glass tubular evacuated solar energy collectors,” Sol. Energy Mater. 5(2), 141–147 (1981).
[Crossref]

N. Beverini, F. Strumia, and G. Rovera, “Buffer gas pressure shift in the mF = 0 → mF = 0 ground state hyperfine line in Cs,” Opt. Comm. 37(6), 394–396 (1981).
[Crossref]

1955 (1)

R. H. Dicke, “New technique for high-resolution microwave spectroscopy,” Phys. Rev. 99(2), 532–536 (1955).
[Crossref]

1953 (1)

F. J. Norton, “Helium diffusion through glass,” J. Am. Ceram. Soc. 36(3), 90–96 (1953).
[Crossref]

Abdullah, S.

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

Affolderbach, C.

Audoin, C.

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, 1989).
[Crossref]

Beugnot, J. C.

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, “New approach of fabrication and dispensing of micromachined cesium vapor cell,” J. Micro. Nanolithigr. 7, 033013 (2008).

Beverini, N.

N. Beverini, F. Strumia, and G. Rovera, “Buffer gas pressure shift in the mF = 0 → mF = 0 ground state hyperfine line in Cs,” Opt. Comm. 37(6), 394–396 (1981).
[Crossref]

F. Strumia, N. Beverini, A. Moretti, and G. Rovera, “Optimization of the buffer gas mixture for optically pumped Cs frequency standard,” in 30th Annual Symposium on Frequency Control (IEEE, 1976), pp. 468–472.

Boudot, R.

X. Liu, J. M. Mérolla, S. Guérandel, C. Gorecki, E. De Clercq, and R. Boudot, “Coherent population trapping resonances in buffer gas-filled Cs vapor cells with push-pull optical pumping,” Phys. Rev. A 87, 013416 (2013).
[Crossref]

X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instrum. Meas. 61(10), 2852–2855 (2012).
[Crossref]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications,” J. Appl. Phys. 109, 014912 (2011).
[Crossref]

O. Kozlova, R. Boudot, S. Guérandel, and E. De Clercq, “Temperature dependence cancellation of the Cs clock frequency in the presence of Ne buffer gas,” IEEE Trans. Instrum. Meas. 60(7), 2262–2266 (2011).
[Crossref]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
[Crossref]

R. Boudot, D. Miletic, P. Dziuban, C. Affolderbach, P. Knapkiewicz, J. Dziuban, G. Mileti, V. Giordano, and C. Gorecki, “First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture,” Opt. Express 19(4), 3106–3114 (2011).
[Crossref] [PubMed]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
[Crossref]

R. Boudot, S. Guérandel, and E. De Clercq, “Simple-design low-noise NLTL-based frequency synthesizers for a CPT Cs clock,” IEEE Trans. Instr. Meas. 58(10), 3659–3665 (2009).
[Crossref]

Calosso, C. E.

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

Cartaleva, S.

A. Sargsyana, C. Leroy, Y. Pashayan-Leroy, S. Cartaleva, and D. Sarkisyan, “High-contrast dark resonances on the D1 line in cesium nanocell: the advantages compared with the other alkali D lines,” J. Mod. Opt. 62(10), 769–777 (2015).
[Crossref]

Chutani, R. K.

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications,” J. Appl. Phys. 109, 014912 (2011).
[Crossref]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
[Crossref]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
[Crossref]

Clatot, S.

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
[Crossref]

Cyr, N.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53(8), 5387–5391 (1982).
[Crossref]

De Clercq, E.

X. Liu, J. M. Mérolla, S. Guérandel, C. Gorecki, E. De Clercq, and R. Boudot, “Coherent population trapping resonances in buffer gas-filled Cs vapor cells with push-pull optical pumping,” Phys. Rev. A 87, 013416 (2013).
[Crossref]

O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A 83, 062714 (2011).
[Crossref]

O. Kozlova, R. Boudot, S. Guérandel, and E. De Clercq, “Temperature dependence cancellation of the Cs clock frequency in the presence of Ne buffer gas,” IEEE Trans. Instrum. Meas. 60(7), 2262–2266 (2011).
[Crossref]

R. Boudot, S. Guérandel, and E. De Clercq, “Simple-design low-noise NLTL-based frequency synthesizers for a CPT Cs clock,” IEEE Trans. Instr. Meas. 58(10), 3659–3665 (2009).
[Crossref]

Dellis, A.

