Abstract

High-finesse optical cavities placed under vacuum are foundational platforms in quantum information science with photons and atoms. We study the vacuum-induced degradation of high-finesse optical cavities with mirror coatings composed of SiO2-Ta2O5 dielectric stacks, and present methods to protect these coatings and to recover their initial low loss levels. For separate coatings with reflectivities centered at 370 nm and 422 nm, a vacuum-induced continuous increase in optical loss occurs if the surface-layer coating is made of Ta2O5, while it does not occur if it is made of SiO2. The incurred optical loss can be reversed by filling the vacuum chamber with oxygen at atmospheric pressure, and the recovery rate can be strongly accelerated by continuous laser illumination at 422 nm. Both the degradation and the recovery processes depend strongly on temperature. We find that a 1 nm-thick layer of SiO2 passivating the Ta2O5 surface layer is sufficient to reduce the degradation rate by more than a factor of 10, strongly supporting surface oxygen depletion as the primary degradation mechanism.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cavity-enhanced deep ultraviolet laser for two-photon cooling of atomic hydrogen

S. F. Cooper, Z. Burkley, A. D. Brandt, C. Rasor, and D. C. Yost
Opt. Lett. 43(6) 1375-1378 (2018)

Ion beam interference coating for ultralow optical loss

David T. Wei
Appl. Opt. 28(14) 2813-2816 (1989)

References

  • View by:
  • |
  • |
  • |

  1. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
    [Crossref]
  2. M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
    [Crossref]
  3. J. Sterk, L. Luo, T. Manning, P. Maunz, and C. Monroe, “Photon collection from a trapped ion-cavity system,” Phys. Rev. A 85, 062308 (2012).
    [Crossref]
  4. H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
    [Crossref]
  5. J. R. Sites, P. Gilstrap, and R. Rujkorakarn, “Ion beam sputter deposition of optical coatings,” Opt. Eng. 22, 224447 (1983).
    [Crossref]
  6. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363 (1992).
    [Crossref] [PubMed]
  7. M. Cetina, “Hybrid approaches to quantum information using ions, atoms and photons,” Ph.D. thesis (MIT, 2011).
  8. B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
    [Crossref]
  9. H. Demiryont, J. R. Sites, and K. Geib, “Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering,” Appl. Optics 24, 490 (1985).
    [Crossref]
  10. A. E. Siegman, Lasers (University Science Books, 1986).
  11. H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Optics 45, 9191–9197 (2006).
    [Crossref]
  12. U. Khalilov, G. Pourtois, S. Huygh, A. C. T. van Duin, E. C. Neyts, and A. Bogaerts, “New mechanism for oxidation of native silicon oxide,” J. Phys. Chem. C 117, 9819–9825 (2013).
    [Crossref]
  13. J.-Y. Zhang, L.-J. Bie, V. Dusastre, and I. W. Boyd, “Thin tantalum oxide films prepared by 172 nm excimer lamp irradiation using solgel method,” Thin Solid Films 318, 252–256 (1998).
    [Crossref]
  14. I. W. Boyd and J.-Y. Zhang, “Photo-induced growth of dielectrics with excimer lamps,” Solid State Electron. 45, 1413–1431 (2001).
    [Crossref]
  15. “The interactive Ellingham diagram,” (University of Cambridge, 2015). http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/interactive.php
  16. O. Kubaschewski, C. B. Alcock, and A. L. Evans, Metallurgical Thermochemistry, 4th ed. (Pergamon, 1967).
  17. Y. Zhao, Y. Wang, H. Gong, J. Shao, and Z. Fan, “Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors,” Appl. Surf. Sci. 210, 353–358 (2003).
    [Crossref]

2013 (3)

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

U. Khalilov, G. Pourtois, S. Huygh, A. C. T. van Duin, E. C. Neyts, and A. Bogaerts, “New mechanism for oxidation of native silicon oxide,” J. Phys. Chem. C 117, 9819–9825 (2013).
[Crossref]

2012 (2)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

J. Sterk, L. Luo, T. Manning, P. Maunz, and C. Monroe, “Photon collection from a trapped ion-cavity system,” Phys. Rev. A 85, 062308 (2012).
[Crossref]

