Abstract

We present a high-speed asynchronous optical sampling system, based on two different Kerr-lens mode-locked lasers with a GHz repetition rate: An Yb:KYW oscillator and a Ti:sapphire oscillator are synchronized in a master-slave configuration at a repetition rate offset of a few kHz. This system enables two-colour pump-probe measurements with resulting noise floors below 10−6 at a data aquisition time of 5 seconds. The measured temporal resolution within the 1 ns time window is below 350 fs, including a timing jitter of less than 50 fs. The system is applied to investigate zone-folded coherent acoustic phonons in two different semiconductor superlattices in transmission geometry at a probe wavelength far below the bandgap of the superlattice constituents. The lifetime of the phonon modes with a zero wave vector and frequencies in the range from 100 GHz to 500 GHz are measured at room temperature and compared with previous work.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed asynchronous optical sampling based on GHz Yb:KYW oscillators

C. Li, N. Krauß, G. Schäfer, L. Ebner, O. Kliebisch, J. Schmidt, S. Winnerl, M. Hettich, and T. Dekorsy
Opt. Express 25(8) 9204-9212 (2017)

High-speed asynchronous optical sampling with sub-50fs time resolution

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels
Opt. Express 18(6) 5974-5983 (2010)

Ultrafast time-domain spectroscopy system using 10 GHz asynchronous optical sampling with 100 kHz scan rate

Oliver Kliebisch, Dirk C. Heinecke, and Thomas Dekorsy
Opt. Express 24(26) 29930-29940 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer Science & Business Media, 1999)
    [Crossref]
  2. R. P. Prasankumar and A. J. Taylor, Optical Techniques for Solid-State Materials Characterization (CRC Press, 2011).
  3. S. Savikhin, “Shot-noise-limited detection of absorbance changes induced by subpicojoule laser pulses in optical pump-probe experiments,” Rev. Sci. Instrum. 66, 4470–4474 (1995).
    [Crossref]
  4. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50 fs time resolution,” Opt. Express 18, 5974–5983 (2010).
    [Crossref] [PubMed]
  5. V. A. Stoica, Y.-M. Sheu, D. A. Reis, and R. Clarke, “Wideband detection of transient solid-state dynamics using ultrafast fiber lasers and asynchronous optical sampling,” Opt. Express 16, 2322–2335 (2008).
    [Crossref] [PubMed]
  6. E. Péronne, E. Charron, S. Vincent, S. Sauvage, A. Lemaître, B. Perrin, and B. Jusserand, “Two-color femtosecond strobe lighting of coherent acoustic phonons emitted by quantum dots,” Appl. Phys. Lett. 102, 043107 (2013).
    [Crossref]
  7. A. Abbas, Y. Guillet, J.-M. Rampnoux, P. Rigail, E. Mottay, B. Audoin, and S. Dilhaire, “Picosecond time resolved opto-acoustic imaging with 48 MHz frequency resolution,” Opt. Express 22, 7831–7843 (2014).
    [Crossref] [PubMed]
  8. A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
    [Crossref]
  9. M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
    [Crossref]
  10. S. Kray, F. Spöler, T. Hellerer, and H. Kurz, “Electronically controlled coherent linear optical sampling for optical coherence tomography,” Opt. Express 18, 9976–9990 (2010).
    [Crossref] [PubMed]
  11. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18, 1613–1617 (2010).
    [Crossref] [PubMed]
  12. Z. Zhang, C. Gu, J. Sun, C. Wang, T. Gardiner, and D. Reid, “Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy,” Opt. Lett. 37, 187–189 (2012).
    [Crossref] [PubMed]
  13. L. Antonucci, X. Solinas, A. Bonvalet, and M. Joffre, “Asynchronous optical sampling with arbitrary detuning between laser repetition rates,” Opt. Express 20, 17928–17937 (2012).
    [Crossref] [PubMed]
  14. S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett. 35, 748–750 (2010).
    [Crossref] [PubMed]
  15. M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express 20, 12191–12197 (2012).
    [Crossref] [PubMed]
  16. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20, 4248–4253 (2012).
    [Crossref] [PubMed]
  17. T. C. Schratwieser, C. G. Leburn, and D. T. Reid, “Highly efficient 1 GHz repetition-frequency femtosecond Yb+3:KY(WO4)2 laser,” Opt. Lett. 37, 1133–1135 (2012).
    [Crossref] [PubMed]
  18. A. Klenner, M. Golling, and U. Keller, “A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal,” Opt. Express 21, 10351–10357 (2013).
    [Crossref] [PubMed]
  19. A. Klenner, M. Golling, and U. Keller, “High peak power gigahertz Yb:CALGO laser,” Opt. Express 22, 11884–11891 (2014).
    [Crossref] [PubMed]
  20. P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17, 5630–5635 (2009).
    [Crossref] [PubMed]
  21. H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
    [Crossref]
  22. A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24, 996–998 (1999).
    [Crossref]
  23. A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
    [Crossref]
  24. A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740 (1994).
    [Crossref] [PubMed]
  25. K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, “Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy,” Phys. Rev. B 60, 8262 (1999).
    [Crossref]
  26. N. Stanton, R. Kini, A. Kent, M. Henini, and D. Lehmann, “Terahertz phonon optics in GaAs/AlAs superlattice structures,” Phys. Rev. B 68, 113302 (2003).
    [Crossref]
  27. D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B 87, 075307 (2013).
    [Crossref]
  28. M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
    [Crossref] [PubMed]
  29. M. Trigo, T. Eckhause, J. Wahlstrand, R. Merlin, M. Reason, and R. Goldman, “Ultrafast optical generation and remote detection of terahertz sound using semiconductor superlattices,” Appl. Phys. Lett. 91, 023115 (2007).
    [Crossref]
  30. A. Huynh, B. Perrin, N. Lanzillotti-Kimura, B. Jusserand, A. Fainstein, and A. Lemaître, “Subterahertz monochromatic acoustic wave propagation using semiconductor superlattices as transducers,” Phys. Rev. B 78, 233302 (2008).
    [Crossref]
  31. M. P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
    [Crossref]
  32. C. Colvard, R. Merlin, M. Klein, and A. Gossard, “Observation of folded acoustic phonons in a semiconductor superlattice,” Phys. Rev. Lett. 45, 298 (1980).
    [Crossref]
  33. A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
    [Crossref]
  34. F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
    [Crossref] [PubMed]

