Abstract

Dark-mode plasmon resonances can be excited by positioning a suitable nano-antenna above a nanostructure to couple a planar incident wave-front into a virtual point source. We explore this phenomenon using a prototypical nanostructure consisting of a silver nanotriangle into which a hole has been drilled and a rod-like nano-antenna of variable aspect ratio. Using numerical simulations, we establish the behavior of the basic drilled nanotriangle under plane wave illumination and electron beam irradiation to provide a baseline, and then add the nano-antenna to investigate the stimulation of additional dark-mode plasmon resonances. The introduction of a suitably tuned nano-antenna provides a new and general means of exciting dark-mode resonances using plane wave light. The resulting system exhibits a very rich variety of radiant and sub-radiant resonance modes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow dark resonance modes in concentric ring/disk cavities

Yi Zhang, Xianbing Ming, Guifen Liu, Haiming Zhang, and Tianqing Jia
J. Opt. Soc. Am. B 32(9) 1979-1985 (2015)

Fano resonances in disk–ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode

Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu
Opt. Lett. 37(23) 4919-4921 (2012)

Dark and bright localized surface plasmons in nanocrosses

Niels Verellen, Pol Van Dorpe, Dries Vercruysse, Guy A. E. Vandenbosch, and Victor V. Moshchalkov
Opt. Express 19(12) 11034-11051 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
    [Crossref] [PubMed]
  2. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997).
    [Crossref] [PubMed]
  3. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003).
    [Crossref]
  4. W. Deng, F. Xie, H. T. M. C. M. Baltar, and E. M. Goldys, “Metal-enhanced fluorescence in the life sciences: Here, now and beyond,” Phys. Chem. Chem. Phys. 15(38), 15695–15708 (2013).
    [Crossref] [PubMed]
  5. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
    [Crossref] [PubMed]
  6. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
    [Crossref] [PubMed]
  7. C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
    [Crossref] [PubMed]
  8. A. Dowd, D. Pissuwan, and M. B. Cortie, “Optical readout of the intracellular environment using nanoparticle transducers,” Trends Biotechnol. 32(11), 571–577 (2014).
    [Crossref] [PubMed]
  9. S. Schelm and G. B. Smith, “Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing,” Appl. Phys. Lett. 82(24), 4346–4348 (2003).
    [Crossref]
  10. N. L. Stokes, J. A. Edgar, A. M. McDonagh, and M. B. Cortie, “Spectrally selective coatings of gold nanorods on architectural glass,” J. Nanopart. Res. 12(8), 2821–2830 (2010).
    [Crossref]
  11. O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
    [Crossref] [PubMed]
  12. J. Liu, B. Cankurtaran, L. Wieczorek, M. J. Ford, and M. B. Cortie, “Anisotropic optical properties of semitransparent coatings of gold nanocaps,” Adv. Funct. Mater. 16(11), 1457–1461 (2006).
    [Crossref]
  13. M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys. 8(30), 3520–3527 (2006).
    [Crossref] [PubMed]
  14. A. Iwakoshi, T. Nanke, and T. Kobayashi, “Coating materials containing gold nanoparticles,” Gold Bull. 38(3), 107–112 (2005).
    [Crossref]
  15. S. Pillai, K. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  16. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [Crossref]
  17. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
    [Crossref] [PubMed]
  18. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  19. D. Aherne, D. M. Ledwith, M. Gara, and J. M. Kelly, “Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature,” Adv. Funct. Mater. 18(14), 2005–2016 (2008).
    [Crossref]
  20. C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
    [Crossref]
  21. H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
    [Crossref] [PubMed]
  22. Y. He and G. Shi, “Surface plasmon resonances of silver triangle nanoplates: graphic assignments of resonance modes and linear fittings of resonance peaks,” J. Phys. Chem. B 109(37), 17503–17511 (2005).
    [Crossref] [PubMed]
  23. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
    [Crossref] [PubMed]
  24. R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric, and P. Damman, “Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications,” J. Mater. Chem. 22(23), 11537–11542 (2012).
    [Crossref]
  25. S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
    [Crossref] [PubMed]
  26. P. Yang, H. Portalès, and M.-P. Pileni, “Identification of multipolar surface plasmon resonances in triangular silver nanoprisms with very high aspect ratios using the DDA method,” J. Phys. Chem. C 113(27), 11597–11604 (2009).
    [Crossref]
  27. K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys. 123(11), 114713 (2005).
    [Crossref] [PubMed]
  28. S. Banerjee, K. Loza, W. Meyer-Zaika, O. Prymak, and M. Epple, “Structural evolution of silver nanoparticles during wet-chemical synthesis,” Chem. Mater. 26(2), 951–957 (2014).
    [Crossref]
  29. X. Jiang, Q. Zeng, and A. Yu, “Thiol-frozen shape evolution of triangular silver nanoplates,” Langmuir 23(4), 2218–2223 (2007).
    [Crossref] [PubMed]
  30. B. Hopkins, W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters,” Nanoscale 5(14), 6395–6403 (2013).
    [Crossref] [PubMed]
  31. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering csalculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [Crossref]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  33. A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
    [Crossref] [PubMed]
  34. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
    [Crossref] [PubMed]
  35. B. M. Nebeker, J. L. de la Peña, and E. D. Hirleman, “Comparisons of the discrete-dipole approximation and modified double interaction model methods to predict light scattering from small features on surfaces,” J. Quant. Spectrosc. Radiat. Transf. 70(4-6), 749–759 (2001).
    [Crossref]
  36. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007).
    [Crossref]
  37. U. Hohenester and A. Trügler, “MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
    [Crossref]
  38. U. Hohenester, “Simulating electron energy loss spectroscopy with the MNPBEM toolbox,” Comput. Phys. Commun. 185(3), 1177–1187 (2014).
    [Crossref]
  39. F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14(8), 4810–4815 (2014).
    [Crossref] [PubMed]
  40. F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
    [Crossref] [PubMed]
  41. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
    [Crossref]

