Abstract

In this study, the thin-film vertical-type AlGaInP LEDs on Cu substrates were fabricated. By performing the epitaxial lift-off (ELO) process, the LED device can be transferred from GaAs to Cu substrate. Then the GaAs substrate was separated and the ELO-LED was completed. To overcome the drawback of crack formation in the epilayer during the ELO process, various patterned Cu substrates were designed. Moreover, the finite element method was used to simulate the stress distribution in the LED sample during the ELO process. From the simulation results, an optimum structure of patterned Cu substrate was obtained since its maximum stress can be confined to the chip edges and the stress was decreased significantly during the ELO process, resulting in an apparent reduction of crack generation after separating the GaAs substrate. This optimum patterned Cu substrate was employed for the fabrication of ELO-LED. In addition, the chemical etching process was also used to etch the GaAs substrate, and this device transferred to Cu substrate was denoted as CE-LED. Based on the measurements of device performances, the forward voltages (@350 mA) of the CE-LED and ELO-LED were measured to be 2.20 and 2.29 V, while the output powers (@350 mA) of these two devices were 49.9 and 48.2 mW, respectively. Furthermore, the surface temperatures (@350 mA) of these two samples were 46.9-48.3 and 45.2-47.0 °C, respectively. Obviously, the device characteristics of the ELO-LED are very similar to those of the CE-LED. It confirms that the design of patterned Cu substrate is very helpful to obtain the thin-film vertical-type AlGaInP LEDs. Additionally, via the ELO process, the separated GaAs substrate can be reused for production cost down.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off

Min-Su Park, Dae-Myeong Geum, Ji Hoon Kyhm, Jin Dong Song, SangHyeon Kim, and Won Jun Choi
Opt. Express 23(21) 26888-26894 (2015)

White thin-film flip-chip LEDs with uniform color temperature using laser lift-off and conformal phosphor coating technologies

Huan-Ting Lin, Ching-Ho Tien, Chen-Peng Hsu, and Ray-Hua Horng
Opt. Express 22(26) 31646-31653 (2014)

Fabrication of SiNx-based photonic crystals on GaN-based LED devices with patterned sapphire substrate by nanoimprint lithography

Kyeong-Jae Byeon, Joong-Yeon Cho, Jinseung Kim, Hyoungwon Park, and Heon Lee
Opt. Express 20(10) 11423-11432 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. G. Craford, “LED’s challenge the incandescent,” IEEE Circ. Dev. Mag. 8(5), 24–29 (1992).
    [Crossref]
  2. T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys. 95(5), 2203–2216 (2004).
    [Crossref]
  3. K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 321–332 (2002).
    [Crossref]
  4. M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
    [Crossref]
  5. W. C. Peng and Y. C. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding,” Appl. Phys. Lett. 84(11), 1841–1843 (2004).
    [Crossref]
  6. R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang, and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys. 43(4B4B), L576–L578 (2004).
    [Crossref]
  7. R. H. Horng, M. C. Tseng, F. L. Wu, C. H. Li, C. H. Wu, and M. D. Yang, “Thin film solar cells fabricated using cross-shaped pattern epilayer lift-off technology for substrate recycling applications,” IEEE Trans. Electron. Dev. 59(3), 666–672 (2012).
    [Crossref]
  8. J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
    [Crossref] [PubMed]
  9. F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
    [Crossref]
  10. S. Liu, K. Wang, Z. Gan, X. Luo, X. Song, Z. Chen, Z. Liu, H. Yan, W. Wei, and P. Wang, “Several Modeling Issues in LED, 3D-SiP, and Nano Interconnects,” in 10th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, (EuroSimE, 2009), pp. 1–10.
    [Crossref]
  11. M. Levinshtein, S. Rumyantsev, and M. Shur, “Handbook Series on Semiconductor Parameters,” 2, Ternary And Quaternary III–V Compounds, (World Scientific, 1999), Chap. 1.
  12. B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sens. Actuators A Phys. 99(1–2), 172–182 (2002).
  13. T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, “Fabrication process simulation and reliability improvement of high-brightness LEDs,” Microelectron. Reliab. 49(9–11), 1244–1249 (2009).
    [Crossref]

