Abstract

We propose a multiple beam illumination scheme to control the intensity of the light emitted by a thin luminescent layer. The experiment is designed to get as close as possible to the condition of Coherent Perfect Absorption (CPA) at a wavelength at which the absorption coefficient of the luminescent layer is low, and it is realized by externally acting on the phase difference between the incident beams. We elucidate experimental limitations that prevent the achievement of CPA in these slabs. Nevertheless, we are able to demonstrate that when the two beams destructively interfere outside the luminescent layer, the incident light is more efficiently absorbed by the luminescent layer and the intensity of the emitted light is phase-modulated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controllable coherent perfect absorption in a composite film

Shourya Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal
Opt. Express 20(2) 1330-1336 (2012)

Tunable polarization-independent coherent perfect absorber based on a metal-graphene nanostructure

Yaying Ning, Zhewei Dong, Jiangnan Si, and Xiaoxu Deng
Opt. Express 25(26) 32467-32474 (2017)

Polarization-controlled multifrequency coherent perfect absorption in stereometamaterials

Wenjin Lv, Jigang Bing, Yiyuan Deng, Di Duan, Zheng Zhu, Yuxiang Li, Chunying Guan, and Jinhui Shi
Opt. Express 26(13) 17236-17244 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [Crossref] [PubMed]
  2. T. S. Kao, S. D. Jenkis, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
    [Crossref] [PubMed]
  3. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1, e18 (2012).
    [Crossref]
  4. H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
    [Crossref] [PubMed]
  5. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref] [PubMed]
  6. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photon. 5, 360–363 (2011).
    [Crossref]
  7. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
    [Crossref]
  8. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Expr. 18, 25702–25711 (2010).
    [Crossref]
  9. J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
    [Crossref]
  10. S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. Dutta Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012).
    [Crossref] [PubMed]
  11. S. Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Expr. 20, 1330–1336 (2014).
    [Crossref]
  12. K. Nireekshan Reddy and S. Dutta Gupta, “Light-controlled perfect absorption of light,” Opt. Lett. 38, 5252–5255 (2013).
    [Crossref] [PubMed]
  13. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
    [Crossref] [PubMed]
  14. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 4 (2000).
    [Crossref]
  15. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 4 (2000).
  16. G. Blasse and A. Bril, “Investigation of some Ce3+ - activated phosphors,” J. Chem. Phys. 47(12), 5139 (1967).
    [Crossref]
  17. G. Blasse and A. Bril, “A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12 – Ce3+,” Appl. Phys. Lett. 11(2), 53 (1967).
    [Crossref]
  18. C. M. Wong, S. R. Rotman, and C. Warde, “Optical studies of cerium doped yttrium aluminum garnet single crystals,” Appl. Phys. Lett. 44, 1038 (1984).
    [Crossref]
  19. R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86[3], 480–486 (2003).
    [Crossref]
  20. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
    [Crossref]
  21. R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
    [Crossref]
  22. A. Ikesue and I Furusato, “Fabrication of polycrystalline, transparent YAG ceramics,” J. Am. Ceram. Soc. 78[1], 225–228 (1995).
    [Crossref]
  23. R. Boulesteix, A Maitre, L. Chraetien, Y. Rabinovitch, and C. Salla, “Microstructural evolution during vacuum sintering of Yttrium Aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc. 9, 1724–1731 (2013).
    [Crossref]
  24. S. Chen, L. Zhang, K. Kisslinger, and Y. Wu, “Transparent Y3Al5O12 : Li, Ce ceramics for thermal neutron detection,” J. Am. Ceram. Soc. 96[4], 1067–1069 (2013).
    [Crossref]
  25. Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
    [Crossref]
  26. Pochi-Yeh, Optical Waves in Layered Media (John Wiley and Sons, 1998).
  27. L. D. Landau, Electrodynamics of Continuous Media (Pergamon, 1984).
  28. A. B. Munoz-Garcia, Z. Barandarian, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structures and 4f5d transitions,” J. Mater. Chem. 22, 19888–19897 (2012).
    [Crossref]

2014 (1)

S. Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Expr. 20, 1330–1336 (2014).
[Crossref]

2013 (3)

K. Nireekshan Reddy and S. Dutta Gupta, “Light-controlled perfect absorption of light,” Opt. Lett. 38, 5252–5255 (2013).
[Crossref] [PubMed]

R. Boulesteix, A Maitre, L. Chraetien, Y. Rabinovitch, and C. Salla, “Microstructural evolution during vacuum sintering of Yttrium Aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc. 9, 1724–1731 (2013).
[Crossref]

