Abstract

The development of methods to measure the size of nanoparticles is a challenging topic of research. The proposed method is based on the metrology of the stable vapor bubble created by thermal coupling between a laser pulse and the nanoparticle in a droplet. The measurement is realized by digital in-line holography. The size of the nanoparticle is deduced from numerical simulations computed with a photo-thermal finite element method.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Size measurement of bubbles in a cavitation tunnel by digital in-line holography

Denis Lebrun, Daniel Allano, Loïc Méès, Françoise Walle, Frédéric Corbin, Romuald Boucheron, and Didier Fréchou
Appl. Opt. 50(34) H1-H9 (2011)

Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach

Mozhdeh Seifi, Corinne Fournier, Nathalie Grosjean, Loic Méès, Jean-Louis Marié, and Loic Denis
Opt. Express 21(23) 27964-27980 (2013)

Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

Elise M. Hall, Brian S. Thurow, and Daniel R. Guildenbecher
Appl. Opt. 55(23) 6410-6420 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, “An overview of nanoparticle assisted laser therapy,” Int. J. Heat Mass Transf. 67, 469–486 (2013).
    [Crossref]
  2. E. Quagliarini, F. Bondioli, G. B. Goffredo, and C. Cordoni, “Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone,” Constr. Build. Mater. 37, 51–57 (2012).
    [Crossref]
  3. J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burdan, T. C. Voice, M. L. Bruening, and V. V. Tarabara, “Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities,” J. Mem. Sci. 325, 58–68 (2008).
    [Crossref]
  4. T. Linsinger, G. Roebben, D. Gilliland, L. Calzolai, F. Rossi, N. Gibson, and C. Klein, “Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial, @ON-LINE, 267–269 (2012).
  5. S. T. Kim, H. K. Kim, S. H. Han, E. C. Jung, and S. Lee, “Determination of size distribution of colloidal TiO2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry,” Microchem. J. 110, 636–642 (2013).
    [Crossref]
  6. B. G. Z. Ramos, M. B. F. Garcia, C. S. Oliveira, A. A. Pasa, V. Soldi, R. Borsali, and T. B. C. Pasa, “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Mater. Sci. Eng. C. 29, 638–640 (2009).
    [Crossref]
  7. S. Pabisch, B. Feichtenschlager, G. Kickelbick, and H. Peterlik, “Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and TEM,” Chem. Phys. Lett. 521, 91–97 (2012).
    [Crossref] [PubMed]
  8. C. Xu, X. Cai, J. Zhang, and L. Liu, “Fast nanoparticle sizing by image dynamic light scattering,” Particuology 696, 1–4 (2014).
  9. R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Colloid Surf. A-Physicochem. Eng. Asp. 387, 35–42 (2011).
    [Crossref]
  10. S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M Janssen, “Digital in-line holography assessment for general phase and opaque particle,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14021 (2014).
    [Crossref]
  11. S. Coëtmellec, D. Pejchang, D. Allano, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M. Janssen, “Digital in-line holography in a droplet with cavitation air bubbles,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14056 (2014).
    [Crossref]
  12. D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
    [Crossref] [PubMed]
  13. A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Numerical modeling of the photo-thermal processing for bubble forming around nanowire in a liquid,” Sci. World J. 8, 794630 (2014).
  14. A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Nanobubble evolution around nanowire in liquid,” Opt. Express 21, 26942–26954 (2013).
    [Crossref] [PubMed]
  15. R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Coll. Sur. A. Phys. Eng. Asp. 387, 35–42 (2011).
    [Crossref]
  16. Z. Li, J. Shen, W. Liu, and Y. Wang, “The nanoparticles size measurement system using wavelet transform and Kalman filter,” Int. J. Digit. Cont. Techn. Appl. 5, 210–217 (2011).
  17. D. Lapotko and E. Lukianova, “Laser-induced micro-bubbles in cells,” Int. J. Heat Mass Transf. 48, 227–234 (2005).
    [Crossref]
  18. A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
    [Crossref]
  19. R. Luneburg, Mathematical Theory of Optics, University of California Press, 1966, pp. 246–257.
  20. S. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970).
    [Crossref]
  21. T. Alieva and M. Bastiaans, “Properties of the linear canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007).
    [Crossref]
  22. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” IMA J. Appl. Math. 25, 241–265 (1980).
    [Crossref]
  23. L. Bernardo and O. Soares, “Optical fractional Fourier transforms with complex orders,” Appl. Opt. 35, 3163–3166 (1996).
    [Crossref] [PubMed]
  24. P. Pellat-Finet and E. Fogret, “Complex order fractional Fourier transforms and their use in diffraction theory. application to optical resonators,” Opt. Commun. 258, 103–113 (2006).
    [Crossref]
  25. W. Xu, M.H. Jericho, I.A. Meinertzhagen, and H.J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
    [Crossref] [PubMed]
  26. M. Leclercq and P. Picart, “Digital Fresnel holography beyond the Shannon limits,” Opt. Express 20, 18303–18312 (2012).
    [Crossref] [PubMed]

