Abstract

We study the creation and erasure of the linear electrooptical effect in silicate fibers by optical poling. Carriers are released by exposure to green light and displaced with simultaneous application of an internal dc field. The second order nonlinear coefficient induced grows with poling bias. The field recorded (~108 V/m) is comparable to that obtained through classical thermal poling of fibers. In the regime studied here, the second-order nonlinearity induced (~0.06 pm/V) is limited by the field applied during poling (1.2 × 108 V/m). Optical erasure with high-power green light alone is very efficient. The dynamics of the writing and erasing process is discussed, and the two dimensional (2D) field distribution across the fiber is simulated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of thermally poled fibers with a two-dimensional model

Alexandre Camara, Oleksandr Tarasenko, and Walter Margulis
Opt. Express 22(15) 17700-17715 (2014)

Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes

Niklas Myrén, Håkan Olsson, Lars Norin, Niclas Sjödin, Per Helander, Jan Svennebrink, and Walter Margulis
Opt. Express 12(25) 6093-6099 (2004)

Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes

W. Margulis, O. Tarasenko, and N. Myrén
Opt. Express 17(18) 15534-15540 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [Crossref] [PubMed]
  2. P. G. Kazansky, L. Dong, and P. S. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
    [Crossref] [PubMed]
  3. D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).
    [Crossref]
  4. P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
    [Crossref]
  5. R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett. 12(8), 585–587 (1987).
    [Crossref] [PubMed]
  6. W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
    [Crossref]
  7. M.-V. Bergot, M. C. Farries, M. E. Fermann, L. Li, L. J. Poyntz-Wright, P. S. Russell, and A. Smithson, “Generation of permanent optically induced second-order nonlinearities in optical fibers by poling,” Opt. Lett. 13(7), 592–594 (1988).
    [Crossref] [PubMed]
  8. V. Mizrahi and J. E. Sipe, “Generation of permanent optically induced second-order nonlinearities in optical fibers by poling: comment,” Appl. Opt. 28(11), 1976–1977 (1989).
    [Crossref] [PubMed]
  9. P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B 14(11), 3170–3179 (1997).
    [Crossref]
  10. C. Corbari, A. V. Gladyshev, L. Lago, M. Ibsen, Y. Hernandez, and P. G. Kazansky, “All-fiber frequency-doubled visible laser,” Opt. Lett. 39(22), 6505–6508 (2014).
    [Crossref] [PubMed]
  11. E. L. Lim, C. Corbari, A. V. Gladyshev, S. U. Alam, M. Ibsen, D. J. Richardson, and P. G. Kazansky, “Multi-watt all-fiber frequency doubled laser,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP), Barcelona, Spain, JTu6A.5, (2014).
    [Crossref]
  12. T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
    [Crossref]
  13. Y. Quiquempois, G. Martinelli, P. Niay, P. Bernage, M. Douay, J. F. Bayon, and H. Poignant, “Photoinscription of Bragg gratings within a germanosilicate fiber subjected to a high static electric field,” Opt. Lett. 24(3), 139–141 (1999).
    [Crossref] [PubMed]
  14. F. Ouellette, K. O. Hill, and D. C. Johnson, “Light-induced erasure of self-organized χ(2) gratings in optical fibers,” Opt. Lett. 13(6), 515–517 (1988).
    [Crossref] [PubMed]
  15. W. Margulis and A. Krotkus, “Investigation of the preparation process for efficient second-harmonic generation in optical fibers,” Appl. Phys. Lett. 52(23), 1942–1944 (1988).
    [Crossref]
  16. M. M. Lacerda, I. C. S. Carvalho, W. Margulis, and B. Lesche, “Saturation of self-prepared frequency doubling fibres,” Electron. Lett. 30(9), 732–733 (1994).
    [Crossref]
  17. P. A. Novikov, O. I. Medvedkov, A. F. Kosolapov, M. V. Yashkov, S. A. Vasiliev, and A. V. Gladyshev, “Investigation of the stability of all-fibre frequency doublers exposed to intense 532-nm radiation,” in Proc. 6th Russian Fiber Lasers Conference RFL-2014, page 82, 14–18 April 2014, Novosibirsk, Russia. (in Russian).
  18. I. C. S. Carvalho, W. Margulis, and B. Lesche, “Erasure of frequency doubling grating in fibers by ultraviolet light excitation,” Electron. Lett. 27(17), 1497–1500 (1991).
    [Crossref]
  19. J. M. Dell, M. J. Joyce, and G. O. Stone, “Erasure of poling induced second order optical nonlinearities in silica by UV exposure,” Proceedings SPIE Vol. 2289 Doped Fiber Devices and Systems 185- 193 (1994).
    [Crossref]
  20. P. St. J. Russell, L. J. Poyntz-Wright, and D. P. Hand, (1991) “Frequency doubling, absorption and grating deformation in glass fibres: effective defects or defective effects?” in, M. J. F. Digonnet (ed.) Fiber Laser Sources and Amplifiers II. Bellingham, US, Proceedings of SPIE 1373, 126–139 (1991).
  21. O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett. 32(11), 1356–1358 (2007).
    [Crossref] [PubMed]
  22. N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express 12(25), 6093–6099 (2004).
    [Crossref] [PubMed]
  23. S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
    [Crossref]
  24. W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express 17(18), 15534–15540 (2009).
    [Crossref] [PubMed]
  25. A. Camara, O. Tarasenko, and W. Margulis, “Study of thermally poled fibers with a two-dimensional model,” Opt. Express 22(15), 17700–17715 (2014).
    [Crossref] [PubMed]
  26. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space-charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
    [Crossref]
  27. H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21(7), 468–470 (1996).
    [Crossref] [PubMed]
  28. Y. Quiquempois, A. Kudlinski, and G. Martinelli, “Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer,” J. Opt. Soc. Am. B 22(3), 598–604 (2005).
    [Crossref]
  29. A. Kudlinsky, Y. Quiquempois, and G. Martinelli, “Why the thermal poling could be inefficient in fibres,” in 30th European Conference on Optical Communications, Stockholm, Sweden (2004), 2, pp. 236–237.
  30. R. C. Hughes, “Charge-carrier transport phenomena in amorphous SiO: direct measurement of the drift mobility and lifetimes,” Phys. Rev. Lett. 30(26), 1333–1336 (1973).
    [Crossref]
  31. W. Q. Zhang, S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Lead silicate microstructured optical fibres for electro-optical applications,” Opt. Express 21(25), 31309–31317 (2013).
    [Crossref] [PubMed]
  32. K. Yadav, C. L. Callender, C. W. Smelser, C. Ledderhof, C. Blanchetiere, S. Jacob, and J. Albert, “Giant enhancement of the second harmonic generation efficiency in poled multilayered silica glass structures,” Opt. Express 19(27), 26975–26983 (2011).
    [PubMed]