A. Dellis, S. Knappe, E. Donley, and J. Kitching, “Low He permeation cells for CSACs,” in Proceedings of the 2015 IEEE Frequency Control Symposium - European Frequency Time Forum Joint Meeting (IEEE, 2015), ID5165.

Dicke, R. H.

R. H. Dicke, “New technique for high-resolution microwave spectroscopy,” Phys. Rev. 99(2), 532–536 (1955).
[Crossref]

Donley, E.

A. Dellis, S. Knappe, E. Donley, and J. Kitching, “Low He permeation cells for CSACs,” in Proceedings of the 2015 IEEE Frequency Control Symposium - European Frequency Time Forum Joint Meeting (IEEE, 2015), ID5165.

Douahi, A.

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, “New approach of fabrication and dispensing of micromachined cesium vapor cell,” J. Micro. Nanolithigr. 7, 033013 (2008).

Dziuban, J.

R. Boudot, D. Miletic, P. Dziuban, C. Affolderbach, P. Knapkiewicz, J. Dziuban, G. Mileti, V. Giordano, and C. Gorecki, “First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture,” Opt. Express 19(4), 3106–3114 (2011).
[Crossref] [PubMed]

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, “New approach of fabrication and dispensing of micromachined cesium vapor cell,” J. Micro. Nanolithigr. 7, 033013 (2008).

Dziuban, P.

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
[Crossref]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications,” J. Appl. Phys. 109, 014912 (2011).
[Crossref]

R. Boudot, D. Miletic, P. Dziuban, C. Affolderbach, P. Knapkiewicz, J. Dziuban, G. Mileti, V. Giordano, and C. Gorecki, “First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture,” Opt. Express 19(4), 3106–3114 (2011).
[Crossref] [PubMed]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
[Crossref]

Galliou, S.

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications,” J. Appl. Phys. 109, 014912 (2011).
[Crossref]

Giordano, V.

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications,” J. Appl. Phys. 109, 014912 (2011).
[Crossref]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
[Crossref]

R. Boudot, D. Miletic, P. Dziuban, C. Affolderbach, P. Knapkiewicz, J. Dziuban, G. Mileti, V. Giordano, and C. Gorecki, “First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture,” Opt. Express 19(4), 3106–3114 (2011).
[Crossref] [PubMed]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
[Crossref]

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, “New approach of fabrication and dispensing of micromachined cesium vapor cell,” J. Micro. Nanolithigr. 7, 033013 (2008).

Godone, A.

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

Gorecki, C.

X. Liu, J. M. Mérolla, S. Guérandel, C. Gorecki, E. De Clercq, and R. Boudot, “Coherent population trapping resonances in buffer gas-filled Cs vapor cells with push-pull optical pumping,” Phys. Rev. A 87, 013416 (2013).
[Crossref]

R. Boudot, D. Miletic, P. Dziuban, C. Affolderbach, P. Knapkiewicz, J. Dziuban, G. Mileti, V. Giordano, and C. Gorecki, “First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture,” Opt. Express 19(4), 3106–3114 (2011).
[Crossref] [PubMed]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
[Crossref]

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications,” J. Appl. Phys. 109, 014912 (2011).
[Crossref]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
[Crossref]

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, “New approach of fabrication and dispensing of micromachined cesium vapor cell,” J. Micro. Nanolithigr. 7, 033013 (2008).

Gruet, F.

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

Guérandel, S.

X. Liu, J. M. Mérolla, S. Guérandel, C. Gorecki, E. De Clercq, and R. Boudot, “Coherent population trapping resonances in buffer gas-filled Cs vapor cells with push-pull optical pumping,” Phys. Rev. A 87, 013416 (2013).
[Crossref]

O. Kozlova, R. Boudot, S. Guérandel, and E. De Clercq, “Temperature dependence cancellation of the Cs clock frequency in the presence of Ne buffer gas,” IEEE Trans. Instrum. Meas. 60(7), 2262–2266 (2011).
[Crossref]

O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A 83, 062714 (2011).
[Crossref]

R. Boudot, S. Guérandel, and E. De Clercq, “Simple-design low-noise NLTL-based frequency synthesizers for a CPT Cs clock,” IEEE Trans. Instr. Meas. 58(10), 3659–3665 (2009).
[Crossref]

Happer, W.