2014 (2)

2013 (5)

A. Klenner, M. Golling, and U. Keller, “A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal,” Opt. Express 21, 10351–10357 (2013).
[Crossref] [PubMed]

E. Péronne, E. Charron, S. Vincent, S. Sauvage, A. Lemaître, B. Perrin, and B. Jusserand, “Two-color femtosecond strobe lighting of coherent acoustic phonons emitted by quantum dots,” Appl. Phys. Lett. 102, 043107 (2013).
[Crossref]

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B 87, 075307 (2013).
[Crossref]

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
[Crossref]

F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
[Crossref] [PubMed]

2012 (7)

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

Z. Zhang, C. Gu, J. Sun, C. Wang, T. Gardiner, and D. Reid, “Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy,” Opt. Lett. 37, 187–189 (2012).
[Crossref] [PubMed]

S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20, 4248–4253 (2012).
[Crossref] [PubMed]

T. C. Schratwieser, C. G. Leburn, and D. T. Reid, “Highly efficient 1 GHz repetition-frequency femtosecond Yb+3:KY(WO4)2 laser,” Opt. Lett. 37, 1133–1135 (2012).
[Crossref] [PubMed]

M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express 20, 12191–12197 (2012).
[Crossref] [PubMed]

L. Antonucci, X. Solinas, A. Bonvalet, and M. Joffre, “Asynchronous optical sampling with arbitrary detuning between laser repetition rates,” Opt. Express 20, 17928–17937 (2012).
[Crossref] [PubMed]

