Abstract

An in-line interferometer based on the intermodal coupling of a multicore fiber (MCF) is proposed and experimentally demonstrated. The in-line interferometer is fabricated by adiabatically tapering the MCF. The intermodal coupling of the in-line interferometer is strongly affected by the waist diameter of the MCF, which changes the evanescent field and the pitch size. The effect of the waist diameters of the MCF on the intermodal coupling in the in-line interferometer is theoretically and experimentally investigated. The transmission oscillations of the multiple core modes resulting from the intermodal coupling and interference substantially become stronger as the waist diameter decreases. The extinction ratio and the oscillation periodicity of the transmissions oscillations are changed by the waist diameter.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing

Li Duan, Peng Zhang, Ming Tang, Ruoxu Wang, Zhiyong Zhao, Songnian Fu, Lin Gan, Benpeng Zhu, Weijun Tong, Deming Liu, and Perry Ping Shum
Opt. Express 24(18) 20210-20218 (2016)

Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination

Xuan Zhan, Yinping Liu, Ming Tang, Lin Ma, Ruoxu Wang, Li Duan, Lin Gan, Chen Yang, Weijun Tong, Songnian Fu, Deming Liu, and Zuyuan He
Opt. Express 26(12) 15332-15342 (2018)

Multicore optical fiber Y-splitter

Ehab Awad
Opt. Express 23(20) 25661-25674 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
    [Crossref]
  3. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
    [Crossref] [PubMed]
  4. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
    [Crossref] [PubMed]
  5. T. F. S. Büttner, D. D. Hudson, E. C. Mägi, A. C. Bedoya, T. Taunay, and B. J. Eggleton, “Multicore, tapered optical fiber for nonlinear pulse reshaping and saturable absorption,” Opt. Lett. 37(13), 2469–2471 (2012).
    [Crossref] [PubMed]
  6. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [Crossref] [PubMed]
  7. A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
    [Crossref] [PubMed]
  8. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
    [Crossref] [PubMed]
  9. H. J. Kim and Y. G. Han, “Polarization-dependent in-line mach-zehnder interferometer for discrimination of temperature and ambient index sensitivities,” J. Lightwave Technol. 30(8), 1037–1041 (2012).
    [Crossref]
  10. C. R. Biazoli, S. Silva, M. A. R. Franco, O. Frazão, and C. M. B. Cordeiro, “Multimode interference tapered fiber refractive index sensors,” Appl. Opt. 51(24), 5941–5945 (2012).
    [Crossref] [PubMed]
  11. S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
    [Crossref]
  12. P. Rugeland and W. Margulis, “Revisiting twin-core fiber sensors for high-temperature measurements,” Appl. Opt. 51(25), 6227–6232 (2012).
    [Crossref] [PubMed]
  13. A. Zhou, Y. Zhang, G. Li, J. Yang, Y. Wang, F. Tian, and L. Yuan, “Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer,” Opt. Lett. 36(16), 3221–3223 (2011).
    [Crossref] [PubMed]
  14. R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazão, “Simultaneous measurement of curvature and strain using a suspended multicore fiber,” Opt. Lett. 36(19), 3939–3941 (2011).
    [Crossref] [PubMed]
  15. S. Zheng, G. Ren, Z. Lin, and S. Jian, “Mode-coupling analysis and trench design for large-mode-area low-cross-talk multicore fiber,” Appl. Opt. 52(19), 4541–4548 (2013).
    [Crossref] [PubMed]
  16. M. S. Yoon, H. J. Kim, G. Brambilla, and Y. G. Han, “Development of a small-size embedded optical microfiber coil resonator with High Q,” J. Korean Phys. Soc. 61(9), 1381–1385 (2012).
    [Crossref]
  17. F. Y. Chan, A. P. T. Lau, and H.-Y. Tam, “Mode coupling dynamics and communication strategies for multi-core fiber systems,” Opt. Express 20(4), 4548–4563 (2012).
    [Crossref] [PubMed]
  18. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62(11), 1267–1277 (1972).
    [Crossref] [PubMed]

2014 (3)

2013 (2)

S. Zheng, G. Ren, Z. Lin, and S. Jian, “Mode-coupling analysis and trench design for large-mode-area low-cross-talk multicore fiber,” Appl. Opt. 52(19), 4541–4548 (2013).
[Crossref] [PubMed]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (6)

2011 (3)

2010 (1)

2009 (1)

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[Crossref]

2003 (1)

1972 (1)

Amezcua Correa, R.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Amezcua-Correa, R.

Antonio-Lopez, E.

Antonio-Lopez, J. E.

Barton, J. S.

Bedoya, A. C.

Bennion, I.

Biazoli, C. R.

Brambilla, G.

M. S. Yoon, H. J. Kim, G. Brambilla, and Y. G. Han, “Development of a small-size embedded optical microfiber coil resonator with High Q,” J. Korean Phys. Soc. 61(9), 1381–1385 (2012).
[Crossref]

Büttner, T. F. S.

Chan, F. Y.

Chandrasekhar, S.

Cordeiro, C. M. B.

de Waardt, H.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Dimarcello, F. V.

Eggleton, B. J.

Eznaveh, Z. S.

Feng, S.

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[Crossref]

Ferreira, M. S.

Fini, J. M.

Fishteyn, M.

Flockhart, G. M. H.

Franco, M. A. R.

Frazão, O.

Han, Y. G.

