Abstract

Y3Al5O12:Ce and (Gd,Y)3Al5O12:Ce ceramic phosphors were fabricated by solid-state reaction method under vacuum sintering. Pure garnet phase of these (Gd,Y)AG:Ce ceramics was confirmed by X-ray diffraction (XRD) with Gd content of 0, 25%, 50% and 75%, respectively. The electroluminescent properties of the unpacked and packed LED devices based on YAG:Ce and (Gd,Y)AG:Ce ceramics were measured. The highest luminous efficacy of 130.5 lm/W was achieved by YAG:Ce ceramic phosphor with thickness of 0.4 mm. However, the correlated color temperature (CCT) of the LED device based on it was high due to a lack of red component in the emission light. Therefore, Y3Al5O12:Ce/(Gdx,Y1-x)3Al5O12:Ce dual-layered composite structure ceramics phosphor were designed and fabricated according to the color space chromaticity diagram. In one demonstration, various CCT could be tuned from 3100 K to 3600 K by these dual-layered structure, while the luminous efficacy can reach 109.9 lm/W. The high luminous efficacy and safe warm white light emitted by these dual-layered phosphors made them promising candidate for white LED devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Composite phase ceramic phosphor of Al2O3-Ce:YAG for high efficiency light emitting

Yanru Tang, Shengming Zhou, Chong Chen, Xuezhuan Yi, Yue Feng, Hui Lin, and Shuai Zhang
Opt. Express 23(14) 17923-17928 (2015)

Optical enhancement brought by doping Gd3+ ions into Ce: YAG ceramics for indoor white light-emitting diodes

Jian Chen, Zhonghua Deng, Zhuguang Liu, Yue Lin, Hai Lan, Dongchuan Chen, Binjie Fei, Chong Wang, Fangyu Wang, Qianqian Hu, and Yongge Cao
Opt. Express 23(7) A292-A298 (2015)

Fabrication of (Tb,Gd)3Al5O12:Ce3+ phosphor ceramics for warm white light-emitting diodes application