2014 (2)

2013 (1)

2011 (1)

2009 (1)

2008 (1)

S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[Crossref]

2007 (1)

2005 (1)

2004 (1)

1999 (2)

1998 (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space-charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[Crossref]

1997 (1)

1996 (1)

1995 (2)

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
[Crossref]

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

1994 (3)

M. M. Lacerda, I. C. S. Carvalho, W. Margulis, and B. Lesche, “Saturation of self-prepared frequency doubling fibres,” Electron. Lett. 30(9), 732–733 (1994).
[Crossref]

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[Crossref]

P. G. Kazansky, L. Dong, and P. S. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[Crossref] [PubMed]

1991 (2)

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[Crossref] [PubMed]

I. C. S. Carvalho, W. Margulis, and B. Lesche, “Erasure of frequency doubling grating in fibers by ultraviolet light excitation,” Electron. Lett. 27(17), 1497–1500 (1991).
[Crossref]

1989 (1)

1988 (3)

1987 (1)

1973 (1)

R. C. Hughes, “Charge-carrier transport phenomena in amorphous SiO: direct measurement of the drift mobility and lifetimes,” Phys. Rev. Lett. 30(26), 1333–1336 (1973).
[Crossref]

Albert, J.

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space-charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[Crossref]

An, H.

S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[Crossref]

Bayon, J. F.

Bergot, M.-V.

Bernage, P.

Blanchetiere, C.

Brueck, S. R. J.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space-charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[Crossref]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[Crossref] [PubMed]

Callender, C. L.

