Abstract

Layer-based method has been proposed as an efficient approach to calculate holograms for holographic image display. This paper further improves its calculation speed and depth cues quality by introducing three different techniques, an improved coding scheme, a multilayer depth- fused 3D method and a fraction method. As a result the total computation time is reduced more than 4 times, and holographic images with accommodation cue are calculated in real time to interactions with the displayed image in a proof-of-concept setting of head-mounted holographic displays.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Realization of real-time interactive 3D image holographic display [Invited]

Jhen-Si Chen and Daping Chu
Appl. Opt. 55(3) A127-A134 (2016)

Real-time layer-based computer-generated hologram calculation for the Fourier transform optical system

Antonin Gilles and Patrick Gioia
Appl. Opt. 57(29) 8508-8517 (2018)

Layered holographic stereogram based on inverse Fresnel diffraction

Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin
Appl. Opt. 55(3) A154-A159 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. H.-Y. Chen and T. D. Wilkinson, “Computer generated hologram from point cloud using graphics processor,” Appl. Opt. 48(36), 6841 (2009).
    [Crossref] [PubMed]
  2. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
    [Crossref] [PubMed]
  3. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
    [Crossref] [PubMed]
  4. S.-C. Kim and E.-S. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt. 48(6), 1030–1041 (2009).
    [Crossref] [PubMed]
  5. J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
    [Crossref] [PubMed]
  6. R. H. Chen and T. D. Wilkinson, “Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display,” Appl. Opt. 48(21), 4246–4255 (2009).
    [Crossref] [PubMed]
  7. H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
    [Crossref]
  8. T. Kurihara and Y. Takaki, “Shading of a computer-generated hologram by zone plate modulation,” Opt. Express 20(4), 3529–3540 (2012).
    [Crossref] [PubMed]
  9. J. Song, J. Park, and J.-I. Park, ‘Fast calculation of computer-generated holography using multi-graphic processing units’, in 2012 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2012), pp. 1–5.
    [Crossref]
  10. N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51(30), 7303–7307 (2012).
    [Crossref] [PubMed]
  11. P. Tsang, W.-K. Cheung, T.-C. Poon, and C. Zhou, “Holographic video at 40 frames per second for 4-million object points,” Opt. Express 19(16), 15205–15211 (2011).
    [Crossref] [PubMed]
  12. J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012).
    [Crossref] [PubMed]
  13. F. Remondino and S. El-Hakim, “Image-based 3D Modelling: A Review,” Photogramm. Rec. 21(115), 269–291 (2006).
    [Crossref]
  14. H. Shum and S. B. Kang, ‘Review of image-based rendering techniques’, Visual Communications and Image Processing 2000. International Society for Optics and Photonics, 2–13 (2000).
  15. M. Lucente, ‘Diffraction-Specific Fringe Computation for Electro-Holography’, Doctoral Thesis Dissertation, Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science, Cambridge MA USA (1994).
  16. W. Plesniak, M. Halle, J. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).
    [Crossref]
  17. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
    [Crossref] [PubMed]
  18. Q. Y. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove., “Real-time shader rendering of holographic stereograms,” Proc. SPIE 7233, 723302 (2009).
  19. J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove., “Diffraction Specific Coherent Panoramagrams of Real Scenes,” Proc. SPIE 7957, 795702 (2011).
    [Crossref]
  20. D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A 20(8), 1537–1545 (2003).
    [Crossref] [PubMed]
  21. D. Abookasis and J. Rosen, “Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene,” Appl. Opt. 45(25), 6533–6538 (2006).