S. Chen, L. Zhang, K. Kisslinger, and Y. Wu, “Transparent Y3Al5O12 : Li, Ce ceramics for thermal neutron detection,” J. Am. Ceram. Soc. 96[4], 1067–1069 (2013).
[Crossref]

2012 (6)

A. B. Munoz-Garcia, Z. Barandarian, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structures and 4f5d transitions,” J. Mater. Chem. 22, 19888–19897 (2012).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1, e18 (2012).
[Crossref]

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. Dutta Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012).
[Crossref] [PubMed]

2011 (3)

T. S. Kao, S. D. Jenkis, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photon. 5, 360–363 (2011).
[Crossref]

2010 (2)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Expr. 18, 25702–25711 (2010).
[Crossref]

2009 (1)

R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
[Crossref]

2007 (1)

2005 (1)

Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
[Crossref]

2003 (1)

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86[3], 480–486 (2003).
[Crossref]

2000 (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 4 (2000).
[Crossref]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 4 (2000).

1997 (1)

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

1995 (1)

A. Ikesue and I Furusato, “Fabrication of polycrystalline, transparent YAG ceramics,” J. Am. Ceram. Soc. 78[1], 225–228 (1995).
[Crossref]

1984 (1)

C. M. Wong, S. R. Rotman, and C. Warde, “Optical studies of cerium doped yttrium aluminum garnet single crystals,” Appl. Phys. Lett. 44, 1038 (1984).
[Crossref]

1967 (2)

G. Blasse and A. Bril, “Investigation of some Ce3+ - activated phosphors,” J. Chem. Phys. 47(12), 5139 (1967).
[Crossref]

G. Blasse and A. Bril, “A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12 – Ce3+,” Appl. Phys. Lett. 11(2), 53 (1967).
[Crossref]

Agarwal, G. S.

S. Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Expr. 20, 1330–1336 (2014).
[Crossref]

Apetz, R.

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86[3], 480–486 (2003).
[Crossref]

Aulbach, J.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photon. 5, 360–363 (2011).
[Crossref]

Barandarian, Z.

A. B. Munoz-Garcia, Z. Barandarian, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structures and 4f5d transitions,” J. Mater. Chem. 22, 19888–19897 (2012).
[Crossref]

Bechtel, H.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
[Crossref]

Blasse, G.

G. Blasse and A. Bril, “Investigation of some Ce3+ - activated phosphors,” J. Chem. Phys. 47(12), 5139 (1967).
[Crossref]

G. Blasse and A. Bril, “A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12 – Ce3+,” Appl. Phys. Lett. 11(2), 53 (1967).
[Crossref]

Boulesteix, R.

R. Boulesteix, A Maitre, L. Chraetien, Y. Rabinovitch, and C. Salla, “Microstructural evolution during vacuum sintering of Yttrium Aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc. 9, 1724–1731 (2013).
[Crossref]

Bril, A.

G. Blasse and A. Bril, “A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12 – Ce3+,” Appl. Phys. Lett. 11(2), 53 (1967).
[Crossref]

G. Blasse and A. Bril, “Investigation of some Ce3+ - activated phosphors,” J. Chem. Phys. 47(12), 5139 (1967).
[Crossref]

Cao, H.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Chen, C.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
[Crossref]

Chen, S.

S. Chen, L. Zhang, K. Kisslinger, and Y. Wu, “Transparent Y3Al5O12 : Li, Ce ceramics for thermal neutron detection,” J. Am. Ceram. Soc. 96[4], 1067–1069 (2013).
[Crossref]

Chong, Y.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Chong, Y. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Chraetien, L.

R. Boulesteix, A Maitre, L. Chraetien, Y. Rabinovitch, and C. Salla, “Microstructural evolution during vacuum sintering of Yttrium Aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc. 9, 1724–1731 (2013).
[Crossref]

Deshmukh, R.

Dutta Gupta, S.

Dutta-Gupta, S.

S. Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Expr. 20, 1330–1336 (2014).
[Crossref]

S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. Dutta Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012).
[Crossref] [PubMed]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

Furusato, I

A. Ikesue and I Furusato, “Fabrication of polycrystalline, transparent YAG ceramics,” J. Am. Ceram. Soc. 78[1], 225–228 (1995).
[Crossref]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Gjonaj, B.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photon. 5, 360–363 (2011).
[Crossref]

Gopal, A. V.

Gorbenko, V.

Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
[Crossref]

Ikesue, A.