Camara, A.

Carvalho, I. C. S.

M. M. Lacerda, I. C. S. Carvalho, W. Margulis, and B. Lesche, “Saturation of self-prepared frequency doubling fibres,” Electron. Lett. 30(9), 732–733 (1994).
[Crossref]

I. C. S. Carvalho, W. Margulis, and B. Lesche, “Erasure of frequency doubling grating in fibers by ultraviolet light excitation,” Electron. Lett. 27(17), 1497–1500 (1991).
[Crossref]

Corbari, C.

Dong, L.

Douay, M.

Ebendorff-Heidepriem, H.

Farries, M. C.

Fermann, M. E.

Fleming, S.

S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[Crossref]

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).
[Crossref]

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Fujiwara, T.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Gladyshev, A. V.

Helander, P.

Hernandez, Y.

Hill, K. O.

Hughes, R. C.

R. C. Hughes, “Charge-carrier transport phenomena in amorphous SiO: direct measurement of the drift mobility and lifetimes,” Phys. Rev. Lett. 30(26), 1333–1336 (1973).
[Crossref]

Ibsen, M.

Jacob, S.

Janos, M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).
[Crossref]

Johnson, D. C.

Kazansky, P. G.

Krotkus, A.

W. Margulis and A. Krotkus, “Investigation of the preparation process for efficient second-harmonic generation in optical fibers,” Appl. Phys. Lett. 52(23), 1942–1944 (1988).
[Crossref]

Kudlinski, A.

Kudlinsky, A.

A. Kudlinsky, Y. Quiquempois, and G. Martinelli, “Why the thermal poling could be inefficient in fibres,” in 30th European Conference on Optical Communications, Stockholm, Sweden (2004), 2, pp. 236–237.

Lacerda, M. M.

M. M. Lacerda, I. C. S. Carvalho, W. Margulis, and B. Lesche, “Saturation of self-prepared frequency doubling fibres,” Electron. Lett. 30(9), 732–733 (1994).
[Crossref]

Lago, L.

Laurell, F.

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
[Crossref]

Ledderhof, C.

Lesche, B.

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
[Crossref]

M. M. Lacerda, I. C. S. Carvalho, W. Margulis, and B. Lesche, “Saturation of self-prepared frequency doubling fibres,” Electron. Lett. 30(9), 732–733 (1994).
[Crossref]

I. C. S. Carvalho, W. Margulis, and B. Lesche, “Erasure of frequency doubling grating in fibers by ultraviolet light excitation,” Electron. Lett. 27(17), 1497–1500 (1991).
[Crossref]

Li, L.

Lo, K.-M.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).
[Crossref]

Manning, S.

Margulis, W.

A. Camara, O. Tarasenko, and W. Margulis, “Study of thermally poled fibers with a two-dimensional model,” Opt. Express 22(15), 17700–17715 (2014).
[Crossref] [PubMed]

W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express 17(18), 15534–15540 (2009).
[Crossref] [PubMed]

O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett. 32(11), 1356–1358 (2007).
[Crossref] [PubMed]

N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express 12(25), 6093–6099 (2004).
[Crossref] [PubMed]

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
[Crossref]

M. M. Lacerda, I. C. S. Carvalho, W. Margulis, and B. Lesche, “Saturation of self-prepared frequency doubling fibres,” Electron. Lett. 30(9), 732–733 (1994).
[Crossref]

I. C. S. Carvalho, W. Margulis, and B. Lesche, “Erasure of frequency doubling grating in fibers by ultraviolet light excitation,” Electron. Lett. 27(17), 1497–1500 (1991).
[Crossref]

W. Margulis and A. Krotkus, “Investigation of the preparation process for efficient second-harmonic generation in optical fibers,” Appl. Phys. Lett. 52(23), 1942–1944 (1988).
[Crossref]

Martinelli, G.

Mizrahi, V.

Monro, T. M.

Morinaga, K.

Mukherjee, N.

Myers, R. A.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space-charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[Crossref]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[Crossref] [PubMed]

Myrén, N.

Niay, P.

Norin, L.

Olsson, H.

Ouellette, F.

Poignant, H.

Poole, S.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Poyntz-Wright, L. J.