Jie Chen, Yanru Tang, Xuezhuan Yi, Yanna Tian, Gang Ao, Deming Hao, Yandan Lin, and Shengming Zhou
Opt. Mater. Express 9(8) 3333-3341 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).
  2. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
    [Crossref]
  3. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
    [Crossref]
  4. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(2), L1332–L1335 (1995).
    [Crossref]
  5. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
    [Crossref]
  6. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
    [Crossref]
  7. V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
    [Crossref]
  8. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
    [Crossref]
  9. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top Quant. 8(2), 339–345 (2002).
    [Crossref]
  10. S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, and M. Nakatsuka, “Preparation and optical properties of transparent Ce:YAG ceramics for high power white LED,” IOP Conf. Ser.: Mater. Sci. Eng. 1(1), 012031 (2009).
    [Crossref]
  11. H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes,” Opt. Express 20(9), 10218–10228 (2012).
    [Crossref] [PubMed]
  12. N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
    [Crossref]
  13. K. Waetzig, M. Kunzer, and I. Kinski, “Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG:Ce ceramic phosphors for white LEDs,” J. Mater. Res. 29(19), 2318–2324 (2014).
    [Crossref]
  14. N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, and M. Yamada, “Solid-state lighting research and development multi-year program plan,” U. S. Department of Energy (2014).
  15. S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Preparation of Ce3+:GdYAG ceramic phosphors for white LED,” IOP Conf. Ser.: Mater. Sci. Eng. 18(7), 102005(2011).
  16. X. Yi, S. Zhou, C. Chen, H. Lin, Y. Feng, K. Wang, and Y. Ni, “Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs,” Ceram. Int. 40(5), 7043–7047 (2014).
    [Crossref]
  17. U. Jumpei, K. Keisuke, and T. Setsuhisa, “Yellow persistent luminescence in Ce3+–Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
    [Crossref]
  18. J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
    [Crossref]
  19. H. Shi, C. Zhu, J. Huang, J. Chen, D. Chen, W. Wang, F. Wang, Y. Cao, and X. Yuan, “Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances,” Opt. Mater. Express 4(4), 649–655 (2014).
    [Crossref]
  20. S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top Quant. 14(5), 1387–1391 (2008).
    [Crossref]
  21. Y. S. Lin, R. S. Liu, and B.-M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG:Ce, Gd phosphors,” J. Electrochem. Soc. 152(6), J41–J45 (2005).
    [Crossref]
  22. H. Bechtel, P. Schmidt, W. Busselt, and B. S. Schreinemacher, “Lumiramic: a new phosphor technology for high performance solid state light sources,” Proc. SPIE 7058, 70580E (2008).
  23. J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1–2), 55–69 (1993).
    [Crossref]
  24. K. Hideo and M. Akimitsu, “Lattice parameter dependence of refractive index and dielectric constant of Czochralski grown rare-earth garnet single crystals in solid solution,” Jpn. J. Appl. Phys. 41(1), 5334–5335 (2002).
    [Crossref]
  25. X. Li, J.-G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ substitution on the fabrication of transparent (Y1−xGdx)3Al5O12 ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
    [Crossref]
  26. B. Georges, E. Thierry, Z. Wei, I. C. Valery, Y. Takayuki, and Y. Akira, “Absence of host cation segregation in the (Gd,Y)3Al5O12 mixed garnet optical ceramics,” Jpn. J. Appl. Phys. 50(9R), 090207 (2011).
  27. D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm,” Appl. Opt. 37(21), 4933–4935 (1998).
    [Crossref] [PubMed]
  28. S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(1374), 128–131 (2010).
    [Crossref]
  29. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
    [Crossref]
  30. L. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil, Mag. Series 5 47(287), 375–384 (1899).
    [Crossref]
  31. J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
    [Crossref]
  32. Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
    [Crossref]
  33. T. Epicier, G. Boulon, W. Zhao, M. Guzik, B. Jiang, A. Ikesue, and L. Esposito, “Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM,” J. Mater. Chem. 22(35), 18221–18229 (2012).
    [Crossref]
  34. T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932).
    [Crossref]
  35. J. H. Oh, J. R. Oh, H. K. Park, Y.-G. Sung, and Y. R. Do, “Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs,” Opt. Express 20(S1), A1–A12 (2012).
    [Crossref] [PubMed]
  36. L. Ge, J. Li, Z. Zhou, H. Qu, M. Dong, Y. Zhu, T. Xie, W. Li, M. Chen, H. Kou, Y. Shi, Y. Pan, X. Feng, and J. Guo, “Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser,” Opt. Mater. Express 4(5), 1042–1049 (2014).
    [Crossref]

2015 (1)

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

2014 (5)

H. Shi, C. Zhu, J. Huang, J. Chen, D. Chen, W. Wang, F. Wang, Y. Cao, and X. Yuan, “Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances,” Opt. Mater. Express 4(4), 649–655 (2014).
[Crossref]

K. Waetzig, M. Kunzer, and I. Kinski, “Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG:Ce ceramic phosphors for white LEDs,” J. Mater. Res. 29(19), 2318–2324 (2014).
[Crossref]

X. Yi, S. Zhou, C. Chen, H. Lin, Y. Feng, K. Wang, and Y. Ni, “Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs,” Ceram. Int. 40(5), 7043–7047 (2014).
[Crossref]

U. Jumpei, K. Keisuke, and T. Setsuhisa, “Yellow persistent luminescence in Ce3+–Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
[Crossref]

L. Ge, J. Li, Z. Zhou, H. Qu, M. Dong, Y. Zhu, T. Xie, W. Li, M. Chen, H. Kou, Y. Shi, Y. Pan, X. Feng, and J. Guo, “Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser,” Opt. Mater. Express 4(5), 1042–1049 (2014).
[Crossref]

2012 (4)