2010 (4)

2009 (2)

P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17, 5630–5635 (2009).
[Crossref] [PubMed]

M. P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

2008 (2)

A. Huynh, B. Perrin, N. Lanzillotti-Kimura, B. Jusserand, A. Fainstein, and A. Lemaître, “Subterahertz monochromatic acoustic wave propagation using semiconductor superlattices as transducers,” Phys. Rev. B 78, 233302 (2008).
[Crossref]

V. A. Stoica, Y.-M. Sheu, D. A. Reis, and R. Clarke, “Wideband detection of transient solid-state dynamics using ultrafast fiber lasers and asynchronous optical sampling,” Opt. Express 16, 2322–2335 (2008).
[Crossref] [PubMed]

2007 (1)

M. Trigo, T. Eckhause, J. Wahlstrand, R. Merlin, M. Reason, and R. Goldman, “Ultrafast optical generation and remote detection of terahertz sound using semiconductor superlattices,” Appl. Phys. Lett. 91, 023115 (2007).
[Crossref]

2003 (1)

N. Stanton, R. Kini, A. Kent, M. Henini, and D. Lehmann, “Terahertz phonon optics in GaAs/AlAs superlattice structures,” Phys. Rev. B 68, 113302 (2003).
[Crossref]

2002 (1)

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref] [PubMed]

1999 (3)

K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, “Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy,” Phys. Rev. B 60, 8262 (1999).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24, 996–998 (1999).
[Crossref]

1995 (1)

S. Savikhin, “Shot-noise-limited detection of absorbance changes induced by subpicojoule laser pulses in optical pump-probe experiments,” Rev. Sci. Instrum. 66, 4470–4474 (1995).
[Crossref]

1994 (1)

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740 (1994).
[Crossref] [PubMed]

1980 (1)

C. Colvard, R. Merlin, M. Klein, and A. Gossard, “Observation of folded acoustic phonons in a semiconductor superlattice,” Phys. Rev. Lett. 45, 298 (1980).
[Crossref]

1972 (1)

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Abbas, A.

Adachi, T.

Antonucci, L.

Audoin, B.

Barretto, E. C. S.

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

Bartels, A.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50 fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref] [PubMed]

A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24, 996–998 (1999).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

Beck, M.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Bonvalet, A.

Bruchhausen, A.

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B 87, 075307 (2013).
[Crossref]

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref] [PubMed]

Bulsara, M.

F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
[Crossref] [PubMed]

Bulsara, M. T.

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
[Crossref]

Charron, E.

E. Péronne, E. Charron, S. Vincent, S. Sauvage, A. Lemaître, B. Perrin, and B. Jusserand, “Two-color femtosecond strobe lighting of coherent acoustic phonons emitted by quantum dots,” Appl. Phys. Lett. 102, 043107 (2013).
[Crossref]

Chen, G.

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
[Crossref]

F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
[Crossref] [PubMed]

Clarke, R.

Colvard, C.

C. Colvard, R. Merlin, M. Klein, and A. Gossard, “Observation of folded acoustic phonons in a semiconductor superlattice,” Phys. Rev. Lett. 45, 298 (1980).
[Crossref]

Dekorsy, T.

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B 87, 075307 (2013).
[Crossref]

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50 fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref] [PubMed]

A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24, 996–998 (1999).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

Dienes, A.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Dilhaire, S.

Eckhause, T.

M. Trigo, T. Eckhause, J. Wahlstrand, R. Merlin, M. Reason, and R. Goldman, “Ultrafast optical generation and remote detection of terahertz sound using semiconductor superlattices,” Appl. Phys. Lett. 91, 023115 (2007).
[Crossref]

Endo, M.

Erbert, G.

Esfarjani, K.

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
[Crossref]

Fainstein, A.