2006 (2)

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Optics 45, 9191–9197 (2006).
[Crossref]

2003 (1)

Y. Zhao, Y. Wang, H. Gong, J. Shao, and Z. Fan, “Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors,” Appl. Surf. Sci. 210, 353–358 (2003).
[Crossref]

2001 (1)

I. W. Boyd and J.-Y. Zhang, “Photo-induced growth of dielectrics with excimer lamps,” Solid State Electron. 45, 1413–1431 (2001).
[Crossref]

1998 (1)

J.-Y. Zhang, L.-J. Bie, V. Dusastre, and I. W. Boyd, “Thin tantalum oxide films prepared by 172 nm excimer lamp irradiation using solgel method,” Thin Solid Films 318, 252–256 (1998).
[Crossref]

1992 (1)

1985 (1)

H. Demiryont, J. R. Sites, and K. Geib, “Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering,” Appl. Optics 24, 490 (1985).
[Crossref]

1983 (1)

J. R. Sites, P. Gilstrap, and R. Rujkorakarn, “Ion beam sputter deposition of optical coatings,” Opt. Eng. 22, 224447 (1983).
[Crossref]

Alcock, C. B.

O. Kubaschewski, C. B. Alcock, and A. L. Evans, Metallurgical Thermochemistry, 4th ed. (Pergamon, 1967).

Beck, K. M.

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

Becker, T.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

Bie, L.-J.

J.-Y. Zhang, L.-J. Bie, V. Dusastre, and I. W. Boyd, “Thin tantalum oxide films prepared by 172 nm excimer lamp irradiation using solgel method,” Thin Solid Films 318, 252–256 (1998).
[Crossref]

Blatt, R.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Bogaerts, A.

U. Khalilov, G. Pourtois, S. Huygh, A. C. T. van Duin, E. C. Neyts, and A. Bogaerts, “New mechanism for oxidation of native silicon oxide,” J. Phys. Chem. C 117, 9819–9825 (2013).
[Crossref]

Boyd, I. W.

I. W. Boyd and J.-Y. Zhang, “Photo-induced growth of dielectrics with excimer lamps,” Solid State Electron. 45, 1413–1431 (2001).
[Crossref]

J.-Y. Zhang, L.-J. Bie, V. Dusastre, and I. W. Boyd, “Thin tantalum oxide films prepared by 172 nm excimer lamp irradiation using solgel method,” Thin Solid Films 318, 252–256 (1998).
[Crossref]

Brandstätter, B.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Bylinskii, A.

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

Casabone, B.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Cetina, M.

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Optics 45, 9191–9197 (2006).
[Crossref]

M. Cetina, “Hybrid approaches to quantum information using ions, atoms and photons,” Ph.D. thesis (MIT, 2011).

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Chuang, I.

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

Demiryont, H.

H. Demiryont, J. R. Sites, and K. Geib, “Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering,” Appl. Optics 24, 490 (1985).
[Crossref]

Deutsch, C.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Dusastre, V.

J.-Y. Zhang, L.-J. Bie, V. Dusastre, and I. W. Boyd, “Thin tantalum oxide films prepared by 172 nm excimer lamp irradiation using solgel method,” Thin Solid Films 318, 252–256 (1998).
[Crossref]

Englert, B.-G.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

Evans, A. L.

O. Kubaschewski, C. B. Alcock, and A. L. Evans, Metallurgical Thermochemistry, 4th ed. (Pergamon, 1967).

Fan, Z.

Y. Zhao, Y. Wang, H. Gong, J. Shao, and Z. Fan, “Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors,” Appl. Surf. Sci. 210, 353–358 (2003).
[Crossref]

Friebe, K.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Gangloff, D.

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

Ge, Y.

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

Geib, K.

H. Demiryont, J. R. Sites, and K. Geib, “Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering,” Appl. Optics 24, 490 (1985).
[Crossref]

Gilstrap, P.

J. R. Sites, P. Gilstrap, and R. Rujkorakarn, “Ion beam sputter deposition of optical coatings,” Opt. Eng. 22, 224447 (1983).
[Crossref]

Gong, H.