2014 (1)

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

2012 (1)

R. H. Horng, M. C. Tseng, F. L. Wu, C. H. Li, C. H. Wu, and M. D. Yang, “Thin film solar cells fabricated using cross-shaped pattern epilayer lift-off technology for substrate recycling applications,” IEEE Trans. Electron. Dev. 59(3), 666–672 (2012).
[Crossref]

2010 (1)

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

2009 (1)

T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, “Fabrication process simulation and reliability improvement of high-brightness LEDs,” Microelectron. Reliab. 49(9–11), 1244–1249 (2009).
[Crossref]

2004 (3)

T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys. 95(5), 2203–2216 (2004).
[Crossref]

W. C. Peng and Y. C. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding,” Appl. Phys. Lett. 84(11), 1841–1843 (2004).
[Crossref]

R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang, and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys. 43(4B4B), L576–L578 (2004).
[Crossref]

2002 (2)

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 321–332 (2002).
[Crossref]

B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sens. Actuators A Phys. 99(1–2), 172–182 (2002).

1999 (1)

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

1992 (1)

M. G. Craford, “LED’s challenge the incandescent,” IEEE Circ. Dev. Mag. 8(5), 24–29 (1992).
[Crossref]

Carter-Coman, C.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Chen, E. I.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Chiang, K. N.

T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, “Fabrication process simulation and reliability improvement of high-brightness LEDs,” Microelectron. Reliab. 49(9–11), 1244–1249 (2009).
[Crossref]

Chou, T. L.

T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, “Fabrication process simulation and reliability improvement of high-brightness LEDs,” Microelectron. Reliab. 49(9–11), 1244–1249 (2009).
[Crossref]

Chui, H. C.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Chun, I. S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Coleman, J. J.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Collins, D.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Craford, M. G.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

M. G. Craford, “LED’s challenge the incandescent,” IEEE Circ. Dev. Mag. 8(5), 24–29 (1992).
[Crossref]

Gardner, N. F.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Gessmann, T.

T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys. 95(5), 2203–2216 (2004).
[Crossref]

Grillot, P.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Gröger, V.

B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sens. Actuators A Phys. 99(1–2), 172–182 (2002).

Han, C. N.

T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, “Fabrication process simulation and reliability improvement of high-brightness LEDs,” Microelectron. Reliab. 49(9–11), 1244–1249 (2009).
[Crossref]

Hofler, G. E.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Horng, R. H.

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

R. H. Horng, M. C. Tseng, F. L. Wu, C. H. Li, C. H. Wu, and M. D. Yang, “Thin film solar cells fabricated using cross-shaped pattern epilayer lift-off technology for substrate recycling applications,” IEEE Trans. Electron. Dev. 59(3), 666–672 (2012).
[Crossref]

R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang, and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys. 43(4B4B), L576–L578 (2004).
[Crossref]

Huang, C. F.

T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, “Fabrication process simulation and reliability improvement of high-brightness LEDs,” Microelectron. Reliab. 49(9–11), 1244–1249 (2009).
[Crossref]

Huang, J.-W.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Huang, S. H.

R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang, and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys. 43(4B4B), L576–L578 (2004).
[Crossref]

Hueschen, M.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Jaeger, A.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 321–332 (2002).
[Crossref]

Jo, S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Jung, I.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Kao, Y. C.

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

Khatibi, G.

B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sens. Actuators A Phys. 99(1–2), 172–182 (2002).

Kim, H. S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Kish, F. A.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Kocot, C. P.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Kotas, A.

B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sens. Actuators A Phys. 99(1–2), 172–182 (2002).

Krames, M. R.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Kung, C. Y.

R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang, and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys. 43(4B4B), L576–L578 (2004).
[Crossref]

Lee, C. E.

R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang, and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys. 43(4B4B), L576–L578 (2004).
[Crossref]

Li, C. H.