    [Crossref] [PubMed]
  22. J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
    [Crossref]
  23. Q. Smithwick, J.-S. Chen, and D. Chu, ‘A Coarse Integral Holographic Display’, SID Symposium Digest of Technical Papers44(1), 310–313 (2013).
  24. K. Matsushima, ‘Wave-Field Rendering in Computational Holography: The Polygon-Based Method for Full-Parallax High-Definition CGHs’, IEEE/ACIS 9th International Conference on Computer and Information Science (ICIS), 846–851 (2010).
    [Crossref]
  25. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
    [Crossref] [PubMed]
  26. D. Im, E. Moon, Y. Park, D. Lee, J. Hahn, and H. Kim, “Phase-regularized polygon computer-generated holograms,” Opt. Lett. 39(12), 3642–3645 (2014).
    [Crossref] [PubMed]
  27. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
    [Crossref] [PubMed]
  28. D. Im, J. Cho, J. Hahn, B. Lee, and H. Kim, “Accelerated synthesis algorithm of polygon computer-generated holograms,” Opt. Express 23(3), 2863–2871 (2015).
    [Crossref] [PubMed]
  29. K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
    [Crossref]
  30. A. Kondoh and K. Matsushima, “Hidden surface removal in full‐parallax CGHs by silhouette approximation,” Syst. Comput. Jpn. 38(6), 53–61 (2007).
    [Crossref]
  31. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44(22), 4607–4614 (2005).
    [Crossref] [PubMed]
  32. H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281, 828110 (2012).
    [Crossref]
  33. J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
    [Crossref]
  34. J.-S. Chen, D. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imaging 23(2), 023016 (2014).
    [Crossref]
  35. S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
    [Crossref] [PubMed]
  36. C. Lee, S. DiVerdi, and T. Höllerer, ‘An immaterial depth-fused 3D display’, in Proceedings of the 2007 ACM symposium on Virtual reality software and technology, New York, NY, USA, 191–198 (2007).
    [Crossref]
  37. ‘Psychtoolbox Wiki: Psychtoolbox-3′. [Online]. Available: http://psychtoolbox.org/ . [Accessed: 21-May-2015].
  38. ‘OpenGL - The Industry Standard for High Performance Graphics’. [Online]. Available: http://www.opengl.org/ . [Accessed: 21-May-2015].
  39. T. Meeser, C. von Kopylow, and C. Falldorf, ‘Advanced digital lensless fourier holography by means of a spatial light modulator’ in 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON, 2010), pp. 1–4.
    [Crossref]
  40. J. Liang and M. F. Becker, “Spatial bandwidth analysis of fast backward Fresnel diffraction for precise computer-generated hologram design,” Appl. Opt. 53(27), G84–G94 (2014).
    [Crossref] [PubMed]
  41. R. A. Farrar and M. Southfield, ‘Helmet-mounted Holographic Aiming Sight’, U.S. Patent No 3,633,988, 11-Jan-1970.
  42. H.-E. Kim, N. Kim, H. Song, H.-S. Lee, and J.-H. Park, “Three-dimensional holographic display using active shutter for head mounted display application,” Proc. SPIE 7863, 78631Y (2011).
    [Crossref]
  43. T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, ‘Eyepiece-type Full-color Electro-holographic Binocular Display with See-through Vision’, in Digital Holography and Three-Dimensional Imaging, DW2A.11 (2013).
    [Crossref]
  44. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref] [PubMed]
  45. D. Palima and V. R. Daria, “Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms,” Appl. Opt. 45(26), 6689–6693 (2006).
    [Crossref] [PubMed]
  46. D. Palima and V. R. Daria, “Holographic projection of arbitrary light patterns with a suppressed zero-order beam,” Appl. Opt. 46(20), 4197–4201 (2007).
    [Crossref] [PubMed]
  47. J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl. Opt. 51(16), 3294–3304 (2012).
    [Crossref] [PubMed]
  48. “The Stanford 3D scanning repository,” [Online]. Available: http://graphics.stanford.edu/data/3Dscanrep/ .
  49. 49. “World leader in visual computing technologies NVIDIA,” [Online]. Available: http://www.nvidia.com/page/home.html .