2014 (4)

S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M Janssen, “Digital in-line holography assessment for general phase and opaque particle,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14021 (2014).
[Crossref]

S. Coëtmellec, D. Pejchang, D. Allano, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M. Janssen, “Digital in-line holography in a droplet with cavitation air bubbles,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14056 (2014).
[Crossref]

C. Xu, X. Cai, J. Zhang, and L. Liu, “Fast nanoparticle sizing by image dynamic light scattering,” Particuology 696, 1–4 (2014).

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Numerical modeling of the photo-thermal processing for bubble forming around nanowire in a liquid,” Sci. World J. 8, 794630 (2014).

2013 (3)

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Nanobubble evolution around nanowire in liquid,” Opt. Express 21, 26942–26954 (2013).
[Crossref] [PubMed]

Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, “An overview of nanoparticle assisted laser therapy,” Int. J. Heat Mass Transf. 67, 469–486 (2013).
[Crossref]

S. T. Kim, H. K. Kim, S. H. Han, E. C. Jung, and S. Lee, “Determination of size distribution of colloidal TiO2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry,” Microchem. J. 110, 636–642 (2013).
[Crossref]

2012 (3)

E. Quagliarini, F. Bondioli, G. B. Goffredo, and C. Cordoni, “Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone,” Constr. Build. Mater. 37, 51–57 (2012).
[Crossref]

S. Pabisch, B. Feichtenschlager, G. Kickelbick, and H. Peterlik, “Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and TEM,” Chem. Phys. Lett. 521, 91–97 (2012).
[Crossref] [PubMed]

M. Leclercq and P. Picart, “Digital Fresnel holography beyond the Shannon limits,” Opt. Express 20, 18303–18312 (2012).
[Crossref] [PubMed]

2011 (4)

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
[Crossref] [PubMed]

R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Colloid Surf. A-Physicochem. Eng. Asp. 387, 35–42 (2011).
[Crossref]

R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Coll. Sur. A. Phys. Eng. Asp. 387, 35–42 (2011).
[Crossref]

Z. Li, J. Shen, W. Liu, and Y. Wang, “The nanoparticles size measurement system using wavelet transform and Kalman filter,” Int. J. Digit. Cont. Techn. Appl. 5, 210–217 (2011).

2009 (1)

B. G. Z. Ramos, M. B. F. Garcia, C. S. Oliveira, A. A. Pasa, V. Soldi, R. Borsali, and T. B. C. Pasa, “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Mater. Sci. Eng. C. 29, 638–640 (2009).
[Crossref]

2008 (1)

J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burdan, T. C. Voice, M. L. Bruening, and V. V. Tarabara, “Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities,” J. Mem. Sci. 325, 58–68 (2008).
[Crossref]

2007 (2)

A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
[Crossref]

T. Alieva and M. Bastiaans, “Properties of the linear canonical integral transformation,” J. Opt. Soc. Am. A 24, 3658–3665 (2007).
[Crossref]

2006 (1)

P. Pellat-Finet and E. Fogret, “Complex order fractional Fourier transforms and their use in diffraction theory. application to optical resonators,” Opt. Commun. 258, 103–113 (2006).
[Crossref]

2005 (1)

D. Lapotko and E. Lukianova, “Laser-induced micro-bubbles in cells,” Int. J. Heat Mass Transf. 48, 227–234 (2005).
[Crossref]

2001 (1)

W. Xu, M.H. Jericho, I.A. Meinertzhagen, and H.J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref] [PubMed]

1996 (1)

1980 (1)

V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” IMA J. Appl. Math. 25, 241–265 (1980).
[Crossref]

1970 (1)

Alieva, T.