R. H. Horng, M. C. Tseng, F. L. Wu, C. H. Li, C. H. Wu, and M. D. Yang, “Thin film solar cells fabricated using cross-shaped pattern epilayer lift-off technology for substrate recycling applications,” IEEE Trans. Electron. Dev. 59(3), 666–672 (2012).
[Crossref]

Li, X.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Linder, N.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 321–332 (2002).
[Crossref]

Loh, B.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Meitl, M.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Menard, E.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Ochiai-Holcomb, M.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Ou, S. L.

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

Paik, U.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Peng, W. C.

W. C. Peng and Y. C. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding,” Appl. Phys. Lett. 84(11), 1841–1843 (2004).
[Crossref]

Posselt, J.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Rogers, J. A.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Sasser, G.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Schubert, E. F.

T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys. 95(5), 2203–2216 (2004).
[Crossref]

Stickler, R.

B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sens. Actuators A Phys. 99(1–2), 172–182 (2002).

Stockman, S. A.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Streubel, K.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 321–332 (2002).
[Crossref]

Tan, I.-H.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Tan, T. S.

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

Tseng, M. C.

R. H. Horng, M. C. Tseng, F. L. Wu, C. H. Li, C. H. Wu, and M. D. Yang, “Thin film solar cells fabricated using cross-shaped pattern epilayer lift-off technology for substrate recycling applications,” IEEE Trans. Electron. Dev. 59(3), 666–672 (2012).
[Crossref]

Weiss, B.

B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sens. Actuators A Phys. 99(1–2), 172–182 (2002).

Wirth, R.

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 321–332 (2002).
[Crossref]

Wu, C. H.

R. H. Horng, M. C. Tseng, F. L. Wu, C. H. Li, C. H. Wu, and M. D. Yang, “Thin film solar cells fabricated using cross-shaped pattern epilayer lift-off technology for substrate recycling applications,” IEEE Trans. Electron. Dev. 59(3), 666–672 (2012).
[Crossref]

Wu, F. L.

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

R. H. Horng, M. C. Tseng, F. L. Wu, C. H. Li, C. H. Wu, and M. D. Yang, “Thin film solar cells fabricated using cross-shaped pattern epilayer lift-off technology for substrate recycling applications,” IEEE Trans. Electron. Dev. 59(3), 666–672 (2012).
[Crossref]

Wu, Y. C. S.

W. C. Peng and Y. C. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding,” Appl. Phys. Lett. 84(11), 1841–1843 (2004).
[Crossref]

Wuu, D. S.

R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang, and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys. 43(4B4B), L576–L578 (2004).
[Crossref]

Yang, M. D.

R. H. Horng, M. C. Tseng, F. L. Wu, C. H. Li, C. H. Wu, and M. D. Yang, “Thin film solar cells fabricated using cross-shaped pattern epilayer lift-off technology for substrate recycling applications,” IEEE Trans. Electron. Dev. 59(3), 666–672 (2012).
[Crossref]

Yang, S. Y.

T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, “Fabrication process simulation and reliability improvement of high-brightness LEDs,” Microelectron. Reliab. 49(9–11), 1244–1249 (2009).
[Crossref]

Yoon, J.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Zagar, B.

B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sens. Actuators A Phys. 99(1–2), 172–182 (2002).

Zimprich, P.

B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sens. Actuators A Phys. 99(1–2), 172–182 (2002).

Appl. Phys. Lett. (2)

M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. 75(16), 2365–2367 (1999).
[Crossref]

W. C. Peng and Y. C. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding,” Appl. Phys. Lett. 84(11), 1841–1843 (2004).
[Crossref]

IEEE Circ. Dev. Mag. (1)

M. G. Craford, “LED’s challenge the incandescent,” IEEE Circ. Dev. Mag. 8(5), 24–29 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8(2), 321–332 (2002).
[Crossref]

IEEE Trans. Electron. Dev. (1)

R. H. Horng, M. C. Tseng, F. L. Wu, C. H. Li, C. H. Wu, and M. D. Yang, “Thin film solar cells fabricated using cross-shaped pattern epilayer lift-off technology for substrate recycling applications,” IEEE Trans. Electron. Dev. 59(3), 666–672 (2012).
[Crossref]