M. P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

A. Huynh, B. Perrin, N. Lanzillotti-Kimura, B. Jusserand, A. Fainstein, and A. Lemaître, “Subterahertz monochromatic acoustic wave propagation using semiconductor superlattices as transducers,” Phys. Rev. B 78, 233302 (2008).
[Crossref]

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref] [PubMed]

Faist, J.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Fiebig, C.

Fischer, M.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Fitzgerald, E. A.

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
[Crossref]

F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
[Crossref] [PubMed]

Flock, J.

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B 87, 075307 (2013).
[Crossref]

Gallo, P.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Gardiner, T.

Garg, J.

F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
[Crossref] [PubMed]

Gebs, R.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50 fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref] [PubMed]

Goldman, R.

M. Trigo, T. Eckhause, J. Wahlstrand, R. Merlin, M. Reason, and R. Goldman, “Ultrafast optical generation and remote detection of terahertz sound using semiconductor superlattices,” Appl. Phys. Lett. 91, 023115 (2007).
[Crossref]

Golling, M.

Gossard, A.

C. Colvard, R. Merlin, M. Klein, and A. Gossard, “Observation of folded acoustic phonons in a semiconductor superlattice,” Phys. Rev. Lett. 45, 298 (1980).
[Crossref]

Grossmann, M.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

Gu, C.

Guillet, Y.

Gusev, V.

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

Hase, M.

K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, “Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy,” Phys. Rev. B 60, 8262 (1999).
[Crossref]

Heinecke, D. C.

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B 87, 075307 (2013).
[Crossref]

Hellerer, T.

Henini, M.

N. Stanton, R. Kini, A. Kent, M. Henini, and D. Lehmann, “Terahertz phonon optics in GaAs/AlAs superlattice structures,” Phys. Rev. B 68, 113302 (2003).
[Crossref]

Hettich, M.

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Hochrein, T.

Hofmann, F.

F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
[Crossref] [PubMed]

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
[Crossref]

Holzwarth, R.

Huynh, A.

A. Huynh, B. Perrin, N. Lanzillotti-Kimura, B. Jusserand, A. Fainstein, and A. Lemaître, “Subterahertz monochromatic acoustic wave propagation using semiconductor superlattices as transducers,” Phys. Rev. B 78, 233302 (2008).
[Crossref]

Ippen, E.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Jandl, A.

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
[Crossref]

F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
[Crossref] [PubMed]

Janke, C.

Joffre, M.

Jusserand, B.

E. Péronne, E. Charron, S. Vincent, S. Sauvage, A. Lemaître, B. Perrin, and B. Jusserand, “Two-color femtosecond strobe lighting of coherent acoustic phonons emitted by quantum dots,” Appl. Phys. Lett. 102, 043107 (2013).
[Crossref]

M. P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

A. Huynh, B. Perrin, N. Lanzillotti-Kimura, B. Jusserand, A. Fainstein, and A. Lemaître, “Subterahertz monochromatic acoustic wave propagation using semiconductor superlattices as transducers,” Phys. Rev. B 78, 233302 (2008).
[Crossref]

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref] [PubMed]

Kapon, E.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Kasamatsu, T.

Katou, M.

Keller, U.

Kent, A.

N. Stanton, R. Kini, A. Kent, M. Henini, and D. Lehmann, “Terahertz phonon optics in GaAs/AlAs superlattice structures,” Phys. Rev. B 68, 113302 (2003).
[Crossref]

Kini, R.

N. Stanton, R. Kini, A. Kent, M. Henini, and D. Lehmann, “Terahertz phonon optics in GaAs/AlAs superlattice structures,” Phys. Rev. B 68, 113302 (2003).
[Crossref]

Klatt, G.

Klein, M.

C. Colvard, R. Merlin, M. Klein, and A. Gossard, “Observation of folded acoustic phonons in a semiconductor superlattice,” Phys. Rev. Lett. 45, 298 (1980).
[Crossref]

Klenner, A.