Allano, D.

S. Coëtmellec, D. Pejchang, D. Allano, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M. Janssen, “Digital in-line holography in a droplet with cavitation air bubbles,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14056 (2014).
[Crossref]

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
[Crossref] [PubMed]

Arul, H.

J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burdan, T. C. Voice, M. L. Bruening, and V. V. Tarabara, “Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities,” J. Mem. Sci. 325, 58–68 (2008).
[Crossref]

Barchiesi, D.

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Numerical modeling of the photo-thermal processing for bubble forming around nanowire in a liquid,” Sci. World J. 8, 794630 (2014).

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Nanobubble evolution around nanowire in liquid,” Opt. Express 21, 26942–26954 (2013).
[Crossref] [PubMed]

Bastiaans, M.

Bayazitoglu, Y.

Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, “An overview of nanoparticle assisted laser therapy,” Int. J. Heat Mass Transf. 67, 469–486 (2013).
[Crossref]

Bernardo, L.

Bondioli, F.

E. Quagliarini, F. Bondioli, G. B. Goffredo, and C. Cordoni, “Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone,” Constr. Build. Mater. 37, 51–57 (2012).
[Crossref]

Borsali, R.

B. G. Z. Ramos, M. B. F. Garcia, C. S. Oliveira, A. A. Pasa, V. Soldi, R. Borsali, and T. B. C. Pasa, “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Mater. Sci. Eng. C. 29, 638–640 (2009).
[Crossref]

Bosak, V. Z.

J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burdan, T. C. Voice, M. L. Bruening, and V. V. Tarabara, “Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities,” J. Mem. Sci. 325, 58–68 (2008).
[Crossref]

Boucheron, R.

Boyd, R. D.

R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Coll. Sur. A. Phys. Eng. Asp. 387, 35–42 (2011).
[Crossref]

R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Colloid Surf. A-Physicochem. Eng. Asp. 387, 35–42 (2011).
[Crossref]

Bruening, M. L.

J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burdan, T. C. Voice, M. L. Bruening, and V. V. Tarabara, “Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities,” J. Mem. Sci. 325, 58–68 (2008).
[Crossref]

Brunel, M.

S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M Janssen, “Digital in-line holography assessment for general phase and opaque particle,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14021 (2014).
[Crossref]

S. Coëtmellec, D. Pejchang, D. Allano, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M. Janssen, “Digital in-line holography in a droplet with cavitation air bubbles,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14056 (2014).
[Crossref]

Burdan, A. F.

J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burdan, T. C. Voice, M. L. Bruening, and V. V. Tarabara, “Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities,” J. Mem. Sci. 325, 58–68 (2008).
[Crossref]

Cai, X.

C. Xu, X. Cai, J. Zhang, and L. Liu, “Fast nanoparticle sizing by image dynamic light scattering,” Particuology 696, 1–4 (2014).

Calzolai, L.

T. Linsinger, G. Roebben, D. Gilliland, L. Calzolai, F. Rossi, N. Gibson, and C. Klein, “Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial, @ON-LINE, 267–269 (2012).

Chaari, A.

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Numerical modeling of the photo-thermal processing for bubble forming around nanowire in a liquid,” Sci. World J. 8, 794630 (2014).

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Nanobubble evolution around nanowire in liquid,” Opt. Express 21, 26942–26954 (2013).
[Crossref] [PubMed]

Coëtmellec, S.

S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M Janssen, “Digital in-line holography assessment for general phase and opaque particle,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14021 (2014).
[Crossref]

S. Coëtmellec, D. Pejchang, D. Allano, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M. Janssen, “Digital in-line holography in a droplet with cavitation air bubbles,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14056 (2014).
[Crossref]

Collins, S.