J. H. Oh, J. R. Oh, H. K. Park, Y.-G. Sung, and Y. R. Do, “Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs,” Opt. Express 20(S1), A1–A12 (2012).
[Crossref] [PubMed]

T. Epicier, G. Boulon, W. Zhao, M. Guzik, B. Jiang, A. Ikesue, and L. Esposito, “Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM,” J. Mater. Chem. 22(35), 18221–18229 (2012).
[Crossref]

H. K. Park, J. H. Oh, and Y. R. Do, “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes,” Opt. Express 20(9), 10218–10228 (2012).
[Crossref] [PubMed]

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

2011 (2)

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

B. Georges, E. Thierry, Z. Wei, I. C. Valery, Y. Takayuki, and Y. Akira, “Absence of host cation segregation in the (Gd,Y)3Al5O12 mixed garnet optical ceramics,” Jpn. J. Appl. Phys. 50(9R), 090207 (2011).

2010 (2)

S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(1374), 128–131 (2010).
[Crossref]

X. Li, J.-G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ substitution on the fabrication of transparent (Y1−xGdx)3Al5O12 ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

2009 (1)

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[Crossref]

2008 (3)

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top Quant. 14(5), 1387–1391 (2008).
[Crossref]

H. Bechtel, P. Schmidt, W. Busselt, and B. S. Schreinemacher, “Lumiramic: a new phosphor technology for high performance solid state light sources,” Proc. SPIE 7058, 70580E (2008).

J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

2007 (2)

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

2005 (1)

Y. S. Lin, R. S. Liu, and B.-M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG:Ce, Gd phosphors,” J. Electrochem. Soc. 152(6), J41–J45 (2005).
[Crossref]

2002 (2)

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top Quant. 8(2), 339–345 (2002).
[Crossref]

K. Hideo and M. Akimitsu, “Lattice parameter dependence of refractive index and dielectric constant of Czochralski grown rare-earth garnet single crystals in solid solution,” Jpn. J. Appl. Phys. 41(1), 5334–5335 (2002).
[Crossref]

1998 (1)

1997 (1)

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

1995 (2)

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[Crossref]

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(2), L1332–L1335 (1995).
[Crossref]

1994 (1)

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

1993 (1)

J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1–2), 55–69 (1993).
[Crossref]

1932 (1)

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

1899 (1)

L. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil, Mag. Series 5 47(287), 375–384 (1899).
[Crossref]

Akimitsu, M.

K. Hideo and M. Akimitsu, “Lattice parameter dependence of refractive index and dielectric constant of Czochralski grown rare-earth garnet single crystals in solid solution,” Jpn. J. Appl. Phys. 41(1), 5334–5335 (2002).
[Crossref]

Akira, Y.

B. Georges, E. Thierry, Z. Wei, I. C. Valery, Y. Takayuki, and Y. Akira, “Absence of host cation segregation in the (Gd,Y)3Al5O12 mixed garnet optical ceramics,” Jpn. J. Appl. Phys. 50(9R), 090207 (2011).

Bachmann, V.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[Crossref]

Bardsley, N.

N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, and M. Yamada, “Solid-state lighting research and development multi-year program plan,” U. S. Department of Energy (2014).

Bechtel, H.

H. Bechtel, P. Schmidt, W. Busselt, and B. S. Schreinemacher, “Lumiramic: a new phosphor technology for high performance solid state light sources,” Proc. SPIE 7058, 70580E (2008).

Bland, S.

N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, and M. Yamada, “Solid-state lighting research and development multi-year program plan,” U. S. Department of Energy (2014).

Boulon, G.

T. Epicier, G. Boulon, W. Zhao, M. Guzik, B. Jiang, A. Ikesue, and L. Esposito, “Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM,” J. Mater. Chem. 22(35), 18221–18229 (2012).
[Crossref]

Busselt, W.

H. Bechtel, P. Schmidt, W. Busselt, and B. S. Schreinemacher, “Lumiramic: a new phosphor technology for high performance solid state light sources,” Proc. SPIE 7058, 70580E (2008).