2014 (5)

A. Dowd, D. Pissuwan, and M. B. Cortie, “Optical readout of the intracellular environment using nanoparticle transducers,” Trends Biotechnol. 32(11), 571–577 (2014).
[Crossref] [PubMed]

S. Banerjee, K. Loza, W. Meyer-Zaika, O. Prymak, and M. Epple, “Structural evolution of silver nanoparticles during wet-chemical synthesis,” Chem. Mater. 26(2), 951–957 (2014).
[Crossref]

U. Hohenester, “Simulating electron energy loss spectroscopy with the MNPBEM toolbox,” Comput. Phys. Commun. 185(3), 1177–1187 (2014).
[Crossref]

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14(8), 4810–4815 (2014).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

2013 (5)

B. Hopkins, W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters,” Nanoscale 5(14), 6395–6403 (2013).
[Crossref] [PubMed]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

W. Deng, F. Xie, H. T. M. C. M. Baltar, and E. M. Goldys, “Metal-enhanced fluorescence in the life sciences: Here, now and beyond,” Phys. Chem. Chem. Phys. 15(38), 15695–15708 (2013).
[Crossref] [PubMed]

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

2012 (4)

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric, and P. Damman, “Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications,” J. Mater. Chem. 22(23), 11537–11542 (2012).
[Crossref]

U. Hohenester and A. Trügler, “MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

2011 (2)

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

2010 (1)

N. L. Stokes, J. A. Edgar, A. M. McDonagh, and M. B. Cortie, “Spectrally selective coatings of gold nanorods on architectural glass,” J. Nanopart. Res. 12(8), 2821–2830 (2010).
[Crossref]

2009 (1)

P. Yang, H. Portalès, and M.-P. Pileni, “Identification of multipolar surface plasmon resonances in triangular silver nanoprisms with very high aspect ratios using the DDA method,” J. Phys. Chem. C 113(27), 11597–11604 (2009).
[Crossref]