Kliebisch, O.

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B 87, 075307 (2013).
[Crossref]

Kobayashi, Y.

Koch, M.

Kogelnik, H.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Köhler, K.

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B 87, 075307 (2013).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

Kray, S.

Krumbholz, N.

Kurz, H.

Lanzillotti-Kimura, N.

A. Huynh, B. Perrin, N. Lanzillotti-Kimura, B. Jusserand, A. Fainstein, and A. Lemaître, “Subterahertz monochromatic acoustic wave propagation using semiconductor superlattices as transducers,” Phys. Rev. B 78, 233302 (2008).
[Crossref]

Leburn, C. G.

Lehmann, D.

N. Stanton, R. Kini, A. Kent, M. Henini, and D. Lehmann, “Terahertz phonon optics in GaAs/AlAs superlattice structures,” Phys. Rev. B 68, 113302 (2003).
[Crossref]

Lemaître, A.

E. Péronne, E. Charron, S. Vincent, S. Sauvage, A. Lemaître, B. Perrin, and B. Jusserand, “Two-color femtosecond strobe lighting of coherent acoustic phonons emitted by quantum dots,” Appl. Phys. Lett. 102, 043107 (2013).
[Crossref]

M. P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

A. Huynh, B. Perrin, N. Lanzillotti-Kimura, B. Jusserand, A. Fainstein, and A. Lemaître, “Subterahertz monochromatic acoustic wave propagation using semiconductor superlattices as transducers,” Phys. Rev. B 78, 233302 (2008).
[Crossref]

Lloyd-Hughes, J.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Masumoto, Y.

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740 (1994).
[Crossref] [PubMed]

Maznev, A. A.

F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
[Crossref] [PubMed]

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
[Crossref]

Mei, M.

Merlin, R.

M. Trigo, T. Eckhause, J. Wahlstrand, R. Merlin, M. Reason, and R. Goldman, “Ultrafast optical generation and remote detection of terahertz sound using semiconductor superlattices,” Appl. Phys. Lett. 91, 023115 (2007).
[Crossref]

C. Colvard, R. Merlin, M. Klein, and A. Gossard, “Observation of folded acoustic phonons in a semiconductor superlattice,” Phys. Rev. Lett. 45, 298 (1980).
[Crossref]

Mishina, T.

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740 (1994).
[Crossref] [PubMed]

Mizoguchi, K.

K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, “Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy,” Phys. Rev. B 60, 8262 (1999).
[Crossref]

Mottay, E.

Nakashima, S.

K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, “Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy,” Phys. Rev. B 60, 8262 (1999).
[Crossref]

Nakayama, M.

K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, “Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy,” Phys. Rev. B 60, 8262 (1999).
[Crossref]

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740 (1994).
[Crossref] [PubMed]

Nelson, K. A.

F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
[Crossref] [PubMed]

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
[Crossref]

Ozawa, A.

Paschke, K.

Pekarek, S.

Péronne, E.

E. Péronne, E. Charron, S. Vincent, S. Sauvage, A. Lemaître, B. Perrin, and B. Jusserand, “Two-color femtosecond strobe lighting of coherent acoustic phonons emitted by quantum dots,” Appl. Phys. Lett. 102, 043107 (2013).
[Crossref]

Perrin, B.

E. Péronne, E. Charron, S. Vincent, S. Sauvage, A. Lemaître, B. Perrin, and B. Jusserand, “Two-color femtosecond strobe lighting of coherent acoustic phonons emitted by quantum dots,” Appl. Phys. Lett. 102, 043107 (2013).
[Crossref]

M. P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

A. Huynh, B. Perrin, N. Lanzillotti-Kimura, B. Jusserand, A. Fainstein, and A. Lemaître, “Subterahertz monochromatic acoustic wave propagation using semiconductor superlattices as transducers,” Phys. Rev. B 78, 233302 (2008).
[Crossref]

Prasankumar, R. P.