Cao, Y.

Chen, C.

X. Yi, S. Zhou, C. Chen, H. Lin, Y. Feng, K. Wang, and Y. Ni, “Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs,” Ceram. Int. 40(5), 7043–7047 (2014).
[Crossref]

Chen, D.

Chen, J.

Chen, M.

Cheng, B.-M.

Y. S. Lin, R. S. Liu, and B.-M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG:Ce, Gd phosphors,” J. Electrochem. Soc. 152(6), J41–J45 (2005).
[Crossref]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Do, Y. R.

Dong, M.

Epicier, T.

T. Epicier, G. Boulon, W. Zhao, M. Guzik, B. Jiang, A. Ikesue, and L. Esposito, “Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM,” J. Mater. Chem. 22(35), 18221–18229 (2012).
[Crossref]

Esposito, L.

T. Epicier, G. Boulon, W. Zhao, M. Guzik, B. Jiang, A. Ikesue, and L. Esposito, “Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM,” J. Mater. Chem. 22(35), 18221–18229 (2012).
[Crossref]

Feng, X.

Feng, Y.

X. Yi, S. Zhou, C. Chen, H. Lin, Y. Feng, K. Wang, and Y. Ni, “Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs,” Ceram. Int. 40(5), 7043–7047 (2014).
[Crossref]

Fujita, S.

S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(1374), 128–131 (2010).
[Crossref]

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top Quant. 14(5), 1387–1391 (2008).
[Crossref]

Ge, L.

Georges, B.

B. Georges, E. Thierry, Z. Wei, I. C. Valery, Y. Takayuki, and Y. Akira, “Absence of host cation segregation in the (Gd,Y)3Al5O12 mixed garnet optical ceramics,” Jpn. J. Appl. Phys. 50(9R), 090207 (2011).

Guild, J.

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932).
[Crossref]

Guo, J.

L. Ge, J. Li, Z. Zhou, H. Qu, M. Dong, Y. Zhu, T. Xie, W. Li, M. Chen, H. Kou, Y. Shi, Y. Pan, X. Feng, and J. Guo, “Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser,” Opt. Mater. Express 4(5), 1042–1049 (2014).
[Crossref]

J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Guzik, M.

T. Epicier, G. Boulon, W. Zhao, M. Guzik, B. Jiang, A. Ikesue, and L. Esposito, “Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM,” J. Mater. Chem. 22(35), 18221–18229 (2012).
[Crossref]

Harbers, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Hideo, K.

K. Hideo and M. Akimitsu, “Lattice parameter dependence of refractive index and dielectric constant of Czochralski grown rare-earth garnet single crystals in solid solution,” Jpn. J. Appl. Phys. 41(1), 5334–5335 (2002).
[Crossref]

Huang, J.

Huang, L.

J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Huo, D.

X. Li, J.-G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ substitution on the fabrication of transparent (Y1−xGdx)3Al5O12 ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Ikesue, A.

T. Epicier, G. Boulon, W. Zhao, M. Guzik, B. Jiang, A. Ikesue, and L. Esposito, “Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM,” J. Mater. Chem. 22(35), 18221–18229 (2012).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[Crossref]

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(2), L1332–L1335 (1995).
[Crossref]

Jiang, B.

T. Epicier, G. Boulon, W. Zhao, M. Guzik, B. Jiang, A. Ikesue, and L. Esposito, “Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM,” J. Mater. Chem. 22(35), 18221–18229 (2012).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Jumpei, U.

U. Jumpei, K. Keisuke, and T. Setsuhisa, “Yellow persistent luminescence in Ce3+–Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
[Crossref]

Keisuke, K.

U. Jumpei, K. Keisuke, and T. Setsuhisa, “Yellow persistent luminescence in Ce3+–Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
[Crossref]

Kinski, I.