2008 (3)

D. Aherne, D. M. Ledwith, M. Gara, and J. M. Kelly, “Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature,” Adv. Funct. Mater. 18(14), 2005–2016 (2008).
[Crossref]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

2007 (3)

S. Pillai, K. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

X. Jiang, Q. Zeng, and A. Yu, “Thiol-frozen shape evolution of triangular silver nanoplates,” Langmuir 23(4), 2218–2223 (2007).
[Crossref] [PubMed]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007).
[Crossref]

2006 (3)

J. Liu, B. Cankurtaran, L. Wieczorek, M. J. Ford, and M. B. Cortie, “Anisotropic optical properties of semitransparent coatings of gold nanocaps,” Adv. Funct. Mater. 16(11), 1457–1461 (2006).
[Crossref]

M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys. 8(30), 3520–3527 (2006).
[Crossref] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[Crossref] [PubMed]

2005 (5)

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

A. Iwakoshi, T. Nanke, and T. Kobayashi, “Coating materials containing gold nanoparticles,” Gold Bull. 38(3), 107–112 (2005).
[Crossref]

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys. 123(11), 114713 (2005).
[Crossref] [PubMed]

Y. He and G. Shi, “Surface plasmon resonances of silver triangle nanoplates: graphic assignments of resonance modes and linear fittings of resonance peaks,” J. Phys. Chem. B 109(37), 17503–17511 (2005).
[Crossref] [PubMed]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

2003 (4)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003).
[Crossref]

S. Schelm and G. B. Smith, “Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing,” Appl. Phys. Lett. 82(24), 4346–4348 (2003).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2001 (1)

B. M. Nebeker, J. L. de la Peña, and E. D. Hirleman, “Comparisons of the discrete-dipole approximation and modified double interaction model methods to predict light scattering from small features on surfaces,” J. Quant. Spectrosc. Radiat. Transf. 70(4-6), 749–759 (2001).
[Crossref]

1997 (1)

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997).
[Crossref] [PubMed]

1994 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Adam, P. M.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

Aherne, D.

D. Aherne, D. M. Ledwith, M. Gara, and J. M. Kelly, “Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature,” Adv. Funct. Mater. 18(14), 2005–2016 (2008).
[Crossref]

Arbouet, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Awada, C.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

Bachelot, R.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

Baltar, H. T. M. C. M.

W. Deng, F. Xie, H. T. M. C. M. Baltar, and E. M. Goldys, “Metal-enhanced fluorescence in the life sciences: Here, now and beyond,” Phys. Chem. Chem. Phys. 15(38), 15695–15708 (2013).
[Crossref] [PubMed]

Banerjee, S.

S. Banerjee, K. Loza, W. Meyer-Zaika, O. Prymak, and M. Epple, “Structural evolution of silver nanoparticles during wet-chemical synthesis,” Chem. Mater. 26(2), 951–957 (2014).
[Crossref]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Baudrion, A. L.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

Bosman, M.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

Brioude, A.

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

Cankurtaran, B.

J. Liu, B. Cankurtaran, L. Wieczorek, M. J. Ford, and M. B. Cortie, “Anisotropic optical properties of semitransparent coatings of gold nanocaps,” Adv. Funct. Mater. 16(11), 1457–1461 (2006).
[Crossref]

Catchpole, K.

S. Pillai, K. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Charra, F.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Chin, Y. E.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Cortie, M. B.

A. Dowd, D. Pissuwan, and M. B. Cortie, “Optical readout of the intracellular environment using nanoparticle transducers,” Trends Biotechnol. 32(11), 571–577 (2014).
[Crossref] [PubMed]

N. L. Stokes, J. A. Edgar, A. M. McDonagh, and M. B. Cortie, “Spectrally selective coatings of gold nanorods on architectural glass,” J. Nanopart. Res. 12(8), 2821–2830 (2010).
[Crossref]

J. Liu, B. Cankurtaran, L. Wieczorek, M. J. Ford, and M. B. Cortie, “Anisotropic optical properties of semitransparent coatings of gold nanocaps,” Adv. Funct. Mater. 16(11), 1457–1461 (2006).
[Crossref]

M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys. 8(30), 3520–3527 (2006).
[Crossref] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[Crossref] [PubMed]

Curto, A. G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Damman, P.