R. P. Prasankumar and A. J. Taylor, Optical Techniques for Solid-State Materials Characterization (CRC Press, 2011).

Radzewicz, C.

Rampnoux, J.-M.

Reason, M.

M. Trigo, T. Eckhause, J. Wahlstrand, R. Merlin, M. Reason, and R. Goldman, “Ultrafast optical generation and remote detection of terahertz sound using semiconductor superlattices,” Appl. Phys. Lett. 91, 023115 (2007).
[Crossref]

Reid, D.

Reid, D. T.

Reis, D. A.

Rigail, P.

Ristow, O.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

Rudra, A.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Sauvage, S.

E. Péronne, E. Charron, S. Vincent, S. Sauvage, A. Lemaître, B. Perrin, and B. Jusserand, “Two-color femtosecond strobe lighting of coherent acoustic phonons emitted by quantum dots,” Appl. Phys. Lett. 102, 043107 (2013).
[Crossref]

Savikhin, S.

S. Savikhin, “Shot-noise-limited detection of absorbance changes induced by subpicojoule laser pulses in optical pump-probe experiments,” Rev. Sci. Instrum. 66, 4470–4474 (1995).
[Crossref]

Scalari, G.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

Scheer, E.

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

Schratwieser, T. C.

Schubert, M.

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

Shah, J.

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer Science & Business Media, 1999)
[Crossref]

Shank, C.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Sheu, Y.-M.

Solinas, X.

Spöler, F.

Stanton, N.

N. Stanton, R. Kini, A. Kent, M. Henini, and D. Lehmann, “Terahertz phonon optics in GaAs/AlAs superlattice structures,” Phys. Rev. B 68, 113302 (2003).
[Crossref]

Stoica, V. A.

Südmeyer, T.

Sun, J.

Taylor, A. J.

R. P. Prasankumar and A. J. Taylor, Optical Techniques for Solid-State Materials Characterization (CRC Press, 2011).

Thierry-Mieg, V.

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref] [PubMed]

Trigo, M.

M. Trigo, T. Eckhause, J. Wahlstrand, R. Merlin, M. Reason, and R. Goldman, “Ultrafast optical generation and remote detection of terahertz sound using semiconductor superlattices,” Appl. Phys. Lett. 91, 023115 (2007).
[Crossref]

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref] [PubMed]

Vincent, S.

E. Péronne, E. Charron, S. Vincent, S. Sauvage, A. Lemaître, B. Perrin, and B. Jusserand, “Two-color femtosecond strobe lighting of coherent acoustic phonons emitted by quantum dots,” Appl. Phys. Lett. 102, 043107 (2013).
[Crossref]

Wahlstrand, J.

M. Trigo, T. Eckhause, J. Wahlstrand, R. Merlin, M. Reason, and R. Goldman, “Ultrafast optical generation and remote detection of terahertz sound using semiconductor superlattices,” Appl. Phys. Lett. 91, 023115 (2007).
[Crossref]

Wang, C.

Wasylczyk, P.

Wilk, R.

Winter, M. P.

M. P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

Wnuk, P.

Yamamoto, A.

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740 (1994).
[Crossref] [PubMed]

Yamazoe, S.

Zhang, Z.

Appl. Phys. Lett. (5)

E. Péronne, E. Charron, S. Vincent, S. Sauvage, A. Lemaître, B. Perrin, and B. Jusserand, “Two-color femtosecond strobe lighting of coherent acoustic phonons emitted by quantum dots,” Appl. Phys. Lett. 102, 043107 (2013).
[Crossref]

M. Schubert, M. Grossmann, O. Ristow, M. Hettich, A. Bruchhausen, E. C. S. Barretto, E. Scheer, V. Gusev, and T. Dekorsy, “Spatial-temporally resolved high-frequency surface acoustic waves on silicon investigated by femtosecond spectroscopy,” Appl. Phys. Lett. 101, 013108 (2012).
[Crossref]