2015 (1)

2014 (4)

2013 (4)

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref] [PubMed]

J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (4)

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove., “Diffraction Specific Coherent Panoramagrams of Real Scenes,” Proc. SPIE 7957, 795702 (2011).
[Crossref]

H.-E. Kim, N. Kim, H. Song, H.-S. Lee, and J.-H. Park, “Three-dimensional holographic display using active shutter for head mounted display application,” Proc. SPIE 7863, 78631Y (2011).
[Crossref]

P. Tsang, W.-K. Cheung, T.-C. Poon, and C. Zhou, “Holographic video at 40 frames per second for 4-million object points,” Opt. Express 19(16), 15205–15211 (2011).
[Crossref] [PubMed]

2009 (6)

2008 (2)

2007 (2)

A. Kondoh and K. Matsushima, “Hidden surface removal in full‐parallax CGHs by silhouette approximation,” Syst. Comput. Jpn. 38(6), 53–61 (2007).
[Crossref]

D. Palima and V. R. Daria, “Holographic projection of arbitrary light patterns with a suppressed zero-order beam,” Appl. Opt. 46(20), 4197–4201 (2007).
[Crossref] [PubMed]

2006 (4)

2005 (1)

2004 (2)

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

2003 (1)

Abookasis, D.

Barabas, J.

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove., “Diffraction Specific Coherent Panoramagrams of Real Scenes,” Proc. SPIE 7957, 795702 (2011).
[Crossref]

Q. Y. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove., “Real-time shader rendering of holographic stereograms,” Proc. SPIE 7233, 723302 (2009).

W. Plesniak, M. Halle, J. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).
[Crossref]

Becker, M. F.

Bove, J.

W. Plesniak, M. Halle, J. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).
[Crossref]

Bove, V. M.

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove., “Diffraction Specific Coherent Panoramagrams of Real Scenes,” Proc. SPIE 7957, 795702 (2011).
[Crossref]

Q. Y. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove., “Real-time shader rendering of holographic stereograms,” Proc. SPIE 7233, 723302 (2009).

Chen, J.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Chen, J.-S.

J.-S. Chen, D. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imaging 23(2), 023016 (2014).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

Q. Smithwick, J.-S. Chen, and D. Chu, ‘A Coarse Integral Holographic Display’, SID Symposium Digest of Technical Papers44(1), 310–313 (2013).

Chen, R. H.

Chen, R. H.-Y.

Cheung, W.-K.

Cho, J.

Chu, D.

J.-S. Chen, D. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imaging 23(2), 023016 (2014).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Q. Smithwick, J.-S. Chen, and D. Chu, ‘A Coarse Integral Holographic Display’, SID Symposium Digest of Technical Papers44(1), 310–313 (2013).

Collings, N.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Crossland, B.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Daria, V. R.

DiVerdi, S.

C. Lee, S. DiVerdi, and T. Höllerer, ‘An immaterial depth-fused 3D display’, in Proceedings of the 2007 ACM symposium on Virtual reality software and technology, New York, NY, USA, 191–198 (2007).
[Crossref]

El-Hakim, S.

F. Remondino and S. El-Hakim, “Image-based 3D Modelling: A Review,” Photogramm. Rec. 21(115), 269–291 (2006).
[Crossref]

Fatemi, F. K.

Hahn, J.

Halle, M.

W. Plesniak, M. Halle, J. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).
[Crossref]

Höllerer, T.

C. Lee, S. DiVerdi, and T. Höllerer, ‘An immaterial depth-fused 3D display’, in Proceedings of the 2007 ACM symposium on Virtual reality software and technology, New York, NY, USA, 191–198 (2007).
[Crossref]

Im, D.

Ito, T.

Jia, J.

Jiang, W.

Jolly, S.

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove., “Diffraction Specific Coherent Panoramagrams of Real Scenes,” Proc. SPIE 7957, 795702 (2011).
[Crossref]

Kang, H.

Kim, E.-S.

Kim, H.

Kim, H.-E.

H.-E. Kim, N. Kim, H. Song, H.-S. Lee, and J.-H. Park, “Three-dimensional holographic display using active shutter for head mounted display application,” Proc. SPIE 7863, 78631Y (2011).
[Crossref]

Kim, M.

Kim, N.

H.-E. Kim, N. Kim, H. Song, H.-S. Lee, and J.-H. Park, “Three-dimensional holographic display using active shutter for head mounted display application,” Proc. SPIE 7863, 78631Y (2011).
[Crossref]

Kim, S.-C.