Corbin, F.

Cordoni, C.

E. Quagliarini, F. Bondioli, G. B. Goffredo, and C. Cordoni, “Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone,” Constr. Build. Mater. 37, 51–57 (2012).
[Crossref]

Cuenat, A.

R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Coll. Sur. A. Phys. Eng. Asp. 387, 35–42 (2011).
[Crossref]

R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Colloid Surf. A-Physicochem. Eng. Asp. 387, 35–42 (2011).
[Crossref]

Feichtenschlager, B.

S. Pabisch, B. Feichtenschlager, G. Kickelbick, and H. Peterlik, “Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and TEM,” Chem. Phys. Lett. 521, 91–97 (2012).
[Crossref] [PubMed]

Fogret, E.

P. Pellat-Finet and E. Fogret, “Complex order fractional Fourier transforms and their use in diffraction theory. application to optical resonators,” Opt. Commun. 258, 103–113 (2006).
[Crossref]

Fréchou, D.

Garcia, M. B. F.

B. G. Z. Ramos, M. B. F. Garcia, C. S. Oliveira, A. A. Pasa, V. Soldi, R. Borsali, and T. B. C. Pasa, “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Mater. Sci. Eng. C. 29, 638–640 (2009).
[Crossref]

Gibson, N.

T. Linsinger, G. Roebben, D. Gilliland, L. Calzolai, F. Rossi, N. Gibson, and C. Klein, “Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial, @ON-LINE, 267–269 (2012).

Gilliland, D.

T. Linsinger, G. Roebben, D. Gilliland, L. Calzolai, F. Rossi, N. Gibson, and C. Klein, “Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial, @ON-LINE, 267–269 (2012).

Giraud-Moreau, L.

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Numerical modeling of the photo-thermal processing for bubble forming around nanowire in a liquid,” Sci. World J. 8, 794630 (2014).

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Nanobubble evolution around nanowire in liquid,” Opt. Express 21, 26942–26954 (2013).
[Crossref] [PubMed]

Goffredo, G. B.

E. Quagliarini, F. Bondioli, G. B. Goffredo, and C. Cordoni, “Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone,” Constr. Build. Mater. 37, 51–57 (2012).
[Crossref]

Gréhan, G.

S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M Janssen, “Digital in-line holography assessment for general phase and opaque particle,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14021 (2014).
[Crossref]

S. Coëtmellec, D. Pejchang, D. Allano, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M. Janssen, “Digital in-line holography in a droplet with cavitation air bubbles,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14056 (2014).
[Crossref]

Grosges, T.

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Numerical modeling of the photo-thermal processing for bubble forming around nanowire in a liquid,” Sci. World J. 8, 794630 (2014).

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Nanobubble evolution around nanowire in liquid,” Opt. Express 21, 26942–26954 (2013).
[Crossref] [PubMed]

Han, S. H.

S. T. Kim, H. K. Kim, S. H. Han, E. C. Jung, and S. Lee, “Determination of size distribution of colloidal TiO2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry,” Microchem. J. 110, 636–642 (2013).
[Crossref]

Janssen, A.J.E.M

S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M Janssen, “Digital in-line holography assessment for general phase and opaque particle,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14021 (2014).
[Crossref]

Janssen, A.J.E.M.

S. Coëtmellec, D. Pejchang, D. Allano, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M. Janssen, “Digital in-line holography in a droplet with cavitation air bubbles,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14056 (2014).
[Crossref]

Jericho, M.H.

W. Xu, M.H. Jericho, I.A. Meinertzhagen, and H.J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref] [PubMed]

Jung, E. C.

S. T. Kim, H. K. Kim, S. H. Han, E. C. Jung, and S. Lee, “Determination of size distribution of colloidal TiO2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry,” Microchem. J. 110, 636–642 (2013).
[Crossref]

Kheradmand, S.

Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, “An overview of nanoparticle assisted laser therapy,” Int. J. Heat Mass Transf. 67, 469–486 (2013).
[Crossref]

Kickelbick, G.