K. Waetzig, M. Kunzer, and I. Kinski, “Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG:Ce ceramic phosphors for white LEDs,” J. Mater. Res. 29(19), 2318–2324 (2014).
[Crossref]

Kou, H.

Krames, M. R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top Quant. 8(2), 339–345 (2002).
[Crossref]

Kunzer, M.

K. Waetzig, M. Kunzer, and I. Kinski, “Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG:Ce ceramic phosphors for white LEDs,” J. Mater. Res. 29(19), 2318–2324 (2014).
[Crossref]

Kuroishi, K.

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

Li, F.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Li, J.

L. Ge, J. Li, Z. Zhou, H. Qu, M. Dong, Y. Zhu, T. Xie, W. Li, M. Chen, H. Kou, Y. Shi, Y. Pan, X. Feng, and J. Guo, “Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser,” Opt. Mater. Express 4(5), 1042–1049 (2014).
[Crossref]

J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Li, J.-G.

X. Li, J.-G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ substitution on the fabrication of transparent (Y1−xGdx)3Al5O12 ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Li, W.

Li, X.

X. Li, J.-G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ substitution on the fabrication of transparent (Y1−xGdx)3Al5O12 ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Lin, H.

X. Yi, S. Zhou, C. Chen, H. Lin, Y. Feng, K. Wang, and Y. Ni, “Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs,” Ceram. Int. 40(5), 7043–7047 (2014).
[Crossref]

Lin, Y. S.

Y. S. Lin, R. S. Liu, and B.-M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG:Ce, Gd phosphors,” J. Electrochem. Soc. 152(6), J41–J45 (2005).
[Crossref]

Ling, Z.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Liu, R. S.

Y. S. Lin, R. S. Liu, and B.-M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG:Ce, Gd phosphors,” J. Electrochem. Soc. 152(6), J41–J45 (2005).
[Crossref]

Liu, W.

J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Lu, T.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Lu, Z.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Ma, B.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Meijerink, A.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top Quant. 8(2), 339–345 (2002).
[Crossref]

Mueller-Mach, R.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top Quant. 8(2), 339–345 (2002).
[Crossref]

Mukai, T.

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(2), L1332–L1335 (1995).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

Nagahama, S.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[Crossref]

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(2), L1332–L1335 (1995).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(2), L1332–L1335 (1995).
[Crossref]

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

Ni, Y.

X. Yi, S. Zhou, C. Chen, H. Lin, Y. Feng, K. Wang, and Y. Ni, “Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs,” Ceram. Int. 40(5), 7043–7047 (2014).
[Crossref]

Oh, J. H.

Oh, J. R.

Page, R.

Pan, Y.

L. Ge, J. Li, Z. Zhou, H. Qu, M. Dong, Y. Zhu, T. Xie, W. Li, M. Chen, H. Kou, Y. Shi, Y. Pan, X. Feng, and J. Guo, “Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser,” Opt. Mater. Express 4(5), 1042–1049 (2014).
[Crossref]

J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Park, H. K.

Parmentier, A. B.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Pattison, L.

N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, and M. Yamada, “Solid-state lighting research and development multi-year program plan,” U. S. Department of Energy (2014).

Pattison, M.

N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, and M. Yamada, “Solid-state lighting research and development multi-year program plan,” U. S. Department of Energy (2014).

Poelman, D.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Qi, J.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Qu, H.

Rayleigh, L.

L. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil, Mag. Series 5 47(287), 375–384 (1899).
[Crossref]

Rodríguez-Carvajal, J.

J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1–2), 55–69 (1993).
[Crossref]

Ronda, C.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[Crossref]

Sakamoto, A.

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top Quant. 14(5), 1387–1391 (2008).
[Crossref]

Schlotter, P.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Schmidt, P.

H. Bechtel, P. Schmidt, W. Busselt, and B. S. Schreinemacher, “Lumiramic: a new phosphor technology for high performance solid state light sources,” Proc. SPIE 7058, 70580E (2008).

Schmidt, R.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Schneider, J.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Schreinemacher, B. S.