R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric, and P. Damman, “Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications,” J. Mater. Chem. 22(23), 11537–11542 (2012).
[Crossref]

de la Peña, J. L.

B. M. Nebeker, J. L. de la Peña, and E. D. Hirleman, “Comparisons of the discrete-dipole approximation and modified double interaction model methods to predict light scattering from small features on surfaces,” J. Quant. Spectrosc. Radiat. Transf. 70(4-6), 749–759 (2001).
[Crossref]

Deng, W.

W. Deng, F. Xie, H. T. M. C. M. Baltar, and E. M. Goldys, “Metal-enhanced fluorescence in the life sciences: Here, now and beyond,” Phys. Chem. Chem. Phys. 15(38), 15695–15708 (2013).
[Crossref] [PubMed]

Ditlbacher, H.

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14(8), 4810–4815 (2014).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

Dong, A.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Douillard, L.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

Dowd, A.

A. Dowd, D. Pissuwan, and M. B. Cortie, “Optical readout of the intracellular environment using nanoparticle transducers,” Trends Biotechnol. 32(11), 571–577 (2014).
[Crossref] [PubMed]

Draine, B. T.

Duan, H.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

Dujardin, E.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Edgar, J. A.

N. L. Stokes, J. A. Edgar, A. M. McDonagh, and M. B. Cortie, “Spectrally selective coatings of gold nanorods on architectural glass,” J. Nanopart. Res. 12(8), 2821–2830 (2010).
[Crossref]

Elghanian, R.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997).
[Crossref] [PubMed]

Epple, M.

S. Banerjee, K. Loza, W. Meyer-Zaika, O. Prymak, and M. Epple, “Structural evolution of silver nanoparticles during wet-chemical synthesis,” Chem. Mater. 26(2), 951–957 (2014).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Fernández-Domínguez, A. I.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

Feronti, C.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Flatau, P. J.

Ford, M. J.

M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys. 8(30), 3520–3527 (2006).
[Crossref] [PubMed]

J. Liu, B. Cankurtaran, L. Wieczorek, M. J. Ford, and M. B. Cortie, “Anisotropic optical properties of semitransparent coatings of gold nanocaps,” Adv. Funct. Mater. 16(11), 1457–1461 (2006).
[Crossref]

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Gara, M.

D. Aherne, D. M. Ledwith, M. Gara, and J. M. Kelly, “Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature,” Adv. Funct. Mater. 18(14), 2005–2016 (2008).
[Crossref]

García de Abajo, F. J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Girard, C.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Goldys, E. M.

W. Deng, F. Xie, H. T. M. C. M. Baltar, and E. M. Goldys, “Metal-enhanced fluorescence in the life sciences: Here, now and beyond,” Phys. Chem. Chem. Phys. 15(38), 15695–15708 (2013).
[Crossref] [PubMed]

Grady, N.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Green, M. A.

S. Pillai, K. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Halas, N. J.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

He, Y.

Y. He and G. Shi, “Surface plasmon resonances of silver triangle nanoplates: graphic assignments of resonance modes and linear fittings of resonance peaks,” J. Phys. Chem. B 109(37), 17503–17511 (2005).
[Crossref] [PubMed]

Hirleman, E. D.

B. M. Nebeker, J. L. de la Peña, and E. D. Hirleman, “Comparisons of the discrete-dipole approximation and modified double interaction model methods to predict light scattering from small features on surfaces,” J. Quant. Spectrosc. Radiat. Transf. 70(4-6), 749–759 (2001).
[Crossref]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Ho, D.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007).
[Crossref]

Hofer, F.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14(8), 4810–4815 (2014).
[Crossref] [PubMed]

Hohenau, A.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

Hohenester, U.