S. Pabisch, B. Feichtenschlager, G. Kickelbick, and H. Peterlik, “Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and TEM,” Chem. Phys. Lett. 521, 91–97 (2012).
[Crossref] [PubMed]

Kim, H. K.

S. T. Kim, H. K. Kim, S. H. Han, E. C. Jung, and S. Lee, “Determination of size distribution of colloidal TiO2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry,” Microchem. J. 110, 636–642 (2013).
[Crossref]

Kim, S. T.

S. T. Kim, H. K. Kim, S. H. Han, E. C. Jung, and S. Lee, “Determination of size distribution of colloidal TiO2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry,” Microchem. J. 110, 636–642 (2013).
[Crossref]

Klein, C.

T. Linsinger, G. Roebben, D. Gilliland, L. Calzolai, F. Rossi, N. Gibson, and C. Klein, “Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial, @ON-LINE, 267–269 (2012).

Kreuzer, H.J.

W. Xu, M.H. Jericho, I.A. Meinertzhagen, and H.J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref] [PubMed]

Lapotko, D.

D. Lapotko and E. Lukianova, “Laser-induced micro-bubbles in cells,” Int. J. Heat Mass Transf. 48, 227–234 (2005).
[Crossref]

Lebrun, D.

S. Coëtmellec, D. Pejchang, D. Allano, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M. Janssen, “Digital in-line holography in a droplet with cavitation air bubbles,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14056 (2014).
[Crossref]

S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M Janssen, “Digital in-line holography assessment for general phase and opaque particle,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14021 (2014).
[Crossref]

D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt. 50, H1–H9 (2011).
[Crossref] [PubMed]

Leclercq, M.

Lee, S.

S. T. Kim, H. K. Kim, S. H. Han, E. C. Jung, and S. Lee, “Determination of size distribution of colloidal TiO2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry,” Microchem. J. 110, 636–642 (2013).
[Crossref]

Li, Z.

Z. Li, J. Shen, W. Liu, and Y. Wang, “The nanoparticles size measurement system using wavelet transform and Kalman filter,” Int. J. Digit. Cont. Techn. Appl. 5, 210–217 (2011).

Linsinger, T.

T. Linsinger, G. Roebben, D. Gilliland, L. Calzolai, F. Rossi, N. Gibson, and C. Klein, “Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial, @ON-LINE, 267–269 (2012).

Liu, L.

C. Xu, X. Cai, J. Zhang, and L. Liu, “Fast nanoparticle sizing by image dynamic light scattering,” Particuology 696, 1–4 (2014).

Liu, W.

Z. Li, J. Shen, W. Liu, and Y. Wang, “The nanoparticles size measurement system using wavelet transform and Kalman filter,” Int. J. Digit. Cont. Techn. Appl. 5, 210–217 (2011).

Lukianova, E.

D. Lapotko and E. Lukianova, “Laser-induced micro-bubbles in cells,” Int. J. Heat Mass Transf. 48, 227–234 (2005).
[Crossref]

Luneburg, R.

R. Luneburg, Mathematical Theory of Optics, University of California Press, 1966, pp. 246–257.

Méès, L.

Meinertzhagen, I.A.

W. Xu, M.H. Jericho, I.A. Meinertzhagen, and H.J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref] [PubMed]

Namias, V.

V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” IMA J. Appl. Math. 25, 241–265 (1980).
[Crossref]

Oliveira, C. S.

B. G. Z. Ramos, M. B. F. Garcia, C. S. Oliveira, A. A. Pasa, V. Soldi, R. Borsali, and T. B. C. Pasa, “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Mater. Sci. Eng. C. 29, 638–640 (2009).
[Crossref]

Pabisch, S.

S. Pabisch, B. Feichtenschlager, G. Kickelbick, and H. Peterlik, “Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and TEM,” Chem. Phys. Lett. 521, 91–97 (2012).
[Crossref] [PubMed]

Pasa, A. A.

B. G. Z. Ramos, M. B. F. Garcia, C. S. Oliveira, A. A. Pasa, V. Soldi, R. Borsali, and T. B. C. Pasa, “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Mater. Sci. Eng. C. 29, 638–640 (2009).
[Crossref]

Pasa, T. B. C.