A. Ikesue and I Furusato, “Fabrication of polycrystalline, transparent YAG ceramics,” J. Am. Ceram. Soc. 78[1], 225–228 (1995).
[Crossref]

Jenkis, S. D.

T. S. Kao, S. D. Jenkis, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref] [PubMed]

Johnson, P. M.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photon. 5, 360–363 (2011).
[Crossref]

Kao, T. S.

T. S. Kao, S. D. Jenkis, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref] [PubMed]

Kisslinger, K.

S. Chen, L. Zhang, K. Kisslinger, and Y. Wu, “Transparent Y3Al5O12 : Li, Ce ceramics for thermal neutron detection,” J. Am. Ceram. Soc. 96[4], 1067–1069 (2013).
[Crossref]

Koh, G. M.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

Kolobanov, V.

Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
[Crossref]

Konstankevych, I.

Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
[Crossref]

Krames, M. R.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
[Crossref]

Kuipers, L.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photon. 5, 360–363 (2011).
[Crossref]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photon. 5, 360–363 (2011).
[Crossref]

Landau, L. D.

L. D. Landau, Electrodynamics of Continuous Media (Pergamon, 1984).

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

MacDonald, K. F.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1, e18 (2012).
[Crossref]

Magnusson, R.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Expr. 18, 25702–25711 (2010).
[Crossref]

Maitre, A

R. Boulesteix, A Maitre, L. Chraetien, Y. Rabinovitch, and C. Salla, “Microstructural evolution during vacuum sintering of Yttrium Aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc. 9, 1724–1731 (2013).
[Crossref]

Martin, O. J. F.

S. Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Expr. 20, 1330–1336 (2014).
[Crossref]

S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. Dutta Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012).
[Crossref] [PubMed]

Mikhailin, V.

Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
[Crossref]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photon. 5, 360–363 (2011).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref] [PubMed]

Mueller, G. O.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
[Crossref]

Mueller-Mach, R.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
[Crossref]

Munoz-Garcia, A. B.

A. B. Munoz-Garcia, Z. Barandarian, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structures and 4f5d transitions,” J. Mater. Chem. 22, 19888–19897 (2012).
[Crossref]

Nireekshan Reddy, K.

Noh, H.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Pochi-Yeh,

Pochi-Yeh, Optical Waves in Layered Media (John Wiley and Sons, 1998).

Rabinovitch, Y.

R. Boulesteix, A Maitre, L. Chraetien, Y. Rabinovitch, and C. Salla, “Microstructural evolution during vacuum sintering of Yttrium Aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc. 9, 1724–1731 (2013).
[Crossref]

Rotman, S. R.

C. M. Wong, S. R. Rotman, and C. Warde, “Optical studies of cerium doped yttrium aluminum garnet single crystals,” Appl. Phys. Lett. 44, 1038 (1984).
[Crossref]

Ruostekoski, J.

T. S. Kao, S. D. Jenkis, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref] [PubMed]

Salla, C.

R. Boulesteix, A Maitre, L. Chraetien, Y. Rabinovitch, and C. Salla, “Microstructural evolution during vacuum sintering of Yttrium Aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc. 9, 1724–1731 (2013).
[Crossref]

Schehin, O. B.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
[Crossref]

Schlotter, P.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Schmidt, P. J.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
[Crossref]

Schmidt, R.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Schneider, J.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Seijo, L.

A. B. Munoz-Garcia, Z. Barandarian, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structures and 4f5d transitions,” J. Mater. Chem. 22, 19888–19897 (2012).
[Crossref]

Seol, K. H.

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Expr. 18, 25702–25711 (2010).
[Crossref]

Song, S. H.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Expr. 18, 25702–25711 (2010).
[Crossref]

Spassky, D.

Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
[Crossref]

Steigelmann, O.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
[Crossref]

Stone, A. D.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

Stryganyuk, G.

Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
[Crossref]

van Bruggen, M. P. B.

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86[3], 480–486 (2003).
[Crossref]

Vellekoop, I. M.

Voloshinovskii, A.

Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
[Crossref]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Warde, C.

C. M. Wong, S. R. Rotman, and C. Warde, “Optical studies of cerium doped yttrium aluminum garnet single crystals,” Appl. Phys. Lett. 44, 1038 (1984).
[Crossref]

Wong, C. M.

C. M. Wong, S. R. Rotman, and C. Warde, “Optical studies of cerium doped yttrium aluminum garnet single crystals,” Appl. Phys. Lett. 44, 1038 (1984).
[Crossref]

Wu, Y.