Kondoh, A.

A. Kondoh and K. Matsushima, “Hidden surface removal in full‐parallax CGHs by silhouette approximation,” Syst. Comput. Jpn. 38(6), 53–61 (2007).
[Crossref]

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

Kurihara, T.

Lee, B.

Lee, C.

C. Lee, S. DiVerdi, and T. Höllerer, ‘An immaterial depth-fused 3D display’, in Proceedings of the 2007 ACM symposium on Virtual reality software and technology, New York, NY, USA, 191–198 (2007).
[Crossref]

Lee, D.

Lee, H.-S.

H.-E. Kim, N. Kim, H. Song, H.-S. Lee, and J.-H. Park, “Three-dimensional holographic display using active shutter for head mounted display application,” Proc. SPIE 7863, 78631Y (2011).
[Crossref]

Li, X.

Liang, J.

Liu, J.

Masuda, N.

Matsushima, K.

H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281, 828110 (2012).
[Crossref]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
[Crossref] [PubMed]

A. Kondoh and K. Matsushima, “Hidden surface removal in full‐parallax CGHs by silhouette approximation,” Syst. Comput. Jpn. 38(6), 53–61 (2007).
[Crossref]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44(22), 4607–4614 (2005).
[Crossref] [PubMed]

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

Moon, E.

Nakahara, S.

H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281, 828110 (2012).
[Crossref]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
[Crossref] [PubMed]

Nakayama, H.

Nishi, H.

H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281, 828110 (2012).
[Crossref]

Ohtsuka, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Oikawa, M.

Okada, N.

Palima, D.

Pan, Y.

Pappu, R.

W. Plesniak, M. Halle, J. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).
[Crossref]

Park, J.

J. Song, J. Park, and J.-I. Park, ‘Fast calculation of computer-generated holography using multi-graphic processing units’, in 2012 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2012), pp. 1–5.
[Crossref]

Park, J.-H.

H.-E. Kim, N. Kim, H. Song, H.-S. Lee, and J.-H. Park, “Three-dimensional holographic display using active shutter for head mounted display application,” Proc. SPIE 7863, 78631Y (2011).
[Crossref]

Park, J.-I.

J. Song, J. Park, and J.-I. Park, ‘Fast calculation of computer-generated holography using multi-graphic processing units’, in 2012 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2012), pp. 1–5.
[Crossref]

Park, Y.

Plesniak, W.

W. Plesniak, M. Halle, J. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).
[Crossref]

Poon, T.-C.

Remondino, F.

F. Remondino and S. El-Hakim, “Image-based 3D Modelling: A Review,” Photogramm. Rec. 21(115), 269–291 (2006).
[Crossref]

Roh, J.

Rosen, J.

Sakai, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Shimobaba, T.

Shiraki, A.

Smalley, D. E.

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove., “Diffraction Specific Coherent Panoramagrams of Real Scenes,” Proc. SPIE 7957, 795702 (2011).
[Crossref]

Q. Y. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove., “Real-time shader rendering of holographic stereograms,” Proc. SPIE 7233, 723302 (2009).

Smithwick, Q.

J.-S. Chen, D. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imaging 23(2), 023016 (2014).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

Q. Smithwick, J.-S. Chen, and D. Chu, ‘A Coarse Integral Holographic Display’, SID Symposium Digest of Technical Papers44(1), 310–313 (2013).

Smithwick, Q. Y.

Q. Y. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove., “Real-time shader rendering of holographic stereograms,” Proc. SPIE 7233, 723302 (2009).

Song, H.

H.-E. Kim, N. Kim, H. Song, H.-S. Lee, and J.-H. Park, “Three-dimensional holographic display using active shutter for head mounted display application,” Proc. SPIE 7863, 78631Y (2011).
[Crossref]

Song, J.

J. Song, J. Park, and J.-I. Park, ‘Fast calculation of computer-generated holography using multi-graphic processing units’, in 2012 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2012), pp. 1–5.
[Crossref]

Sun, Z.

Suyama, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Takada, H.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Takada, N.

Takaki, Y.

Tsang, P.