B. G. Z. Ramos, M. B. F. Garcia, C. S. Oliveira, A. A. Pasa, V. Soldi, R. Borsali, and T. B. C. Pasa, “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Mater. Sci. Eng. C. 29, 638–640 (2009).
[Crossref]

Pejchang, D.

S. Coëtmellec, D. Pejchang, D. Allano, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M. Janssen, “Digital in-line holography in a droplet with cavitation air bubbles,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14056 (2014).
[Crossref]

Pellat-Finet, P.

P. Pellat-Finet and E. Fogret, “Complex order fractional Fourier transforms and their use in diffraction theory. application to optical resonators,” Opt. Commun. 258, 103–113 (2006).
[Crossref]

Peterlik, H.

S. Pabisch, B. Feichtenschlager, G. Kickelbick, and H. Peterlik, “Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and TEM,” Chem. Phys. Lett. 521, 91–97 (2012).
[Crossref] [PubMed]

Picart, P.

Pichaimuthu, S. K.

R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Colloid Surf. A-Physicochem. Eng. Asp. 387, 35–42 (2011).
[Crossref]

R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Coll. Sur. A. Phys. Eng. Asp. 387, 35–42 (2011).
[Crossref]

Quagliarini, E.

E. Quagliarini, F. Bondioli, G. B. Goffredo, and C. Cordoni, “Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone,” Constr. Build. Mater. 37, 51–57 (2012).
[Crossref]

Ramos, B. G. Z.

B. G. Z. Ramos, M. B. F. Garcia, C. S. Oliveira, A. A. Pasa, V. Soldi, R. Borsali, and T. B. C. Pasa, “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Mater. Sci. Eng. C. 29, 638–640 (2009).
[Crossref]

Roebben, G.

T. Linsinger, G. Roebben, D. Gilliland, L. Calzolai, F. Rossi, N. Gibson, and C. Klein, “Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial, @ON-LINE, 267–269 (2012).

Rossi, F.

T. Linsinger, G. Roebben, D. Gilliland, L. Calzolai, F. Rossi, N. Gibson, and C. Klein, “Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial, @ON-LINE, 267–269 (2012).

Sevilla, C.

A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
[Crossref]

Shen, J.

Z. Li, J. Shen, W. Liu, and Y. Wang, “The nanoparticles size measurement system using wavelet transform and Kalman filter,” Int. J. Digit. Cont. Techn. Appl. 5, 210–217 (2011).

Soares, O.

Soldi, V.

B. G. Z. Ramos, M. B. F. Garcia, C. S. Oliveira, A. A. Pasa, V. Soldi, R. Borsali, and T. B. C. Pasa, “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Mater. Sci. Eng. C. 29, 638–640 (2009).
[Crossref]

Tarabara, V. V.

J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burdan, T. C. Voice, M. L. Bruening, and V. V. Tarabara, “Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities,” J. Mem. Sci. 325, 58–68 (2008).
[Crossref]

Taurozzi, J. S.

J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burdan, T. C. Voice, M. L. Bruening, and V. V. Tarabara, “Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities,” J. Mem. Sci. 325, 58–68 (2008).
[Crossref]

Tullius, T. K.

Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, “An overview of nanoparticle assisted laser therapy,” Int. J. Heat Mass Transf. 67, 469–486 (2013).
[Crossref]

Voice, T. C.

J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burdan, T. C. Voice, M. L. Bruening, and V. V. Tarabara, “Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities,” J. Mem. Sci. 325, 58–68 (2008).
[Crossref]

Volkov, A. N.

A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
[Crossref]

Walle, F.

Wang, Y.

Z. Li, J. Shen, W. Liu, and Y. Wang, “The nanoparticles size measurement system using wavelet transform and Kalman filter,” Int. J. Digit. Cont. Techn. Appl. 5, 210–217 (2011).

Wichitwong, W.

S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M Janssen, “Digital in-line holography assessment for general phase and opaque particle,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14021 (2014).
[Crossref]

Xu, C.

C. Xu, X. Cai, J. Zhang, and L. Liu, “Fast nanoparticle sizing by image dynamic light scattering,” Particuology 696, 1–4 (2014).