Y. Zhao, Y. Wang, H. Gong, J. Shao, and Z. Fan, “Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors,” Appl. Surf. Sci. 210, 353–358 (2003).
[Crossref]

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Grier, A. T.

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Huygh, S.

U. Khalilov, G. Pourtois, S. Huygh, A. C. T. van Duin, E. C. Neyts, and A. Bogaerts, “New mechanism for oxidation of native silicon oxide,” J. Phys. Chem. C 117, 9819–9825 (2013).
[Crossref]

Karpa, L.

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Khalilov, U.

U. Khalilov, G. Pourtois, S. Huygh, A. C. T. van Duin, E. C. Neyts, and A. Bogaerts, “New mechanism for oxidation of native silicon oxide,” J. Phys. Chem. C 117, 9819–9825 (2013).
[Crossref]

Kimble, H. J.

Kubaschewski, O.

O. Kubaschewski, C. B. Alcock, and A. L. Evans, Metallurgical Thermochemistry, 4th ed. (Pergamon, 1967).

Lalezari, R.

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Lin, Y.-J.

H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Optics 45, 9191–9197 (2006).
[Crossref]

Loh, H.

H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Optics 45, 9191–9197 (2006).
[Crossref]

Luo, L.

J. Sterk, L. Luo, T. Manning, P. Maunz, and C. Monroe, “Photon collection from a trapped ion-cavity system,” Phys. Rev. A 85, 062308 (2012).
[Crossref]

Manning, T.

J. Sterk, L. Luo, T. Manning, P. Maunz, and C. Monroe, “Photon collection from a trapped ion-cavity system,” Phys. Rev. A 85, 062308 (2012).
[Crossref]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Maunz, P.

J. Sterk, L. Luo, T. Manning, P. Maunz, and C. Monroe, “Photon collection from a trapped ion-cavity system,” Phys. Rev. A 85, 062308 (2012).
[Crossref]

McClung, A.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Monroe, C.

J. Sterk, L. Luo, T. Manning, P. Maunz, and C. Monroe, “Photon collection from a trapped ion-cavity system,” Phys. Rev. A 85, 062308 (2012).
[Crossref]

Neyts, E. C.

U. Khalilov, G. Pourtois, S. Huygh, A. C. T. van Duin, E. C. Neyts, and A. Bogaerts, “New mechanism for oxidation of native silicon oxide,” J. Phys. Chem. C 117, 9819–9825 (2013).
[Crossref]

Northup, T. E.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Pourtois, G.

U. Khalilov, G. Pourtois, S. Huygh, A. C. T. van Duin, E. C. Neyts, and A. Bogaerts, “New mechanism for oxidation of native silicon oxide,” J. Phys. Chem. C 117, 9819–9825 (2013).
[Crossref]

Reichel, J.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Rempe, G.

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Rujkorakarn, R.

J. R. Sites, P. Gilstrap, and R. Rujkorakarn, “Ion beam sputter deposition of optical coatings,” Opt. Eng. 22, 224447 (1983).
[Crossref]

Schmidt, P. O.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Scholz, M.

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

Schüppert, K.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Shao, J.

Y. Zhao, Y. Wang, H. Gong, J. Shao, and Z. Fan, “Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors,” Appl. Surf. Sci. 210, 353–358 (2003).
[Crossref]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Simon, J.

H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Optics 45, 9191–9197 (2006).
[Crossref]

Sites, J. R.

H. Demiryont, J. R. Sites, and K. Geib, “Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering,” Appl. Optics 24, 490 (1985).
[Crossref]

J. R. Sites, P. Gilstrap, and R. Rujkorakarn, “Ion beam sputter deposition of optical coatings,” Opt. Eng. 22, 224447 (1983).
[Crossref]

Sterk, J.

J. Sterk, L. Luo, T. Manning, P. Maunz, and C. Monroe, “Photon collection from a trapped ion-cavity system,” Phys. Rev. A 85, 062308 (2012).
[Crossref]

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Stute, A.

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Teper, I.

H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Optics 45, 9191–9197 (2006).
[Crossref]

Thompson, J. K.

H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Optics 45, 9191–9197 (2006).
[Crossref]

Thompson, R. J.

van Duin, A. C. T.