Uehira, K.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Wang, Y.

Weng, J.

Wilkinson, T. D.

Wu, S. Y.

Xie, J.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Yamaguchi, T.

Yoshikawa, H.

Zhang, B.

Zhang, H.

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

Zhao, Q.

Zhou, C.

Appl. Opt. (15)

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44(22), 4607–4614 (2005).
[Crossref] [PubMed]

D. Abookasis and J. Rosen, “Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene,” Appl. Opt. 45(25), 6533–6538 (2006).
[Crossref] [PubMed]

D. Palima and V. R. Daria, “Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms,” Appl. Opt. 45(26), 6689–6693 (2006).
[Crossref] [PubMed]

D. Palima and V. R. Daria, “Holographic projection of arbitrary light patterns with a suppressed zero-order beam,” Appl. Opt. 46(20), 4197–4201 (2007).
[Crossref] [PubMed]

H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
[Crossref] [PubMed]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
[Crossref] [PubMed]

S.-C. Kim and E.-S. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt. 48(6), 1030–1041 (2009).
[Crossref] [PubMed]

R. H. Chen and T. D. Wilkinson, “Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display,” Appl. Opt. 48(21), 4246–4255 (2009).
[Crossref] [PubMed]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
[Crossref] [PubMed]

R. H.-Y. Chen and T. D. Wilkinson, “Computer generated hologram from point cloud using graphics processor,” Appl. Opt. 48(36), 6841 (2009).
[Crossref] [PubMed]

J. Liang, S. Y. Wu, F. K. Fatemi, and M. F. Becker, “Suppression of the zero-order diffracted beam from a pixelated spatial light modulator by phase compression,” Appl. Opt. 51(16), 3294–3304 (2012).
[Crossref] [PubMed]

N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51(30), 7303–7307 (2012).
[Crossref] [PubMed]

Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
[Crossref] [PubMed]

J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
[Crossref] [PubMed]

J. Liang and M. F. Becker, “Spatial bandwidth analysis of fast backward Fresnel diffraction for precise computer-generated hologram design,” Appl. Opt. 53(27), G84–G94 (2014).
[Crossref] [PubMed]

J. Electron. Imaging (1)

J.-S. Chen, D. Chu, and Q. Smithwick, “Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling,” J. Electron. Imaging 23(2), 023016 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

H. Zhang, N. Collings, J. Chen, B. Crossland, D. Chu, and J. Xie, “Full parallax three-dimensional display with occlusion effect using computer generated hologram,” Opt. Eng. 50(7), 074003 (2011).
[Crossref]

W. Plesniak, M. Halle, J. Bove, J. Barabas, and R. Pappu, “Reconfigurable image projection holograms,” Opt. Eng. 45(11), 115801 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Photogramm. Rec. (1)

F. Remondino and S. El-Hakim, “Image-based 3D Modelling: A Review,” Photogramm. Rec. 21(115), 269–291 (2006).
[Crossref]

Proc. SPIE (7)

Q. Y. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove., “Real-time shader rendering of holographic stereograms,” Proc. SPIE 7233, 723302 (2009).

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove., “Diffraction Specific Coherent Panoramagrams of Real Scenes,” Proc. SPIE 7957, 795702 (2011).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

H. Nishi, K. Matsushima, and S. Nakahara, “Advanced rendering techniques for producing specular smooth surfaces in polygon-based high-definition computer holography,” Proc. SPIE 8281, 828110 (2012).
[Crossref]

J.-S. Chen, Q. Smithwick, and D. Chu, “Implementation of shading effect for reconstruction of smooth layer-based 3D holographic images,” Proc. SPIE 8648, 86480R (2013).
[Crossref]

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

H.-E. Kim, N. Kim, H. Song, H.-S. Lee, and J.-H. Park, “Three-dimensional holographic display using active shutter for head mounted display application,” Proc. SPIE 7863, 78631Y (2011).
[Crossref]

Syst. Comput. Jpn. (1)

A. Kondoh and K. Matsushima, “Hidden surface removal in full‐parallax CGHs by silhouette approximation,” Syst. Comput. Jpn. 38(6), 53–61 (2007).
[Crossref]

Vision Res. (1)

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Other (13)

C. Lee, S. DiVerdi, and T. Höllerer, ‘An immaterial depth-fused 3D display’, in Proceedings of the 2007 ACM symposium on Virtual reality software and technology, New York, NY, USA, 191–198 (2007).
[Crossref]

‘Psychtoolbox Wiki: Psychtoolbox-3′. [Online]. Available: http://psychtoolbox.org/ . [Accessed: 21-May-2015].