Pruneri, V.

Quiquempois, Y.

Russel, P. St. J.

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[Crossref]

Russell, P. S.

Russell, P. St. J.

Sceats, M.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Sipe, J. E.

Sjödin, N.

Smelser, C. W.

Smithson, A.

Stolen, R. H.

Svennebrink, J.

Takebe, H.

Tarasenko, O.

Tom, H. W. K.

Wong, D.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).
[Crossref]

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Xu, W.

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).
[Crossref]

Yadav, K.

Zhang, W. Q.

Zhao, Y.

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Margulis and A. Krotkus, “Investigation of the preparation process for efficient second-harmonic generation in optical fibers,” Appl. Phys. Lett. 52(23), 1942–1944 (1988).
[Crossref]

Electron. Lett. (3)

M. M. Lacerda, I. C. S. Carvalho, W. Margulis, and B. Lesche, “Saturation of self-prepared frequency doubling fibres,” Electron. Lett. 30(9), 732–733 (1994).
[Crossref]

I. C. S. Carvalho, W. Margulis, and B. Lesche, “Erasure of frequency doubling grating in fibers by ultraviolet light excitation,” Electron. Lett. 27(17), 1497–1500 (1991).
[Crossref]

T. Fujiwara, D. Wong, Y. Zhao, S. Fleming, S. Poole, and M. Sceats, “Electro-optic modulation in germanosilicate fibre with UV-excited poling,” Electron. Lett. 31(7), 573–575 (1995).
[Crossref]

J. Ceram. Soc. Jpn. (1)

S. Fleming and H. An, “Poled glasses and poled fiber devices,” J. Ceram. Soc. Jpn. 116(1358), 1007–1023 (2008).
[Crossref]

J. Non-Cryst. Solids (1)

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space-charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[Crossref]

J. Opt. Soc. Am. B (2)

Nature (1)

W. Margulis, F. Laurell, and B. Lesche, “Imaging the nonlinear grating in frequency-doubling fibres,” Nature 378(6558), 699–701 (1995).
[Crossref]

Opt. Commun. (1)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[Crossref]

Opt. Express (5)

Opt. Fib. Tech. (1)

D. Wong, W. Xu, S. Fleming, M. Janos, and K.-M. Lo, “Frozen-in electrical field in thermally poled fibers,” Opt. Fib. Tech. 5(2), 235–241 (1999).
[Crossref]

Opt. Lett. (9)

R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett. 12(8), 585–587 (1987).
[Crossref] [PubMed]

M.-V. Bergot, M. C. Farries, M. E. Fermann, L. Li, L. J. Poyntz-Wright, P. S. Russell, and A. Smithson, “Generation of permanent optically induced second-order nonlinearities in optical fibers by poling,” Opt. Lett. 13(7), 592–594 (1988).
[Crossref] [PubMed]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[Crossref] [PubMed]

P. G. Kazansky, L. Dong, and P. S. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19(10), 701–703 (1994).
[Crossref] [PubMed]

C. Corbari, A. V. Gladyshev, L. Lago, M. Ibsen, Y. Hernandez, and P. G. Kazansky, “All-fiber frequency-doubled visible laser,” Opt. Lett. 39(22), 6505–6508 (2014).
[Crossref] [PubMed]

Y. Quiquempois, G. Martinelli, P. Niay, P. Bernage, M. Douay, J. F. Bayon, and H. Poignant, “Photoinscription of Bragg gratings within a germanosilicate fiber subjected to a high static electric field,” Opt. Lett. 24(3), 139–141 (1999).
[Crossref] [PubMed]

H. Takebe, P. G. Kazansky, P. St. J. Russell, and K. Morinaga, “Effect of poling conditions on second-harmonic generation in fused silica,” Opt. Lett. 21(7), 468–470 (1996).
[Crossref] [PubMed]

F. Ouellette, K. O. Hill, and D. C. Johnson, “Light-induced erasure of self-organized χ(2) gratings in optical fibers,” Opt. Lett. 13(6), 515–517 (1988).
[Crossref] [PubMed]

O. Tarasenko and W. Margulis, “Electro-optical fiber modulation in a Sagnac interferometer,” Opt. Lett. 32(11), 1356–1358 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. C. Hughes, “Charge-carrier transport phenomena in amorphous SiO: direct measurement of the drift mobility and lifetimes,” Phys. Rev. Lett. 30(26), 1333–1336 (1973).
[Crossref]

Other (5)

A. Kudlinsky, Y. Quiquempois, and G. Martinelli, “Why the thermal poling could be inefficient in fibres,” in 30th European Conference on Optical Communications, Stockholm, Sweden (2004), 2, pp. 236–237.