M. Trigo, T. Eckhause, J. Wahlstrand, R. Merlin, M. Reason, and R. Goldman, “Ultrafast optical generation and remote detection of terahertz sound using semiconductor superlattices,” Appl. Phys. Lett. 91, 023115 (2007).
[Crossref]

M. P. Winter, A. Fainstein, B. Jusserand, B. Perrin, and A. Lemaître, “Optimized optical generation and detection of superlattice acoustic phonons,” Appl. Phys. Lett. 94, 103103 (2009).
[Crossref]

A. A. Maznev, F. Hofmann, A. Jandl, K. Esfarjani, M. T. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Lifetime of sub-THz coherent acoustic phonons in a GaAs-AlAs superlattice,” Appl. Phys. Lett. 102, 041901 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

J. Appl. Phys. (1)

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112, 033517 (2012).
[Crossref]

J. Phys. Condens. Matter (1)

F. Hofmann, J. Garg, A. A. Maznev, A. Jandl, M. Bulsara, E. A. Fitzgerald, G. Chen, and K. A. Nelson, “Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice,” J. Phys. Condens. Matter 25, 295401 (2013).
[Crossref] [PubMed]

Opt. Express (11)

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50 fs time resolution,” Opt. Express 18, 5974–5983 (2010).
[Crossref] [PubMed]

S. Kray, F. Spöler, T. Hellerer, and H. Kurz, “Electronically controlled coherent linear optical sampling for optical coherence tomography,” Opt. Express 18, 9976–9990 (2010).
[Crossref] [PubMed]

V. A. Stoica, Y.-M. Sheu, D. A. Reis, and R. Clarke, “Wideband detection of transient solid-state dynamics using ultrafast fiber lasers and asynchronous optical sampling,” Opt. Express 16, 2322–2335 (2008).
[Crossref] [PubMed]

P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17, 5630–5635 (2009).
[Crossref] [PubMed]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18, 1613–1617 (2010).
[Crossref] [PubMed]

M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express 20, 12191–12197 (2012).
[Crossref] [PubMed]

L. Antonucci, X. Solinas, A. Bonvalet, and M. Joffre, “Asynchronous optical sampling with arbitrary detuning between laser repetition rates,” Opt. Express 20, 17928–17937 (2012).
[Crossref] [PubMed]

A. Klenner, M. Golling, and U. Keller, “A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal,” Opt. Express 21, 10351–10357 (2013).
[Crossref] [PubMed]

A. Abbas, Y. Guillet, J.-M. Rampnoux, P. Rigail, E. Mottay, B. Audoin, and S. Dilhaire, “Picosecond time resolved opto-acoustic imaging with 48 MHz frequency resolution,” Opt. Express 22, 7831–7843 (2014).
[Crossref] [PubMed]

A. Klenner, M. Golling, and U. Keller, “High peak power gigahertz Yb:CALGO laser,” Opt. Express 22, 11884–11891 (2014).
[Crossref] [PubMed]

S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20, 4248–4253 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. B (4)

A. Huynh, B. Perrin, N. Lanzillotti-Kimura, B. Jusserand, A. Fainstein, and A. Lemaître, “Subterahertz monochromatic acoustic wave propagation using semiconductor superlattices as transducers,” Phys. Rev. B 78, 233302 (2008).
[Crossref]

K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, “Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy,” Phys. Rev. B 60, 8262 (1999).
[Crossref]

N. Stanton, R. Kini, A. Kent, M. Henini, and D. Lehmann, “Terahertz phonon optics in GaAs/AlAs superlattice structures,” Phys. Rev. B 68, 113302 (2003).
[Crossref]

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B 87, 075307 (2013).
[Crossref]

Phys. Rev. Lett. (4)

M. Trigo, A. Bruchhausen, A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Confinement of acoustical vibrations in a semiconductor planar phonon cavity,” Phys. Rev. Lett. 89, 227402 (2002).
[Crossref] [PubMed]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semi-conductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044 (1999).
[Crossref]