H. Bechtel, P. Schmidt, W. Busselt, and B. S. Schreinemacher, “Lumiramic: a new phosphor technology for high performance solid state light sources,” Proc. SPIE 7058, 70580E (2008).

Senoh, M.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[Crossref]

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(2), L1332–L1335 (1995).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

Setsuhisa, T.

U. Jumpei, K. Keisuke, and T. Setsuhisa, “Yellow persistent luminescence in Ce3+–Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
[Crossref]

Shchekin, O. B.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Shi, H.

Shi, Y.

Small, D. L.

Smet, P. F.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Smith, T.

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932).
[Crossref]

Stober, K.

N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, and M. Yamada, “Solid-state lighting research and development multi-year program plan,” U. S. Department of Energy (2014).

Sun, X.

X. Li, J.-G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ substitution on the fabrication of transparent (Y1−xGdx)3Al5O12 ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Sung, Y.-G.

Takayuki, Y.

B. Georges, E. Thierry, Z. Wei, I. C. Valery, Y. Takayuki, and Y. Akira, “Absence of host cation segregation in the (Gd,Y)3Al5O12 mixed garnet optical ceramics,” Jpn. J. Appl. Phys. 50(9R), 090207 (2011).

Tanabe, S.

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(1374), 128–131 (2010).
[Crossref]

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top Quant. 14(5), 1387–1391 (2008).
[Crossref]

Thierry, E.

B. Georges, E. Thierry, Z. Wei, I. C. Valery, Y. Takayuki, and Y. Akira, “Absence of host cation segregation in the (Gd,Y)3Al5O12 mixed garnet optical ceramics,” Jpn. J. Appl. Phys. 50(9R), 090207 (2011).

Trottier, T.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top Quant. 8(2), 339–345 (2002).
[Crossref]

Ueda, J.

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

Umayahara, Y.

S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(1374), 128–131 (2010).
[Crossref]

Valery, I. C.

B. Georges, E. Thierry, Z. Wei, I. C. Valery, Y. Takayuki, and Y. Akira, “Absence of host cation segregation in the (Gd,Y)3Al5O12 mixed garnet optical ceramics,” Jpn. J. Appl. Phys. 50(9R), 090207 (2011).

Waetzig, K.

K. Waetzig, M. Kunzer, and I. Kinski, “Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG:Ce ceramic phosphors for white LEDs,” J. Mater. Res. 29(19), 2318–2324 (2014).
[Crossref]

Wang, F.

Wang, K.

X. Yi, S. Zhou, C. Chen, H. Lin, Y. Feng, K. Wang, and Y. Ni, “Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs,” Ceram. Int. 40(5), 7043–7047 (2014).
[Crossref]

Wang, W.

Wei, N.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Wei, Z.

B. Georges, E. Thierry, Z. Wei, I. C. Valery, Y. Takayuki, and Y. Akira, “Absence of host cation segregation in the (Gd,Y)3Al5O12 mixed garnet optical ceramics,” Jpn. J. Appl. Phys. 50(9R), 090207 (2011).

Welsh, F.

N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, and M. Yamada, “Solid-state lighting research and development multi-year program plan,” U. S. Department of Energy (2014).

Wu, Y.

J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Xie, T.

Xiu, Z.

X. Li, J.-G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ substitution on the fabrication of transparent (Y1−xGdx)3Al5O12 ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Xu, J.

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Xu, Y.

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

Yamada, M.

N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, and M. Yamada, “Solid-state lighting research and development multi-year program plan,” U. S. Department of Energy (2014).

Yamada, T.

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(2), L1332–L1335 (1995).
[Crossref]

Yi, X.

X. Yi, S. Zhou, C. Chen, H. Lin, Y. Feng, K. Wang, and Y. Ni, “Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs,” Ceram. Int. 40(5), 7043–7047 (2014).
[Crossref]

Yuan, X.

Zelmon, D. E.

Zhang, W.