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14(8), 4810–4815 (2014).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

U. Hohenester, “Simulating electron energy loss spectroscopy with the MNPBEM toolbox,” Comput. Phys. Commun. 185(3), 1177–1187 (2014).
[Crossref]

U. Hohenester and A. Trügler, “MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

Hopkins, B.

B. Hopkins, W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters,” Nanoscale 5(14), 6395–6403 (2013).
[Crossref] [PubMed]

Iwakoshi, A.

A. Iwakoshi, T. Nanke, and T. Kobayashi, “Coating materials containing gold nanoparticles,” Gold Bull. 38(3), 107–112 (2005).
[Crossref]

Jiang, X.

X. Jiang, Q. Zeng, and A. Yu, “Thiol-frozen shape evolution of triangular silver nanoplates,” Langmuir 23(4), 2218–2223 (2007).
[Crossref] [PubMed]

Jiang, X. C.

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kelly, J. M.

D. Aherne, D. M. Ledwith, M. Gara, and J. M. Kelly, “Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature,” Adv. Funct. Mater. 18(14), 2005–2016 (2008).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kim, E.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Kim, J.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Kivshar, Y. S.

B. Hopkins, W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters,” Nanoscale 5(14), 6395–6403 (2013).
[Crossref] [PubMed]

Kobayashi, T.

A. Iwakoshi, T. Nanke, and T. Kobayashi, “Coating materials containing gold nanoparticles,” Gold Bull. 38(3), 107–112 (2005).
[Crossref]

Koh, A. L.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

Kohler, N.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

Kolaric, B.

R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric, and P. Damman, “Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications,” J. Mater. Chem. 22(23), 11537–11542 (2012).
[Crossref]

Krenn, J. R.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14(8), 4810–4815 (2014).
[Crossref] [PubMed]

Kreuzer, M. P.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Ledwith, D. M.

D. Aherne, D. M. Ledwith, M. Gara, and J. M. Kelly, “Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature,” Adv. Funct. Mater. 18(14), 2005–2016 (2008).
[Crossref]

Lee, L. P.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Letsinger, R. L.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997).
[Crossref] [PubMed]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Liu, G. L.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Liu, J.

J. Liu, B. Cankurtaran, L. Wieczorek, M. J. Ford, and M. B. Cortie, “Anisotropic optical properties of semitransparent coatings of gold nanocaps,” Adv. Funct. Mater. 16(11), 1457–1461 (2006).
[Crossref]

Liu, W.

B. Hopkins, W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters,” Nanoscale 5(14), 6395–6403 (2013).
[Crossref] [PubMed]

Liz-Marzán, L. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Loza, K.

S. Banerjee, K. Loza, W. Meyer-Zaika, O. Prymak, and M. Epple, “Structural evolution of silver nanoparticles during wet-chemical synthesis,” Chem. Mater. 26(2), 951–957 (2014).
[Crossref]

Lu, B.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Lu, Y.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Maes, B.

R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric, and P. Damman, “Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications,” J. Mater. Chem. 22(23), 11537–11542 (2012).
[Crossref]

Maier, S. A.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

Marty, R.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

McComb, D. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

McDonagh, A. M.

N. L. Stokes, J. A. Edgar, A. M. McDonagh, and M. B. Cortie, “Spectrally selective coatings of gold nanorods on architectural glass,” J. Nanopart. Res. 12(8), 2821–2830 (2010).
[Crossref]

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003).
[Crossref]

Mejia, Y. X.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

Meyer-Zaika, W.

S. Banerjee, K. Loza, W. Meyer-Zaika, O. Prymak, and M. Epple, “Structural evolution of silver nanoparticles during wet-chemical synthesis,” Chem. Mater. 26(2), 951–957 (2014).
[Crossref]

Mirkin, C. A.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997).
[Crossref] [PubMed]

Miroshnichenko, A. E.