Xu, W.

W. Xu, M.H. Jericho, I.A. Meinertzhagen, and H.J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref] [PubMed]

Zhang, J.

C. Xu, X. Cai, J. Zhang, and L. Liu, “Fast nanoparticle sizing by image dynamic light scattering,” Particuology 696, 1–4 (2014).

Zhigilei, L. V.

A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
[Crossref]

Appl. Opt. (2)

Appl. Surf. Sci. (1)

A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
[Crossref]

Chem. Phys. Lett. (1)

S. Pabisch, B. Feichtenschlager, G. Kickelbick, and H. Peterlik, “Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and TEM,” Chem. Phys. Lett. 521, 91–97 (2012).
[Crossref] [PubMed]

Coll. Sur. A. Phys. Eng. Asp. (1)

R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Coll. Sur. A. Phys. Eng. Asp. 387, 35–42 (2011).
[Crossref]

Colloid Surf. A-Physicochem. Eng. Asp. (1)

R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Colloid Surf. A-Physicochem. Eng. Asp. 387, 35–42 (2011).
[Crossref]

Constr. Build. Mater. (1)

E. Quagliarini, F. Bondioli, G. B. Goffredo, and C. Cordoni, “Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone,” Constr. Build. Mater. 37, 51–57 (2012).
[Crossref]

IMA J. Appl. Math. (1)

V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” IMA J. Appl. Math. 25, 241–265 (1980).
[Crossref]

Int. J. Digit. Cont. Techn. Appl. (1)

Z. Li, J. Shen, W. Liu, and Y. Wang, “The nanoparticles size measurement system using wavelet transform and Kalman filter,” Int. J. Digit. Cont. Techn. Appl. 5, 210–217 (2011).

Int. J. Heat Mass Transf. (2)

D. Lapotko and E. Lukianova, “Laser-induced micro-bubbles in cells,” Int. J. Heat Mass Transf. 48, 227–234 (2005).
[Crossref]

Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, “An overview of nanoparticle assisted laser therapy,” Int. J. Heat Mass Transf. 67, 469–486 (2013).
[Crossref]

J. Eur. Opt. Soc.-Rapid Publ. (2)

S. Coëtmellec, W. Wichitwong, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M Janssen, “Digital in-line holography assessment for general phase and opaque particle,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14021 (2014).
[Crossref]

S. Coëtmellec, D. Pejchang, D. Allano, G. Gréhan, D. Lebrun, M. Brunel, and A.J.E.M. Janssen, “Digital in-line holography in a droplet with cavitation air bubbles,” J. Eur. Opt. Soc.-Rapid Publ. 9, 14056 (2014).
[Crossref]

J. Mem. Sci. (1)

J. S. Taurozzi, H. Arul, V. Z. Bosak, A. F. Burdan, T. C. Voice, M. L. Bruening, and V. V. Tarabara, “Effect of filler incorporation route on the properties of polysulfone silver nanocomposite membranes of different porosities,” J. Mem. Sci. 325, 58–68 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Mater. Sci. Eng. C. (1)

B. G. Z. Ramos, M. B. F. Garcia, C. S. Oliveira, A. A. Pasa, V. Soldi, R. Borsali, and T. B. C. Pasa, “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Mater. Sci. Eng. C. 29, 638–640 (2009).
[Crossref]

Microchem. J. (1)

S. T. Kim, H. K. Kim, S. H. Han, E. C. Jung, and S. Lee, “Determination of size distribution of colloidal TiO2 nanoparticles using sedimentation field-flow fractionation combined with single particle mode of inductively coupled plasma-mass spectrometry,” Microchem. J. 110, 636–642 (2013).
[Crossref]

Opt. Commun. (1)

P. Pellat-Finet and E. Fogret, “Complex order fractional Fourier transforms and their use in diffraction theory. application to optical resonators,” Opt. Commun. 258, 103–113 (2006).
[Crossref]

Opt. Express (2)

Particuology (1)

C. Xu, X. Cai, J. Zhang, and L. Liu, “Fast nanoparticle sizing by image dynamic light scattering,” Particuology 696, 1–4 (2014).