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

Zhao, W.

T. Epicier, G. Boulon, W. Zhao, M. Guzik, B. Jiang, A. Ikesue, and L. Esposito, “Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM,” J. Mater. Chem. 22(35), 18221–18229 (2012).
[Crossref]

Zhou, S.

X. Yi, S. Zhou, C. Chen, H. Lin, Y. Feng, K. Wang, and Y. Ni, “Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs,” Ceram. Int. 40(5), 7043–7047 (2014).
[Crossref]

Zhou, Z.

Zhu, C.

Zhu, Y.

Ann. Phys. (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

U. Jumpei, K. Keisuke, and T. Setsuhisa, “Yellow persistent luminescence in Ce3+–Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation,” Appl. Phys. Express 7(6), 062201 (2014).
[Crossref]

Appl. Phys. Lett. (3)

N. Wei, T. Lu, F. Li, W. Zhang, B. Ma, Z. Lu, and J. Qi, “Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes,” Appl. Phys. Lett. 101(6), 061902 (2012).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Ceram. Int. (1)

X. Yi, S. Zhou, C. Chen, H. Lin, Y. Feng, K. Wang, and Y. Ni, “Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs,” Ceram. Int. 40(5), 7043–7047 (2014).
[Crossref]

Chem. Mater. (1)

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[Crossref]

IEEE J. Sel. Top Quant. (2)

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top Quant. 8(2), 339–345 (2002).
[Crossref]

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top Quant. 14(5), 1387–1391 (2008).
[Crossref]

J. Am. Ceram. Soc. (2)

X. Li, J.-G. Li, Z. Xiu, D. Huo, and X. Sun, “Effects of Gd3+ substitution on the fabrication of transparent (Y1−xGdx)3Al5O12 ceramics,” J. Am. Ceram. Soc. 93(8), 2229–2235 (2010).
[Crossref]

Y. Wu, J. Li, Y. Pan, J. Guo, B. Jiang, Y. Xu, and J. Xu, “Diode-pumped Yb:YAG ceramic laser,” J. Am. Ceram. Soc. 90(10), 3334–3337 (2007).
[Crossref]

J. Ceram. Soc. Jpn. (1)

S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(1374), 128–131 (2010).
[Crossref]

J. Disp. Technol. (1)

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

J. Electrochem. Soc. (2)

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[Crossref]

Y. S. Lin, R. S. Liu, and B.-M. Cheng, “Investigation of the luminescent properties of Tb3+-substituted YAG:Ce, Gd phosphors,” J. Electrochem. Soc. 152(6), J41–J45 (2005).
[Crossref]

J. Mater. Chem. (1)

T. Epicier, G. Boulon, W. Zhao, M. Guzik, B. Jiang, A. Ikesue, and L. Esposito, “Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM,” J. Mater. Chem. 22(35), 18221–18229 (2012).
[Crossref]

J. Mater. Res. (1)

K. Waetzig, M. Kunzer, and I. Kinski, “Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG:Ce ceramic phosphors for white LEDs,” J. Mater. Res. 29(19), 2318–2324 (2014).
[Crossref]

Jpn. J. Appl. Phys. (3)

K. Hideo and M. Akimitsu, “Lattice parameter dependence of refractive index and dielectric constant of Czochralski grown rare-earth garnet single crystals in solid solution,” Jpn. J. Appl. Phys. 41(1), 5334–5335 (2002).
[Crossref]

B. Georges, E. Thierry, Z. Wei, I. C. Valery, Y. Takayuki, and Y. Akira, “Absence of host cation segregation in the (Gd,Y)3Al5O12 mixed garnet optical ceramics,” Jpn. J. Appl. Phys. 50(9R), 090207 (2011).