U. Khalilov, G. Pourtois, S. Huygh, A. C. T. van Duin, E. C. Neyts, and A. Bogaerts, “New mechanism for oxidation of native silicon oxide,” J. Phys. Chem. C 117, 9819–9825 (2013).
[Crossref]

Varcoe, B. T. H.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

Vuletic, V.

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Optics 45, 9191–9197 (2006).
[Crossref]

Walther, H.

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

Wang, Y.

Y. Zhao, Y. Wang, H. Gong, J. Shao, and Z. Fan, “Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors,” Appl. Surf. Sci. 210, 353–358 (2003).
[Crossref]

Ye, J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Zhang, J.-Y.

I. W. Boyd and J.-Y. Zhang, “Photo-induced growth of dielectrics with excimer lamps,” Solid State Electron. 45, 1413–1431 (2001).
[Crossref]

J.-Y. Zhang, L.-J. Bie, V. Dusastre, and I. W. Boyd, “Thin tantalum oxide films prepared by 172 nm excimer lamp irradiation using solgel method,” Thin Solid Films 318, 252–256 (1998).
[Crossref]

Zhao, Y.

Y. Zhao, Y. Wang, H. Gong, J. Shao, and Z. Fan, “Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors,” Appl. Surf. Sci. 210, 353–358 (2003).
[Crossref]

Appl. Optics (2)

H. Demiryont, J. R. Sites, and K. Geib, “Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering,” Appl. Optics 24, 490 (1985).
[Crossref]

H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Optics 45, 9191–9197 (2006).
[Crossref]

Appl. Surf. Sci. (1)

Y. Zhao, Y. Wang, H. Gong, J. Shao, and Z. Fan, “Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors,” Appl. Surf. Sci. 210, 353–358 (2003).
[Crossref]

J. Phys. Chem. C (1)

U. Khalilov, G. Pourtois, S. Huygh, A. C. T. van Duin, E. C. Neyts, and A. Bogaerts, “New mechanism for oxidation of native silicon oxide,” J. Phys. Chem. C 117, 9819–9825 (2013).
[Crossref]

Nat. Photonics (1)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

New J. Phys. (1)

M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A. T. Grier, I. Chuang, and V. Vuletić, “One-dimensional array of ion chains coupled to an optical cavity,” New J. Phys. 15, 053001 (2013).
[Crossref]

Opt. Eng. (1)

J. R. Sites, P. Gilstrap, and R. Rujkorakarn, “Ion beam sputter deposition of optical coatings,” Opt. Eng. 22, 224447 (1983).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

J. Sterk, L. Luo, T. Manning, P. Maunz, and C. Monroe, “Photon collection from a trapped ion-cavity system,” Phys. Rev. A 85, 062308 (2012).
[Crossref]

Rep. Prog. Phys. (1)

H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P. O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, and T. E. Northup, “Integrated fiber-mirror ion trap for strong ion-cavity coupling,” Rev. Sci. Instrum. 84, 123104 (2013).
[Crossref]

Solid State Electron. (1)

I. W. Boyd and J.-Y. Zhang, “Photo-induced growth of dielectrics with excimer lamps,” Solid State Electron. 45, 1413–1431 (2001).
[Crossref]

Thin Solid Films (1)

J.-Y. Zhang, L.-J. Bie, V. Dusastre, and I. W. Boyd, “Thin tantalum oxide films prepared by 172 nm excimer lamp irradiation using solgel method,” Thin Solid Films 318, 252–256 (1998).
[Crossref]

Other (4)

“The interactive Ellingham diagram,” (University of Cambridge, 2015). http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/interactive.php