E. L. Lim, C. Corbari, A. V. Gladyshev, S. U. Alam, M. Ibsen, D. J. Richardson, and P. G. Kazansky, “Multi-watt all-fiber frequency doubled laser,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP), Barcelona, Spain, JTu6A.5, (2014).
[Crossref]

J. M. Dell, M. J. Joyce, and G. O. Stone, “Erasure of poling induced second order optical nonlinearities in silica by UV exposure,” Proceedings SPIE Vol. 2289 Doped Fiber Devices and Systems 185- 193 (1994).
[Crossref]

P. St. J. Russell, L. J. Poyntz-Wright, and D. P. Hand, (1991) “Frequency doubling, absorption and grating deformation in glass fibres: effective defects or defective effects?” in, M. J. F. Digonnet (ed.) Fiber Laser Sources and Amplifiers II. Bellingham, US, Proceedings of SPIE 1373, 126–139 (1991).

P. A. Novikov, O. I. Medvedkov, A. F. Kosolapov, M. V. Yashkov, S. A. Vasiliev, and A. V. Gladyshev, “Investigation of the stability of all-fibre frequency doublers exposed to intense 532-nm radiation,” in Proc. 6th Russian Fiber Lasers Conference RFL-2014, page 82, 14–18 April 2014, Novosibirsk, Russia. (in Russian).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (3345 KB)      Video illustrating optical erasure of the electrooptical effect in a poled fiber

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental set-up used for optical creation and erasure of the electrooptical effect in silica fibers.
Fig. 2
Fig. 2 (a) Oscilloscope trace showing response of Sagnac interferometer with electrooptical fiber to the application of a 100 ns 1.5 kV pulse; (b) Amplitude of optical signal switched as a function of applied voltage. The red solid curve is fitted to the (black) experimental points using Eq. (1) below.
Fig. 3
Fig. 3 (a) Increase in χ(2)eff for two average power intensities (17 mW and 8.5 mW); (b) Time evolution of χ(2)eff for consecutive poling procedures. After 6 minutes the exciting beam is realigned and subsequently the nonlinear coefficient reaches the same value as in the second poling; (c) Dependence of signal amplitude Vm on poling voltage. The Kerr effect ensures that the signal is non-zero even before poling starts. The phase-shift grows with poling voltage.
Fig. 4
Fig. 4 Video illustrating the optical erasure of the linear electrooptic effect in an optically poled fiber under high power green light illumination. Even faster erasure is observed for higher optical powers. The erased fiber can be poled renewably (Visualization 1)
Fig. 5
Fig. 5 (a) Decrease of measured signal Vm from Sagnac interferometer; (b) Corresponding erasure of the effective χ(2) (black dots). Two fitting curves are shown. The blue line indicates an exponential decay where fit is poor for early times, and the red curve follows the function (at + b)−2 [14], which deviates from the data for longer times. (c) Decay of χ(2) under green light exposure plotted on a semi-log scale, with the fitting curves and data from Fig. 5(b).
Fig. 6
Fig. 6 Spatial distribution of electrical potential (top row), electric field (middle row) and potential (blue) and field magnitude (red) along a horizontal line through the center of the core (bottom row). (a-c) before poling; (d-f) after poling is completed, the green excitation is switched-off but the high voltage is still applied to the electrodes; and (g-i) after the high voltage bias is switched off and the fiber is in steady-state with grounded electrodes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V m = V 0 { 1+cos[ 3πL λn χ (3) ( V rec + V appl d ) 2 φ ] }
V rec = V appl ± α 1 φ± α 1 cos 1 ( V m / V 0 1 )
V m = V 1 - V 0 cos ( V appl V pol n /V 2 2 )

Metrics