M. S. Yoon, H. J. Kim, G. Brambilla, and Y. G. Han, “Development of a small-size embedded optical microfiber coil resonator with High Q,” J. Korean Phys. Soc. 61(9), 1381–1385 (2012).
[Crossref]

H. J. Kim and Y. G. Han, “Polarization-dependent in-line mach-zehnder interferometer for discrimination of temperature and ambient index sensitivities,” J. Lightwave Technol. 30(8), 1037–1041 (2012).
[Crossref]

Hudson, D. D.

Huijskens, F. M.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Jian, S.

S. Zheng, G. Ren, Z. Lin, and S. Jian, “Mode-coupling analysis and trench design for large-mode-area low-cross-talk multicore fiber,” Appl. Opt. 52(19), 4541–4548 (2013).
[Crossref] [PubMed]

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[Crossref]

Jones, J. D. C.

Kim, H. J.

H. J. Kim and Y. G. Han, “Polarization-dependent in-line mach-zehnder interferometer for discrimination of temperature and ambient index sensitivities,” J. Lightwave Technol. 30(8), 1037–1041 (2012).
[Crossref]

M. S. Yoon, H. J. Kim, G. Brambilla, and Y. G. Han, “Development of a small-size embedded optical microfiber coil resonator with High Q,” J. Korean Phys. Soc. 61(9), 1381–1385 (2012).
[Crossref]

Kobelke, J.

Koonen, A. M. J.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Lau, A. P. T.

Li, G.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

A. Zhou, Y. Zhang, G. Li, J. Yang, Y. Wang, F. Tian, and L. Yuan, “Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer,” Opt. Lett. 36(16), 3221–3223 (2011).
[Crossref] [PubMed]

Li, H.

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[Crossref]

LiKamWa, P.

Lin, Z.

Liu, X.

Lopez, E. A.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Lu, S.

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[Crossref]

MacPherson, W. N.

Mägi, E. C.

Margulis, W.

Monberg, E. M.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Okonkwo, C. M.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ren, G.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Rugeland, P.

Salceda-Delgado, G.

Schülzgen, A.

Schuster, K.

Silva, R. M.

Silva, S.

Snyder, A. W.

Tam, H.-Y.

Taunay, T.

Taunay, T. F.

Tian, F.

Van Newkirk, A.

van Uden, R. G. H.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Wang, Y.

Xia, C.

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Xu, O.

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[Crossref]

Yan, M. F.

Yang, J.

Yoon, M. S.

M. S. Yoon, H. J. Kim, G. Brambilla, and Y. G. Han, “Development of a small-size embedded optical microfiber coil resonator with High Q,” J. Korean Phys. Soc. 61(9), 1381–1385 (2012).
[Crossref]

Yuan, L.

Zhang, L.

Zhang, Y.

Zheng, S.

Zhou, A.

Zhu, B.

Appl. Opt. (3)

J. Korean Phys. Soc. (1)

M. S. Yoon, H. J. Kim, G. Brambilla, and Y. G. Han, “Development of a small-size embedded optical microfiber coil resonator with High Q,” J. Korean Phys. Soc. 61(9), 1381–1385 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Nat. Photonics (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

R. G. H. van Uden, R. Amezcua Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Proc. SPIE (1)

S. Feng, H. Li, O. Xu, S. Lu, and S. Jian, “Compact in-fiber Mach-Zehnder interferometer using a twin-core fiber,” Proc. SPIE 7630, 76301R (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Scheme of the MCF and (b) SEM image of the fabricated MCF.
Fig. 2
Fig. 2 (a) Experimental setup for the fabrication of the tapered MCF and (b) microscopic images of the tapered MCF with various waist diameters.
Fig. 3
Fig. 3 Theoretical results for the normalized intensity distributions of all the seven core modes in the in-line interferometer with various waist diameters (d), such as 10, 20, and 30 μm.
Fig. 4
Fig. 4 Experimental results for the transmission spectra of the center core (a) and the side core modes (b), respectively, in the in-line interferometer at various waist diameters.
Fig. 5
Fig. 5 (a) Transmission spectra of the tapered MCF with a waist diameter of 10 μm. Experimental and theoretical results for the intensity distributions of the core modes in the in-line interferometer corresponding to the phase of π/2 (b) and π (c), respectively, depending on input polarization states.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d A d z = C A ( z ) ,
A = [ A 1 ( z ) A 2 ( z ) A 3 ( z ) A 4 ( z ) A 5 ( z ) A 6 ( z ) A 7 ( z ) ] T ,
c i j = { j C i j exp [ j ( β i β j ) z ] i j 0 i j ,
C = ( 0 C C C C C C C 0 C 0 0 0 C C C 0 C 0 0 0 C 0 C 0 C 0 0 C 0 0 C 0 C 0 C 0 0 0 C 0 C C C 0 0 0 C 0 ) .
A 1 ( z ) = [ cos ( N C z ) + j N sin ( N C z ) ] exp ( j C z ) ,
A p ( z ) = j N sin ( N C z ) exp ( j C z ) p 1 ,
| A 1 ( z ) | 2 = 1 7 + 6 7 cos 2 ( 7 C z ) ,
| A p ( z ) | 2 = 1 7 sin 2 ( 7 C z ) p 1.
C = π 2 n 1 2 n 2 2 a n 1 u 2 V 2 K 0 ( w Λ / a ) K 1 2 ( w ) = π 2 n 1 2 n 2 2 ζ d n 1 u 2 V 2 K 0 ( γ / a ) K 1 2 ( w ) ,
V = 2 π a λ n 1 2 n 2 2 , u = a ( 2 π n 1 / λ ) 2 β p 2 , w = a β p 2 ( 2 π n 2 / λ ) 2 .

Metrics