‘OpenGL - The Industry Standard for High Performance Graphics’. [Online]. Available: http://www.opengl.org/ . [Accessed: 21-May-2015].

T. Meeser, C. von Kopylow, and C. Falldorf, ‘Advanced digital lensless fourier holography by means of a spatial light modulator’ in 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON, 2010), pp. 1–4.
[Crossref]

R. A. Farrar and M. Southfield, ‘Helmet-mounted Holographic Aiming Sight’, U.S. Patent No 3,633,988, 11-Jan-1970.

Q. Smithwick, J.-S. Chen, and D. Chu, ‘A Coarse Integral Holographic Display’, SID Symposium Digest of Technical Papers44(1), 310–313 (2013).

K. Matsushima, ‘Wave-Field Rendering in Computational Holography: The Polygon-Based Method for Full-Parallax High-Definition CGHs’, IEEE/ACIS 9th International Conference on Computer and Information Science (ICIS), 846–851 (2010).
[Crossref]

H. Shum and S. B. Kang, ‘Review of image-based rendering techniques’, Visual Communications and Image Processing 2000. International Society for Optics and Photonics, 2–13 (2000).

M. Lucente, ‘Diffraction-Specific Fringe Computation for Electro-Holography’, Doctoral Thesis Dissertation, Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science, Cambridge MA USA (1994).

J. Song, J. Park, and J.-I. Park, ‘Fast calculation of computer-generated holography using multi-graphic processing units’, in 2012 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (2012), pp. 1–5.
[Crossref]

T. Yoneyama, C. Yang, Y. Sakamoto, and F. Okuyama, ‘Eyepiece-type Full-color Electro-holographic Binocular Display with See-through Vision’, in Digital Holography and Three-Dimensional Imaging, DW2A.11 (2013).
[Crossref]

“The Stanford 3D scanning repository,” [Online]. Available: http://graphics.stanford.edu/data/3Dscanrep/ .

49. “World leader in visual computing technologies NVIDIA,” [Online]. Available: http://www.nvidia.com/page/home.html .

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (10953 KB)      Multimedia video file

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Illustration of the use of multi-layer DF3D method. (a) Source data to be reconstructed; (b) in normal layer-based method; (c) in multi-layer DF3D method.
Fig. 2
Fig. 2 The illustration of effective viewing angle in multi-layer DF3D and normal DF3D methods.
Fig. 3
Fig. 3 The illustration of blurring improvement by reducing distance between two DF3D layers.
Fig. 4
Fig. 4 Illustration of the tiling method.
Fig. 5
Fig. 5 Illustration of the fraction method.
Fig. 6
Fig. 6 Conceptual sketch of a head mounted holographic display (single eye model).
Fig. 7
Fig. 7 Experimental set-up used for the demonstration of the concept of a HMD holographic display.
Fig. 8
Fig. 8 An illustration of the system procedure of the algorithm in this paper.
Fig. 9
Fig. 9 The actual images perceived through the HMD holographic display.
Fig. 10
Fig. 10 A holographic object as observed through the head-mounted holographic display.
Fig. 11
Fig. 11 Comparison between normal layer-based method, with DF3D method, and with multilayer DF3D method.
Fig. 12
Fig. 12 (a) Sketch of the designed 3D object and (b) some of the extract video frames (Visualization 1).

Tables (4)

Tables Icon

Table 1 The information of used hardware and software

Tables Icon

Table 2 important parameters

Tables Icon

Table 3 Results after using each proposed methods for improving calculation performance. (Unit: ms)

Tables Icon

Table 4 Specification of used hardware

Metrics