Y. Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Pull-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93(16), 160802 (2004).
[Crossref] [PubMed]

Harding, G. L.

G. L. Harding, “Helium permeation in all-glass tubular evacuated solar energy collectors,” Sol. Energy Mater. 5(2), 141–147 (1981).
[Crossref]

Hasegawa, M.

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications,” J. Appl. Phys. 109, 014912 (2011).
[Crossref]

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
[Crossref]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
[Crossref]

Holland, L.

L. Holland, W. Sreckelmacher, and J. Yarwood, Vacuum Manual (Science, 1974).
[Crossref]

Hollberg, L.

Jau, Y. Y.

Y. Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Pull-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93(16), 160802 (2004).
[Crossref] [PubMed]

Kitching, J.

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, “Temperature dependence of coherent population trapping resonances,” Appl. Phys. B 47, 217–222 (2002).
[Crossref]

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27(16), 1472–1474 (2002).
[Crossref]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, “Characterization of coherent population-trapping resonances as atomic frequency references,” J. Opt. Soc. Am. B 18(11), 1545–1553 (2001).
[Crossref]

A. Dellis, S. Knappe, E. Donley, and J. Kitching, “Low He permeation cells for CSACs,” in Proceedings of the 2015 IEEE Frequency Control Symposium - European Frequency Time Forum Joint Meeting (IEEE, 2015), ID5165.

Knapkiewicz, P.

Knappe, S.

S. Knappe, “Emerging topics: MEMS atomic clocks,” Comp. Microsys. 3, 571–612 (2007).

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27(16), 1472–1474 (2002).
[Crossref]

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, “Temperature dependence of coherent population trapping resonances,” Appl. Phys. B 47, 217–222 (2002).
[Crossref]

S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, “Characterization of coherent population-trapping resonances as atomic frequency references,” J. Opt. Soc. Am. B 18(11), 1545–1553 (2001).
[Crossref]

A. Dellis, S. Knappe, E. Donley, and J. Kitching, “Low He permeation cells for CSACs,” in Proceedings of the 2015 IEEE Frequency Control Symposium - European Frequency Time Forum Joint Meeting (IEEE, 2015), ID5165.

Kozlova, O.

O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A 83, 062714 (2011).
[Crossref]

O. Kozlova, R. Boudot, S. Guérandel, and E. De Clercq, “Temperature dependence cancellation of the Cs clock frequency in the presence of Ne buffer gas,” IEEE Trans. Instrum. Meas. 60(7), 2262–2266 (2011).
[Crossref]

Kunski, R.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53(8), 5387–5391 (1982).
[Crossref]

Kuzma, N. N.

Y. Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Pull-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93(16), 160802 (2004).
[Crossref] [PubMed]

Leroy, C.

A. Sargsyana, C. Leroy, Y. Pashayan-Leroy, S. Cartaleva, and D. Sarkisyan, “High-contrast dark resonances on the D1 line in cesium nanocell: the advantages compared with the other alkali D lines,” J. Mod. Opt. 62(10), 769–777 (2015).
[Crossref]

Levi, F.

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

Liu, X.

X. Liu, J. M. Mérolla, S. Guérandel, C. Gorecki, E. De Clercq, and R. Boudot, “Coherent population trapping resonances in buffer gas-filled Cs vapor cells with push-pull optical pumping,” Phys. Rev. A 87, 013416 (2013).
[Crossref]

X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instrum. Meas. 61(10), 2852–2855 (2012).
[Crossref]

Mauri, L.

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
[Crossref]

Mérolla, J. M.

X. Liu, J. M. Mérolla, S. Guérandel, C. Gorecki, E. De Clercq, and R. Boudot, “Coherent population trapping resonances in buffer gas-filled Cs vapor cells with push-pull optical pumping,” Phys. Rev. A 87, 013416 (2013).
[Crossref]

Micalizio, S.

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

Mileti, G.