B. Hopkins, W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters,” Nanoscale 5(14), 6395–6403 (2013).
[Crossref] [PubMed]

Morarescu, R.

R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric, and P. Damman, “Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications,” J. Mater. Chem. 22(23), 11537–11542 (2012).
[Crossref]

Morgan, J. R.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

Mucic, R. C.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997).
[Crossref] [PubMed]

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Nanke, T.

A. Iwakoshi, T. Nanke, and T. Kobayashi, “Coating materials containing gold nanoparticles,” Gold Bull. 38(3), 107–112 (2005).
[Crossref]

Nebeker, B. M.

B. M. Nebeker, J. L. de la Peña, and E. D. Hirleman, “Comparisons of the discrete-dipole approximation and modified double interaction model methods to predict light scattering from small features on surfaces,” J. Quant. Spectrosc. Radiat. Transf. 70(4-6), 749–759 (2001).
[Crossref]

Neumann, A. D.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Neumann, O.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Nordlander, P.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Oden, M.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Perron, A.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

Pileni, M. P.

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

Pileni, M.-P.

P. Yang, H. Portalès, and M.-P. Pileni, “Identification of multipolar surface plasmon resonances in triangular silver nanoprisms with very high aspect ratios using the DDA method,” J. Phys. Chem. C 113(27), 11597–11604 (2009).
[Crossref]

Pillai, S.

S. Pillai, K. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Pissuwan, D.

A. Dowd, D. Pissuwan, and M. B. Cortie, “Optical readout of the intracellular environment using nanoparticle transducers,” Trends Biotechnol. 32(11), 571–577 (2014).
[Crossref] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[Crossref] [PubMed]

Popescu, T.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

Portalès, H.

P. Yang, H. Portalès, and M.-P. Pileni, “Identification of multipolar surface plasmon resonances in triangular silver nanoprisms with very high aspect ratios using the DDA method,” J. Phys. Chem. C 113(27), 11597–11604 (2009).
[Crossref]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Prymak, O.

S. Banerjee, K. Loza, W. Meyer-Zaika, O. Prymak, and M. Epple, “Structural evolution of silver nanoparticles during wet-chemical synthesis,” Chem. Mater. 26(2), 951–957 (2014).
[Crossref]

Quidant, R.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Quinn, M.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Ratner, M. A.

K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys. 123(11), 114713 (2005).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys. 123(11), 114713 (2005).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schell, K.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Schelm, S.

S. Schelm and G. B. Smith, “Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing,” Appl. Phys. Lett. 82(24), 4346–4348 (2003).
[Crossref]

Schmidt, F. P.

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14(8), 4810–4815 (2014).
[Crossref] [PubMed]

Schmidt, F.-P.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Sharma, J.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Shen, H.

R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric, and P. Damman, “Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications,” J. Mater. Chem. 22(23), 11537–11542 (2012).
[Crossref]

Shi, G.

Y. He and G. Shi, “Surface plasmon resonances of silver triangle nanoplates: graphic assignments of resonance modes and linear fittings of resonance peaks,” J. Phys. Chem. B 109(37), 17503–17511 (2005).
[Crossref] [PubMed]

Shuford, K. L.

K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys. 123(11), 114713 (2005).
[Crossref] [PubMed]

Smith, G. B.

S. Schelm and G. B. Smith, “Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing,” Appl. Phys. Lett. 82(24), 4346–4348 (2003).
[Crossref]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Stokes, N. L.

N. L. Stokes, J. A. Edgar, A. M. McDonagh, and M. B. Cortie, “Spectrally selective coatings of gold nanorods on architectural glass,” J. Nanopart. Res. 12(8), 2821–2830 (2010).
[Crossref]

Storhoff, J. J.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997).
[Crossref] [PubMed]

Sun, S.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

Taminiau, T. H.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Teulle, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Thompson, S.

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Trügler, A.

U. Hohenester and A. Trügler, “MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

Trupke, T.

S. Pillai, K. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Valenzuela, S. M.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[Crossref] [PubMed]

Vallée, R. A. L.