S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(2), L1332–L1335 (1995).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

J. Li, Y. Wu, Y. Pan, W. Liu, L. Huang, and J. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Opt. Mater. Express (2)

Phil, Mag. Series 5 (1)

L. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil, Mag. Series 5 47(287), 375–384 (1899).
[Crossref]

Physica B (1)

J. Rodríguez-Carvajal, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192(1–2), 55–69 (1993).
[Crossref]

Proc. SPIE (1)

H. Bechtel, P. Schmidt, W. Busselt, and B. S. Schreinemacher, “Lumiramic: a new phosphor technology for high performance solid state light sources,” Proc. SPIE 7058, 70580E (2008).

Scr. Mater. (1)

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

Trans. Opt. Soc. (1)

T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1932).
[Crossref]

Other (4)

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).

S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, and M. Nakatsuka, “Preparation and optical properties of transparent Ce:YAG ceramics for high power white LED,” IOP Conf. Ser.: Mater. Sci. Eng. 1(1), 012031 (2009).
[Crossref]

N. Bardsley, S. Bland, L. Pattison, M. Pattison, K. Stober, F. Welsh, and M. Yamada, “Solid-state lighting research and development multi-year program plan,” U. S. Department of Energy (2014).

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Preparation of Ce3+:GdYAG ceramic phosphors for white LED,” IOP Conf. Ser.: Mater. Sci. Eng. 18(7), 102005(2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Photograph of 0.2 mm thick (Gd,Y)AG:Ce transparent ceramics with different Gd content (from left to right, 0%, 25%, 50%, 75%).
Fig. 2
Fig. 2 In-line transmittance of 0.2 mm thick (Gdx,Y0.999-x)AG:Ce0.003 ceramics with different Gd content (x = 0, 0.25, 0.5, and 0.75).
Fig. 3
Fig. 3 (a) Evolution of the X-ray diffraction as a function of the Gd content (x = 0, 0.25, 0.5, and 0.75) in (Gdx,Y0.999-x)AG:Ce0.003 ceramics; (b) expanded view of the 2θ diffraction peak between 32.8 o and 33.8 o; (c) lattice constant and fitting curve of (Gd,Y)AG:Ce ceramics as a function of Gd content.
Fig. 4
Fig. 4 SEM images of thermal-etched YAG:Ce transparent ceramics with amplification factor of 500.
Fig. 5
Fig. 5 (a) Photoluminescence excitation and emission spectra of (Gdx,Y0.999-x)AG:Ce0.003 ceramic phosphors with various Gd content (x = 0, 0.25, 0.5, and 0.75); (b) excitation and emission peak wavelength with various Gd content; (c) energy levels diagram of YAG:Ce and (Gd,Y)AG:Ce
Fig. 6
Fig. 6 (a) Color coordinates in CIE-1931 color space chromaticity diagram; (b) luminous efficacy; (c) color rendering index; and (d) correlated color temperature of (Gdx,Y0.999-x)AG:Ce0.003 ceramic phosphors-based LED as a function of Gd content (x = 0, 0.25, 0.5, and 0.75) and thickness.
Fig. 7
Fig. 7 Schematic diagram of the packed white LED device by using (Gd,Y)AG:Ce ceramic phosphors.
Fig. 8
Fig. 8 Schematic diagram of (a) LED device structure and (b) wavelength broaden mechanism based on the dual-layered ceramic phosphors; (c) color coordinates of unpacked and packed LED devices and (d) imaginative color coordinates range for dual-layered structure based LED devices in CIE-1931 color space chromaticity diagram.
Fig. 9
Fig. 9 (a) Luminous efficacy and (b) CCT of white LED device by using dual-layered ceramic phosphors.

Tables (3)

Tables Icon

Table 1 Electroluminescent parameters of white LEDs using (Gdx,Y0.999-x)3Al5O12:Ce0.003 phosphors with various Gd content

Tables Icon

Table 2 Electroluminescent parameters of different chips of white LEDs using different dual-layered composite structure ceramic phosphors

Tables Icon

Table 3 A comparison between this study and former study on key parameters of white LEDs using single and double layer ceramic phosphors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CE=PE×IQE

Metrics