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

R. Boudot, D. Miletic, P. Dziuban, C. Affolderbach, P. Knapkiewicz, J. Dziuban, G. Mileti, V. Giordano, and C. Gorecki, “First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture,” Opt. Express 19(4), 3106–3114 (2011).
[Crossref] [PubMed]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
[Crossref]

Miletic, D.

R. Boudot, D. Miletic, P. Dziuban, C. Affolderbach, P. Knapkiewicz, J. Dziuban, G. Mileti, V. Giordano, and C. Gorecki, “First-order cancellation of the Cs clock frequency temperature-dependence in Ne-Ar buffer gas mixture,” Opt. Express 19(4), 3106–3114 (2011).
[Crossref] [PubMed]

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
[Crossref]

Miron, E.

Y. Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Pull-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93(16), 160802 (2004).
[Crossref] [PubMed]

Moraja, M.

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, “New approach of fabrication and dispensing of micromachined cesium vapor cell,” J. Micro. Nanolithigr. 7, 033013 (2008).

Moretti, A.

F. Strumia, N. Beverini, A. Moretti, and G. Rovera, “Optimization of the buffer gas mixture for optically pumped Cs frequency standard,” in 30th Annual Symposium on Frequency Control (IEEE, 1976), pp. 468–472.

Nieradko, L.

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, “New approach of fabrication and dispensing of micromachined cesium vapor cell,” J. Micro. Nanolithigr. 7, 033013 (2008).

Norton, F. J.

F. J. Norton, “Helium diffusion through glass,” J. Am. Ceram. Soc. 36(3), 90–96 (1953).
[Crossref]

Pashayan-Leroy, Y.

A. Sargsyana, C. Leroy, Y. Pashayan-Leroy, S. Cartaleva, and D. Sarkisyan, “High-contrast dark resonances on the D1 line in cesium nanocell: the advantages compared with the other alkali D lines,” J. Mod. Opt. 62(10), 769–777 (2015).
[Crossref]

Post, A. B.

Y. Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Pull-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93(16), 160802 (2004).
[Crossref] [PubMed]

Robinson, H. G.

Rovera, G.

N. Beverini, F. Strumia, and G. Rovera, “Buffer gas pressure shift in the mF = 0 → mF = 0 ground state hyperfine line in Cs,” Opt. Comm. 37(6), 394–396 (1981).
[Crossref]

F. Strumia, N. Beverini, A. Moretti, and G. Rovera, “Optimization of the buffer gas mixture for optically pumped Cs frequency standard,” in 30th Annual Symposium on Frequency Control (IEEE, 1976), pp. 468–472.

Sargsyana, A.

A. Sargsyana, C. Leroy, Y. Pashayan-Leroy, S. Cartaleva, and D. Sarkisyan, “High-contrast dark resonances on the D1 line in cesium nanocell: the advantages compared with the other alkali D lines,” J. Mod. Opt. 62(10), 769–777 (2015).
[Crossref]

Sarkisyan, D.

A. Sargsyana, C. Leroy, Y. Pashayan-Leroy, S. Cartaleva, and D. Sarkisyan, “High-contrast dark resonances on the D1 line in cesium nanocell: the advantages compared with the other alkali D lines,” J. Mod. Opt. 62(10), 769–777 (2015).
[Crossref]

Savard, J. Y.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53(8), 5387–5391 (1982).
[Crossref]

Scholes, A. B.

A. B. Scholes, “Low helium permeability atomic frequency standard cell and method for forming same,” US Patent, US5256995 A (October26, 1993).

Sreckelmacher, W.

L. Holland, W. Sreckelmacher, and J. Yarwood, Vacuum Manual (Science, 1974).
[Crossref]

Stähler, M.

Strumia, F.

N. Beverini, F. Strumia, and G. Rovera, “Buffer gas pressure shift in the mF = 0 → mF = 0 ground state hyperfine line in Cs,” Opt. Comm. 37(6), 394–396 (1981).
[Crossref]

F. Strumia, N. Beverini, A. Moretti, and G. Rovera, “Optimization of the buffer gas mixture for optically pumped Cs frequency standard,” in 30th Annual Symposium on Frequency Control (IEEE, 1976), pp. 468–472.

Taichenachev, A.

Têtu, M.

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53(8), 5387–5391 (1982).
[Crossref]

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53(8), 5387–5391 (1982).
[Crossref]

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, 1989).
[Crossref]

Wynands, R.