R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric, and P. Damman, “Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications,” J. Mater. Chem. 22(23), 11537–11542 (2012).
[Crossref]

Van Duyne, R. P.

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003).
[Crossref]

van Hulst, N. F.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Viarbitskaya, S.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

Walsh, E. G.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

Wang, C.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Wieczorek, L.

J. Liu, B. Cankurtaran, L. Wieczorek, M. J. Ford, and M. B. Cortie, “Anisotropic optical properties of semitransparent coatings of gold nanocaps,” Adv. Funct. Mater. 16(11), 1457–1461 (2006).
[Crossref]

Xie, F.

W. Deng, F. Xie, H. T. M. C. M. Baltar, and E. M. Goldys, “Metal-enhanced fluorescence in the life sciences: Here, now and beyond,” Phys. Chem. Chem. Phys. 15(38), 15695–15708 (2013).
[Crossref] [PubMed]

Xie, J.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

Xu, C.

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

Xu, X.

M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys. 8(30), 3520–3527 (2006).
[Crossref] [PubMed]

Yang, J. K. W.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

Yang, P.

P. Yang, H. Portalès, and M.-P. Pileni, “Identification of multipolar surface plasmon resonances in triangular silver nanoprisms with very high aspect ratios using the DDA method,” J. Phys. Chem. C 113(27), 11597–11604 (2009).
[Crossref]

Yockell-Lelièvre, H.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

Yu, A.

X. Jiang, Q. Zeng, and A. Yu, “Thiol-frozen shape evolution of triangular silver nanoplates,” Langmuir 23(4), 2218–2223 (2007).
[Crossref] [PubMed]

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007).
[Crossref]

Zeng, Q.

X. Jiang, Q. Zeng, and A. Yu, “Thiol-frozen shape evolution of triangular silver nanoplates,” Langmuir 23(4), 2218–2223 (2007).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Adv. Funct. Mater. (2)

J. Liu, B. Cankurtaran, L. Wieczorek, M. J. Ford, and M. B. Cortie, “Anisotropic optical properties of semitransparent coatings of gold nanocaps,” Adv. Funct. Mater. 16(11), 1457–1461 (2006).
[Crossref]

D. Aherne, D. M. Ledwith, M. Gara, and J. M. Kelly, “Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature,” Adv. Funct. Mater. 18(14), 2005–2016 (2008).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, and S. Sun, “Au-Fe3O4 dumbbell nanoparticles as dual-functional probes,” Angew. Chem. Int. Ed. Engl. 47(1), 173–176 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Schelm and G. B. Smith, “Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing,” Appl. Phys. Lett. 82(24), 4346–4348 (2003).
[Crossref]

Chem. Mater. (1)

S. Banerjee, K. Loza, W. Meyer-Zaika, O. Prymak, and M. Epple, “Structural evolution of silver nanoparticles during wet-chemical synthesis,” Chem. Mater. 26(2), 951–957 (2014).
[Crossref]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref] [PubMed]

Comput. Phys. Commun. (2)

U. Hohenester and A. Trügler, “MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles,” Comput. Phys. Commun. 183(2), 370–381 (2012).
[Crossref]

U. Hohenester, “Simulating electron energy loss spectroscopy with the MNPBEM toolbox,” Comput. Phys. Commun. 185(3), 1177–1187 (2014).
[Crossref]

Gold Bull. (1)

A. Iwakoshi, T. Nanke, and T. Kobayashi, “Coating materials containing gold nanoparticles,” Gold Bull. 38(3), 107–112 (2005).
[Crossref]

J. Appl. Phys. (1)

S. Pillai, K. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

J. Chem. Phys. (1)

K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys. 123(11), 114713 (2005).
[Crossref] [PubMed]

J. Mater. Chem. (1)

R. Morarescu, H. Shen, R. A. L. Vallée, B. Maes, B. Kolaric, and P. Damman, “Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications,” J. Mater. Chem. 22(23), 11537–11542 (2012).
[Crossref]