A. Yamamoto, T. Mishina, Y. Masumoto, and M. Nakayama, “Coherent oscillation of zone-folded phonon modes in GaAs-AlAs superlattices,” Phys. Rev. Lett. 73, 740 (1994).
[Crossref] [PubMed]

C. Colvard, R. Merlin, M. Klein, and A. Gossard, “Observation of folded acoustic phonons in a semiconductor superlattice,” Phys. Rev. Lett. 45, 298 (1980).
[Crossref]

Rev. Sci. Instrum. (1)

S. Savikhin, “Shot-noise-limited detection of absorbance changes induced by subpicojoule laser pulses in optical pump-probe experiments,” Rev. Sci. Instrum. 66, 4470–4474 (1995).
[Crossref]

Other (2)

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer Science & Business Media, 1999)
[Crossref]

R. P. Prasankumar and A. J. Taylor, Optical Techniques for Solid-State Materials Characterization (CRC Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the Yb:KYW laser. M1–M2: curved mirrors with a ROC of 30 mm, M2–M3: GTI mirrors with −1200 fs2 GDD each, OC: 0.5 % output coupler, X: 1 mm Yb:KYW crystal. (b) Schematic of the Ti:sapphire laser. M1–M2: curved mirrors with a ROC of 30 mm, M1–M5: chirped mirrors with a GDD of about −40 fs2 each, OC: 1 % output coupler, X: 2 mm Ti:sapphire crystal
Fig. 2
Fig. 2 Characterization results of the Yb:KYW laser. (a) RF spectrum, inset: zoom into the fundamental repetition rate f0 = 0.996 GHz (b) laser output power versus pump power (c) optical spectrum and sech2 fit (d) interferometric auto-correlation, yielding a pulse duration of about 180 fs.
Fig. 3
Fig. 3 (a) Schematic layout of the two-colour ASOPS setup. Solid lines represent laser beams, dashed lines represent electric connections. P1–P2: photodiodes (bandwidth > 10 GHz), P3–P4: photodiodes (bandwidth from 25 kHz to 130 MHz), ZnTe: zinc telluride crystal, PBS: polarizing beam splitter, DF1–DF2: dielectric filters, ADC: 100 MHz analog-to-digital converter. (b) Two photon absorption cross-correlation measurement results in GaP. The left and right inset display different zooms into the first signal feature to demonstrate the width and the slowly oscillating tail of the TPA signal, respectively.
Fig. 4
Fig. 4 Noise characterization using the Ti:sapphire (black) and the Yb:KYW oscillator (red). Blue straight lines correspond to the calculated shot-noise limit of the photoreceivers used for the ASOPS measurements with a bandwidth from 25 kHz to 130 MHz (AC-Det). (a) noise power spectral density, measured with a DC-coupled photodiode (DC-Det). The blue dashed line corresponds to the noise level of the DC-coupled photodiode. (b) Averaged ASOPS time traces at zero pump power at a data aquisition time of about 1 s and 1000 s. (c) corresponding power spectral density of the data in (b). (d) noise floor for different data aquisition times.
Fig. 5
Fig. 5 (a) Measured acoustic phonons in the GaAs/AlAs superlattice after substraction of the background. (b) upper part: calculated dispersion relation. Straight horizontal lines represent the double wavevector of the probe laser. Straight vertical lines indicate the expected backscattered acoustic phonon frequencies. lower part: FFT spectrum of the data in (a) and result of a measurement in reflection at a probe wavelength of 800 nm. (c) zoom into the first 200 ps of the data in (a) and exponentially damped sinusoidal fit.
Fig. 6
Fig. 6 (a) Measured acoustic phonons in the GaAs/Al0.3Ga0.7As superlattice after substraction of the background. (b) calculated Rytov dispersion of the superlattice and phonon spectrum (c) data from (a) and fit curve, based on a superposition of two exponentially decaying sinusoidals.

Metrics