Proc. Natl. Acad. Sci. U. S. A. (1)

W. Xu, M.H. Jericho, I.A. Meinertzhagen, and H.J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U. S. A. 98, 11301–11305 (2001).
[Crossref] [PubMed]

Sci. World J. (1)

A. Chaari, T. Grosges, L. Giraud-Moreau, and D. Barchiesi, “Numerical modeling of the photo-thermal processing for bubble forming around nanowire in a liquid,” Sci. World J. 8, 794630 (2014).

Other (2)

R. Luneburg, Mathematical Theory of Optics, University of California Press, 1966, pp. 246–257.

T. Linsinger, G. Roebben, D. Gilliland, L. Calzolai, F. Rossi, N. Gibson, and C. Klein, “Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial, @ON-LINE, 267–269 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup: laser-induced nucleation with f = 500mm, and digital in-line holography with f 0 = 56mm, f 1 = 5mm, ω 0 = 2.5μm, e 0 = 56mm, e 1 = 242mm, e 2 = 10.65mm, e 3 = 5.75mm, z = 39.3mm.
Fig. 2
Fig. 2 Hologram of a vapor bubble in a droplet, size of the picture N = 560, sampling period δp = 4.4μm.
Fig. 3
Fig. 3 Optimized reconstruction of the image of the vapor bubble. for aox = aoy = 0.6735.
Fig. 4
Fig. 4 Estimation of the bubble diameters along the (a) x-axis and (b) y-axis from digital holography.
Fig. 5
Fig. 5 The hologram of many bubbles in the droplet.
Fig. 6
Fig. 6 Evolution of the radius of the nanoparticle as function of the bubble radius and the laser power.

Tables (3)

Tables Icon

Table 1 The results of the optimal fractional orders, aox,aoy , the position, δ, the diameter of a droplet, d ( i ), the estimated diameter, Dest and the real diameter, Dth of each bubble.

Tables Icon

Table 2 Parameter values A, B of the F-function for three laser power and results of the fit parameters a 1, b 1, a 2 and b 2.

Tables Icon

Table 3 The estimation of the diameter of the nanoparticles.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P s = 4 P m P R R × w t × π D l 2 ,
τ b u b b l e = ρ ( v a p o r ) C p ( v a p o r ) R b u b b l e 2 κ ( v a p o r ) ln 2 [ T b o i l T max ] ,
T max = 2 π I m ( ε r ( T i O 2 ) ) P s λ ρ ( T i O 2 ) C p ( T i O 2 ) n t w t ,
M i = ( 1 δ n b 0 1 ) ( 1 0 n a n d d / 2 1 ) ( 1 e 2 n a 0 1 ) ( 1 0 1 f 1 1 ) ( 1 e 1 n a 0 1 ) ( 1 0 1 f 0 1 ) ( 1 e 0 n a 0 1 )
M t = ( 1 z n a 0 1 ) ( 1 0 1 f 1 1 ) ( 1 e 3 n a 0 1 ) ( 1 0 n d n a d / 2 1 ) ( 1 d r δ n d 0 1 ) ,
F α [ f ( r ) ] ( ρ ) = 2 π C ( α ) exp [ i π s 2 ρ 2 tan ( α ) ] 0 + f ( r ) exp [ i π s 2 r 2 tan ( α ) ] J 0 ( 2 π r ρ s 2 sin ( α ) ) r d r ,
C ( α ) = exp [ i ( π 2 sign ( sin α ) α ) ] s 2 sin α , α = a π 2 ,
D t h ( i ) = G D e s t ( i ) , i = x , y ,
G = 2 λ s 2 ( sin α 0 ) Tr ( B t 1 ) ,
ln ( V p a r t i c l e ) = ln ( 4 π 3 ( R p a r t i c l e ) 3 ) = F 1 ( ln ( V b u b b l e ) ) = ( ln ( V b u b b l e ) A B ) ,
( R p a r t i c l e ) = ( R b u b b l e ) 1 / A × ( 4 π 3 ) ( A 1 ) / 3 A × exp [ B 3 A ] ,

Metrics