Yarwood, J.

L. Holland, W. Sreckelmacher, and J. Yarwood, Vacuum Manual (Science, 1974).
[Crossref]

Yudin, V.

Appl. Phys. B (2)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

S. Knappe, J. Kitching, L. Hollberg, and R. Wynands, “Temperature dependence of coherent population trapping resonances,” Appl. Phys. B 47, 217–222 (2002).
[Crossref]

Appl. Phys. Lett. (1)

S. Abdullah, C. Affolderbach, F. Gruet, and G. Mileti, “Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks,” Appl. Phys. Lett. 106, 163505 (2015).
[Crossref]

Comp. Microsys. (1)

S. Knappe, “Emerging topics: MEMS atomic clocks,” Comp. Microsys. 3, 571–612 (2007).

Electron. Lett. (1)

D. Miletic, P. Dziuban, R. Boudot, M. Hasegawa, R. K. Chutani, G. Mileti, V. Giordano, and C. Gorecki, “Quadratic dependence on temperature of the Cs 0-0 hyperfine resonance in a single Ne buffer gas microfabricated vapor cell,” Electron. Lett. 46(15), 1069–1071 (2010).
[Crossref]

IEEE Trans. Instr. Meas. (1)

R. Boudot, S. Guérandel, and E. De Clercq, “Simple-design low-noise NLTL-based frequency synthesizers for a CPT Cs clock,” IEEE Trans. Instr. Meas. 58(10), 3659–3665 (2009).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

X. Liu and R. Boudot, “A distributed-feedback diode laser frequency stabilized on Doppler-free Cs D1 line,” IEEE Trans. Instrum. Meas. 61(10), 2852–2855 (2012).
[Crossref]

O. Kozlova, R. Boudot, S. Guérandel, and E. De Clercq, “Temperature dependence cancellation of the Cs clock frequency in the presence of Ne buffer gas,” IEEE Trans. Instrum. Meas. 60(7), 2262–2266 (2011).
[Crossref]

J. Am. Ceram. Soc. (1)

F. J. Norton, “Helium diffusion through glass,” J. Am. Ceram. Soc. 36(3), 90–96 (1953).
[Crossref]

J. Appl. Phys. (2)

R. Boudot, P. Dziuban, M. Hasegawa, R. K. Chutani, S. Galliou, V. Giordano, and C. Gorecki, “Coherent population trapping resonances in Cs-Ne microcells for miniature clocks applications,” J. Appl. Phys. 109, 014912 (2011).
[Crossref]

J. Vanier, R. Kunski, N. Cyr, J. Y. Savard, and M. Têtu, “On hyperfine frequency shifts caused by buffer gases: Application to the optically pumped passive rubidium frequency standard,” J. Appl. Phys. 53(8), 5387–5391 (1982).
[Crossref]

J. Micro. Nanolithigr. (1)

L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J. C. Beugnot, J. Dziuban, and M. Moraja, “New approach of fabrication and dispensing of micromachined cesium vapor cell,” J. Micro. Nanolithigr. 7, 033013 (2008).

J. Mod. Opt. (1)

A. Sargsyana, C. Leroy, Y. Pashayan-Leroy, S. Cartaleva, and D. Sarkisyan, “High-contrast dark resonances on the D1 line in cesium nanocell: the advantages compared with the other alkali D lines,” J. Mod. Opt. 62(10), 769–777 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Metrologia (1)

S. Micalizio, C. E. Calosso, A. Godone, and F. Levi, “Metrological characterization of the pulsed Rb clock with optical detection,” Metrologia 49, 425–436 (2012).
[Crossref]

Opt. Comm. (1)

N. Beverini, F. Strumia, and G. Rovera, “Buffer gas pressure shift in the mF = 0 → mF = 0 ground state hyperfine line in Cs,” Opt. Comm. 37(6), 394–396 (1981).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

R. H. Dicke, “New technique for high-resolution microwave spectroscopy,” Phys. Rev. 99(2), 532–536 (1955).
[Crossref]

Phys. Rev. A (2)

O. Kozlova, S. Guérandel, and E. De Clercq, “Temperature and pressure shift of the Cs clock transition in the presence of buffer gases: Ne, N2, Ar,” Phys. Rev. A 83, 062714 (2011).
[Crossref]