O. Kubaschewski, C. B. Alcock, and A. L. Evans, Metallurgical Thermochemistry, 4th ed. (Pergamon, 1967).

M. Cetina, “Hybrid approaches to quantum information using ions, atoms and photons,” Ph.D. thesis (MIT, 2011).

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the experimental setup for chamber I. A pair of mirrors forming a high-finesse cavity with either Ta2O5 (Coating I-1) or SiO2 (Coating I-2) as their surface layer (tested separately), are placed under high vacuum. Light from a single-mode laser at 370 nm is used to probe these cavities as the laser frequency is slowly and linearly scanned by a function generator. The transmitted light from the cavity is incident on an avalanche photodiode (APD). The laser frequency is also modulated by a fast square-wave signal, which results in a free-decay of the cavity’s transmitted light intensity each time the slow scan brings the laser in resonance with the cavity (time = 0 µs). (b) Schematic of the experimental setup for chamber III. Two pairs of mirrors forming high finesse cavities with SiO2 (Coating III-2) and Ta2O5 (Coating III-1) as their surface layer, respectively, are placed under high vacuum and tested simultaneously. Light from a single-mode laser at 422 nm is used to probe the cavities as they are scanned using piezoelectric transducers (PZT). The transmitted light from each cavity is incident on an avalanche photodiode (APD). When the cavity becomes resonant with the laser, and the signal intensity reaches a defined threshold in a comparator, the laser light incident on the cavity is switched off using an accoustooptic modulator (AOM) (time = 0 µs), resulting in a free-decay of the cavity’s transmitted light intensity. (c) A typical light intensity free-decay curve measured for 370 nm (Coating I-1), fitted with an exponential model with a time constant of τc = 411 ns.
Fig. 2
Fig. 2 Increase of loss of mirrors with Coating I-1 over time at various temperatures T, as separate panels on a linear scale (a) and combined on a log-log scale (b): T =21°C, 50°C, 75°C, 100°C, 150°C (chamber I); and 33°C (chamber II). Each data set is fitted with an exponential model shown as a solid line (a,b). The last four data points at 33°C are obtained by measuring the cavity finesse. Error bars are statistical and correspond to one standard deviation (smaller than the size of the data symbol when not shown).
Fig. 3
Fig. 3 (Coating I-1) Time scale of the loss increase τth, for the data from Fig. 2, depending on temperature T. We fit the data with a model of the form τth = τ0 exp(a/(273 + T)) (red solid line); the fitted values are a = 7300(1600) K and ln(τ0) = −14(4). The fit is weighted by the inverse error variance on each data point. Parentheses and error bars indicate a 68% confidence interval on the fitted values.
Fig. 4
Fig. 4 Increase of optical loss observed for an optical cavity composed of mirrors with Coating III-1 (422 nm, Ta2O5 surface layer) at 57°C in chamber III. Error bars are statistical and correspond to one standard deviation.
Fig. 5
Fig. 5 (Coating I-1) (a) Recovery from vacuum-induced losses with oxygen, while at a temperature of 21°C, following the data set at 21°C presented in Fig. 2. Shown are the loss under oxygen at a partial pressure of 10−2 Pa (blue squares), and loss under an atmospheric pressure of oxygen (red diamonds). (b) Recovery with an atmospheric pressure of oxygen, while at a temperature of 21°C (blue squares) and 150°C (red diamonds), following a vacuum-induced loss increase at a much higher temperature of 150°C (data not shown). The dashed lines indicate the loss value prior to the vacuum-induced loss increase. Error bars are statistical and correspond to one standard deviation.
Fig. 6
Fig. 6 Laser-assisted loss recovery processes observed for Coating III-1. (a) loss recovery observed during both illuminated and non-illuminated periods. (b) recovery rate obtained by fitting data in (a) using a linear model, for both the illuminated and non-illuminated periods. (c) optical loss is fully reversed by continuous illumination with an exponential time constant of 56.5 hours. Error bars are statistical and correspond to one standard deviation.
Fig. 7
Fig. 7 The dependence of loss on time for different mirror top layers: (a) Loss increase at 57°C measured at 422 nm for a Ta2O5 top layer (Coating III-1, red circles, data also shown in Fig. 4), and for a 110 nm-thick SiO2 top layer (Coating III-2, blue diamonds). The dashed line is a linear fit with a slope of −0.005(2) ppm/h. (b) Loss at 100°C measured at 370 nm for a Ta2O5 top layer (Coating I-1, red circles), and for a 1 nm-thick SiO2 top layer (Coating I-2, blue diamonds). The dashed line is a linear fit with a slope of 0.23(3) ppm/h. Error bars are statistical and correspond to one standard deviation.

Tables (1)

Tables Icon

Table 1 Summary of the experimental parameters.

Metrics