S. Chen, L. Zhang, K. Kisslinger, and Y. Wu, “Transparent Y3Al5O12 : Li, Ce ceramics for thermal neutron detection,” J. Am. Ceram. Soc. 96[4], 1067–1069 (2013).
[Crossref]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 4 (2000).
[Crossref]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 4 (2000).

Yoon, J.

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Expr. 18, 25702–25711 (2010).
[Crossref]

Yoon, J. W.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

Zhang, J.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1, e18 (2012).
[Crossref]

Zhang, L.

S. Chen, L. Zhang, K. Kisslinger, and Y. Wu, “Transparent Y3Al5O12 : Li, Ce ceramics for thermal neutron detection,” J. Am. Ceram. Soc. 96[4], 1067–1069 (2013).
[Crossref]

Zheludev, N. I.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1, e18 (2012).
[Crossref]

T. S. Kao, S. D. Jenkis, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref] [PubMed]

Zorenko, Yu.

Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
[Crossref]

Appl. Phys. Lett. (2)

G. Blasse and A. Bril, “A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12 – Ce3+,” Appl. Phys. Lett. 11(2), 53 (1967).
[Crossref]

C. M. Wong, S. R. Rotman, and C. Warde, “Optical studies of cerium doped yttrium aluminum garnet single crystals,” Appl. Phys. Lett. 44, 1038 (1984).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 4 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 4 (2000).

J. Am. Ceram. Soc. (4)

R. Apetz and M. P. B. van Bruggen, “Transparent alumina: a light-scattering model,” J. Am. Ceram. Soc. 86[3], 480–486 (2003).
[Crossref]

A. Ikesue and I Furusato, “Fabrication of polycrystalline, transparent YAG ceramics,” J. Am. Ceram. Soc. 78[1], 225–228 (1995).
[Crossref]

R. Boulesteix, A Maitre, L. Chraetien, Y. Rabinovitch, and C. Salla, “Microstructural evolution during vacuum sintering of Yttrium Aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc. 9, 1724–1731 (2013).
[Crossref]

S. Chen, L. Zhang, K. Kisslinger, and Y. Wu, “Transparent Y3Al5O12 : Li, Ce ceramics for thermal neutron detection,” J. Am. Ceram. Soc. 96[4], 1067–1069 (2013).
[Crossref]

J. Chem. Phys. (1)

G. Blasse and A. Bril, “Investigation of some Ce3+ - activated phosphors,” J. Chem. Phys. 47(12), 5139 (1967).
[Crossref]

J. Luminescence (1)

Yu. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Luminescence 114(2), 85–94 (2005).
[Crossref]

J. Mater. Chem. (1)

A. B. Munoz-Garcia, Z. Barandarian, and L. Seijo, “Antisite defects in Ce-doped YAG (Y3Al5O12): first-principles study on structures and 4f5d transitions,” J. Mater. Chem. 22, 19888–19897 (2012).
[Crossref]

Light: Sci. Appl. (1)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1, e18 (2012).
[Crossref]

Nat. Photon. (2)

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Active spatial control of plasmonic fields,” Nat. Photon. 5, 360–363 (2011).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photon. 6, 283–292 (2012).
[Crossref]

Opt. Expr. (2)

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Expr. 18, 25702–25711 (2010).
[Crossref]

S. Dutta-Gupta, O. J. F. Martin, S. Dutta Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Expr. 20, 1330–1336 (2014).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (4)

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[Crossref]

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[Crossref] [PubMed]

T. S. Kao, S. D. Jenkis, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501 (2011).
[Crossref] [PubMed]

Phys. Status Solidi RRL (1)

R. Mueller-Mach, G. O. Mueller, M. R. Krames, O. B. Schehin, P. J. Schmidt, H. Bechtel, C. Chen, and O. Steigelmann, “All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes,” Phys. Status Solidi RRL 3, 215–218 (2009).
[Crossref]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[Crossref] [PubMed]

Other (2)

Pochi-Yeh, Optical Waves in Layered Media (John Wiley and Sons, 1998).