X. Liu, J. M. Mérolla, S. Guérandel, C. Gorecki, E. De Clercq, and R. Boudot, “Coherent population trapping resonances in buffer gas-filled Cs vapor cells with push-pull optical pumping,” Phys. Rev. A 87, 013416 (2013).
[Crossref]

Phys. Rev. Lett. (1)

Y. Y. Jau, E. Miron, A. B. Post, N. N. Kuzma, and W. Happer, “Pull-pull optical pumping of pure superposition states,” Phys. Rev. Lett. 93(16), 160802 (2004).
[Crossref] [PubMed]

Sens. Actuators, A (1)

M. Hasegawa, R. K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano, S. Clatot, and L. Mauri, “Microfabrication of vapor cells with buffer gas for MEMS atomic clocks,” Sens. Actuators, A 167(2), 594–601 (2011).
[Crossref]

Sol. Energy Mater. (1)

G. L. Harding, “Helium permeation in all-glass tubular evacuated solar energy collectors,” Sol. Energy Mater. 5(2), 141–147 (1981).
[Crossref]

Other (8)

A. B. Scholes, “Low helium permeability atomic frequency standard cell and method for forming same,” US Patent, US5256995 A (October26, 1993).

L. Holland, W. Sreckelmacher, and J. Yarwood, Vacuum Manual (Science, 1974).
[Crossref]

A. Dellis, S. Knappe, E. Donley, and J. Kitching, “Low He permeation cells for CSACs,” in Proceedings of the 2015 IEEE Frequency Control Symposium - European Frequency Time Forum Joint Meeting (IEEE, 2015), ID5165.

“MEMS Atomic Clocks for Timing, Frequency Control and Communications,” http://www.mac-tfc.eu .

The present study is subject to patent pending proposal, France, Ref. 14/02343, DI 07123- P3415.

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Adam Hilger, 1989).
[Crossref]

F. Strumia, N. Beverini, A. Moretti, and G. Rovera, “Optimization of the buffer gas mixture for optically pumped Cs frequency standard,” in 30th Annual Symposium on Frequency Control (IEEE, 1976), pp. 468–472.

Microsemi, http://www.symmetricom.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup. DFB: Distributed-Feedback diode laser, MZ EOM: Mach-Zehnder electro-optic modulator, Michelson: Michelson delay-line system, Vbias: dc bias voltage applied onto the EOM to reject the optical carrier, LO: local oscillator, FC: fiber collimator, PD: photodiode, LA1 and LA2: lockin-amplifiers. The inset shows a simplified diagram of the push-pull CPT scheme involved in the experiment.
Fig. 2
Fig. 2 CPT resonance detected in a Cs-Ne-He vapor microcell (cell 2) heated at 87 °C. The laser power at the input of the cell is 82 μW. The dashed line is a lorentzian fit to experimental data.
Fig. 3
Fig. 3 Contrast of the CPT resonance versus the cell temperature (cell 2). The laser power is 55 μW.
Fig. 4
Fig. 4 Linewidth (filled squares) and contrast/linewidth (circles) of the CPT resonance versus the laser input power (cell 2). The cell temperature is 87°C. The solid line is a linear fit to the CPT linewidth-laser power dependence curve.
Fig. 5
Fig. 5 Frequency shift of the clock transition (from Cs atom frequency = 9.192631770GHz) versus the cell temperature. (a): Cell 2, (b): Cell 3, (c): Cell 4.

Tables (1)

Tables Icon

Table 1 Measured characteristics of the tested Cs-Ne-He microcells. The uncertainty on Ti, Δνbg, Pmeas and partial pressures are estimated to ± 3°C, ± 5 Hz, ± 0.2 Torr and ± 0.2% respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ν bg = P [ ( β + δ ( T T 0 ) + γ ( T T 0 ) 2 ]
Δ ν bg = P [ ( r 1 β 1 + r 2 β 2 ) + ( r 1 δ 1 + r 2 δ 2 ) ( T T 0 ) + ( r 1 γ 1 + r 2 γ 2 ) ( T T 0 ) 2 ]
a = δ 1 + 2 γ 1 ( T i T 0 ) δ 2 + 2 γ 2 ( T i T 0 )

Metrics