J. Appl. Phys. (1)

T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys. 95(5), 2203–2216 (2004).
[Crossref]

Jpn. J. Appl. Phys. (1)

R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang, and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys. 43(4B4B), L576–L578 (2004).
[Crossref]

Microelectron. Reliab. (1)

T. L. Chou, C. F. Huang, C. N. Han, S. Y. Yang, and K. N. Chiang, “Fabrication process simulation and reliability improvement of high-brightness LEDs,” Microelectron. Reliab. 49(9–11), 1244–1249 (2009).
[Crossref]

Nature (1)

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature 465(7296), 329–333 (2010).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

B. Weiss, V. Gröger, G. Khatibi, A. Kotas, P. Zimprich, R. Stickler, and B. Zagar, “Characterization of mechanical and thermal properties of thin Cu foils and wires,” Sens. Actuators A Phys. 99(1–2), 172–182 (2002).

Sol. Energy Mater. Sol. Cells (1)

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).
[Crossref]

Other (2)

S. Liu, K. Wang, Z. Gan, X. Luo, X. Song, Z. Chen, Z. Liu, H. Yan, W. Wei, and P. Wang, “Several Modeling Issues in LED, 3D-SiP, and Nano Interconnects,” in 10th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, (EuroSimE, 2009), pp. 1–10.
[Crossref]

M. Levinshtein, S. Rumyantsev, and M. Shur, “Handbook Series on Semiconductor Parameters,” 2, Ternary And Quaternary III–V Compounds, (World Scientific, 1999), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagrams of (a) epitaxial growth on the GaAs substrate, (b) chemical etching process to remove the GaAs substrate, (c) ELO process to separate the GaAs substrate, and (d) vertical-type AlGaInP LED fabricated on the Cu substrate.

Fig. 2
Fig. 2

Schematic diagrams of (a) the sample structure for FEM simulation, (b-f) various patterned Cu substrates with the structures A-E, and (g) the etching amounts of the AlAs sacrificial layer from 10% to 90% during the ELO process.

Fig. 3
Fig. 3

(a) Schematic diagram of AlGaInP LED on typical patterned Cu substrate with the structure B for the ELO process, (b) light emission image of the AlGaInP LED on Cu substrate at a driven current of 20 mA, (c) OM image focused on the corner of AlGaInP LED on Cu substrate, (d) SEM image of the AlGaInP LED on Cu substrate after the ELO process, and (e) SEM image with higher magnification focused on the cracks and voids existed in the upper right corner of LED chip (as shown in Fig. 3(d)).

Fig. 4
Fig. 4

(a) FEM simulation result of stress distribution for the GaAs substrate/AlAs/AlGaInP/Cu substrate (with the structure A) at 10% etching amount of AlAs layer through the ELO process, (b) the simulation results of stress distributions for these five AlGaInP LEDs on various patterned Cu substrates with the structures A, B, C, D, and E, (c) the simulated maximum stresses in these five samples as a function of etching amount of the AlAs layer from 10% to 90%, and (d) the schematic diagram of optimum patterned Cu substrate with the structure D for the fabrication of ELO-LED.

Fig. 5
Fig. 5

Spatial distribution images of light output for the ELO-LEDs fabricated on Cu substrates with the structures (a) B and (b) D at an injection current of 50 mA.

Fig. 6
Fig. 6

(a) photographs of the CE-LED and ELO-LED (fabricated on the patterned Cu substrate with the structure D) before and after operating, (b) I-V characteristics measured under the forward bias for these two LEDs (The inset shows the I-V characteristics measured under the reverse bias.), and (c) output powers and wall plug efficiencies as a function of injection current for these two LEDs.

Fig. 7
Fig. 7

(a) Peak emission wavelength as a function of injection current for the CE-LED and ELO-LED (fabricated on the patterned Cu substrate with the structure D) and surface temperature distributions for (b) CE-LED and (c) ELO-LED at an injection current of 350 mA.

Tables (1)

Tables Icon

Table 1 Parameters of all materials for the FEM simulation [11–13].

Metrics