L. D. Landau, Electrodynamics of Continuous Media (Pergamon, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Calculated normalized intensity in a logarithm scale and (b) phase in units of π of the scattered field as a function of the real and imaginary component of the refractive of a 100 μm-thick slab embedded in air and illuminated antisymmetrically at normal incidence by two counter-propagating beams of wavelength of 495.9 nm. Symbols correspond to the approximated calculated solution given by Eq. (5). In (c) the approximated solution Eq. (5) for an ideal 100 μm-thick slab illuminated at the wavelength of 495.9 nm is plotted on a larger range of values of n and κ. The inset is a zoom around the value of the complex refractive index of the luminescent slab of YAG:Ce used in the experiment at this wavelength, indicated by the cross.
Fig. 2
Fig. 2 (a) 2D AFM scan of the surface of the YAG:Ce slab after polishing. The colorscale indicates the relative surface height and it is in units of nanometers. (b) AFM scan along the x-direction at the height marked by the red line in (a).
Fig. 3
Fig. 3 Black curves represent the measured real (a) and the imaginary (b) component of the refractive index of the YAG:Ce slab as a function of the wavelength. Grey line in (b) represents the measured normalized emission spectrum from the YAG:Ce. Crosses: value of the refractive index of the YAG:Ce at 495.9 nm.
Fig. 4
Fig. 4 (a) Schematic representation of the experimental set-up. A beam from a tunable continuous-wave Ar-Kr laser is splitted by the beam splitters (BS). The two beams (1) and (2) impinge normally to the sample, a YAG:Ce slab of thickness h. Beam (1) travels through a delay stage (mirror mounted on a computer-controlled piezo electrical stage) which controls the relative phase between the two beams. The scattered intensity from the left side, consisting of the interference between the backreflection of the beam (2) (continuous line) and of the transmission of beam (1) (dashed line) through the sample, is detected by a camera. The photoluminescence spectrum (PL) is measured by a spectrometer. (b) and (c) Scattered intensity recorded by the camera for Δϕ = 2π and for Δϕ = 4.5π, respectively.
Fig. 5
Fig. 5 Modulation of the PL from a YAG:Ce layer. (a) Measurements of the modulation of the maximum of the PL as a function of the phase difference between beam (1) and beam (2), for an incident wavelength of 495.9 nm. Grey dashed line indicates the sum of the measured maxima of the PL with the two beams separately impinging on the sample. (b) Measurements of the far field scattering in the camera. (c) As in panel (a) but for an incident wavelength of 457 nm. (d) Continuous black line: calculation of the absorptance as a function of the phase difference between beams (1) and (2) for an incident wavelength of 495.9 nm. Black circle symbols: calculated absorptance averaged over a Δh = 250 nm. Grey squares: measured absorptance for the incident wavelength 457 nm. Grey continuous line: calculated averaged absorptance over a Δh = 250 nm for the incident wavelength 457 nm.
Fig. 6
Fig. 6 (a) Calculated normalized intensity in logarithmic scale of the field scattered off a YAG:Ce slab illuminated at normal incidence by two counter-propagating beams, log|χ|2, as a function of the wavelength of illumination and thickness of the slab. (b) Cut of log |χ|2 for h = 100 μm.
Fig. 7
Fig. 7 Calculated averaged absorptance modulation as a function of Δh assuming no surface roughness in the YAG:Ce slab.
Fig. 8
Fig. 8 (a) The black curve represents the calculated maximum absorptance at each wavelength impinging on a 100 μm-thick slab of YAG:Ce illuminated at normal incidence by two counter-proapgating and collinear beams. The red curve is the envelope of the black curve. (b) Red curve as in panel (a) on a larger range of wavelengths. The blue curve (right axis) represents the measured typical emission spectrum of YAG:Ce. The dashed line represents λmax.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S = ( S 11 S 12 S 21 S 22 ) .
χ + , = t ± r = 0 ,
[ 1 ( n ˜ 1 n ˜ + 1 ) 2 ] e i k h n ˜ 1 ( n ˜ 1 n ˜ + 1 ) 2 e 2 i k h n ˜ ± ( n ˜ 1 n ˜ + 1 ) [ e 2 i k h n ˜ 1 ] 1 ( n ˜ 1 n ˜ + 1 ) 2 e 2 i k h n ˜ = 0 .
e i k h n ˜ = ± n ˜ 1 n ˜ + 1 ,
{ n Z π k h , Z κ 1 k h ln [ n + 1 n 1 ]
M = I ( λ CPA , Δ ϕ = 2 π m ) I ( λ CPA , Δ ϕ = π m ) [ I ( λ CPA , Δ ϕ = 2 π m ) + I ( λ CPA , Δ ϕ = π m ) ] / 2 ,
< A ( Δ ϕ ) > = w ( h ) A ( h , Δ ϕ ) d h w ( h ) d h ,
w ( h ) = { 1 for h 0 Δ h 2 h h 0 + Δ h 2 0 for h < h 0 Δ h 2 and h > h 0 + Δ h 2
w ( h ) = e ( h h 0 ) 2 2 σ 2

Metrics