J. Nanopart. Res. (1)

N. L. Stokes, J. A. Edgar, A. M. McDonagh, and M. B. Cortie, “Spectrally selective coatings of gold nanorods on architectural glass,” J. Nanopart. Res. 12(8), 2821–2830 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (3)

A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Y. He and G. Shi, “Surface plasmon resonances of silver triangle nanoplates: graphic assignments of resonance modes and linear fittings of resonance peaks,” J. Phys. Chem. B 109(37), 17503–17511 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A. L. Baudrion, P. M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012).
[Crossref]

P. Yang, H. Portalès, and M.-P. Pileni, “Identification of multipolar surface plasmon resonances in triangular silver nanoprisms with very high aspect ratios using the DDA method,” J. Phys. Chem. C 113(27), 11597–11604 (2009).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

B. M. Nebeker, J. L. de la Peña, and E. D. Hirleman, “Comparisons of the discrete-dipole approximation and modified double interaction model methods to predict light scattering from small features on surfaces,” J. Quant. Spectrosc. Radiat. Transf. 70(4-6), 749–759 (2001).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 558–589 (2007).
[Crossref]

Langmuir (1)

X. Jiang, Q. Zeng, and A. Yu, “Thiol-frozen shape evolution of triangular silver nanoplates,” Langmuir 23(4), 2218–2223 (2007).
[Crossref] [PubMed]

Nano Lett. (6)

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. W. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11(3), 1323–1330 (2011).
[Crossref] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[Crossref]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[Crossref] [PubMed]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003).
[Crossref]

F. P. Schmidt, H. Ditlbacher, F. Hofer, J. R. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle,” Nano Lett. 14(8), 4810–4815 (2014).
[Crossref] [PubMed]

Nanoscale (1)

B. Hopkins, W. Liu, A. E. Miroshnichenko, and Y. S. Kivshar, “Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters,” Nanoscale 5(14), 6395–6403 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4, 1750 (2013).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Universal dispersion of surface plasmons in flat nanostructures,” Nat. Commun. 5, 3604 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (2)

M. B. Cortie, X. Xu, and M. J. Ford, “Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods,” Phys. Chem. Chem. Phys. 8(30), 3520–3527 (2006).
[Crossref] [PubMed]

W. Deng, F. Xie, H. T. M. C. M. Baltar, and E. M. Goldys, “Metal-enhanced fluorescence in the life sciences: Here, now and beyond,” Phys. Chem. Chem. Phys. 15(38), 15695–15708 (2013).
[Crossref] [PubMed]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, and N. J. Halas, “Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 110(29), 11677–11681 (2013).
[Crossref] [PubMed]

Science (1)

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277(5329), 1078–1081 (1997).
[Crossref] [PubMed]

Trends Biotechnol. (2)

A. Dowd, D. Pissuwan, and M. B. Cortie, “Optical readout of the intracellular environment using nanoparticle transducers,” Trends Biotechnol. 32(11), 571–577 (2014).
[Crossref] [PubMed]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[Crossref] [PubMed]

Supplementary Material (12)

NameDescription
» Visualization 1: AVI (3208 KB)      Resonance A
» Visualization 2: AVI (2722 KB)      Resonance B
» Visualization 3: AVI (2788 KB)      Resonance C
» Visualization 4: AVI (2786 KB)      Resonance D
» Visualization 5: AVI (2791 KB)      Resonance E
» Visualization 6: AVI (2768 KB)      Resonance F
» Visualization 7: AVI (6237 KB)      EELS resonances vs energy
» Visualization 8: AVI (3560 KB)      Resonance Q
» Visualization 9: AVI (3574 KB)      Resonance R
» Visualization 10: AVI (3573 KB)      Resonance S
» Visualization 11: AVI (3591 KB)      Resonance U
» Visualization 12: AVI (3612 KB)      Resonance V

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Examples of the drilled triangle targets. (a) First series: drilled triangles of 200 nm edge length and 5 nm thickness with varying hole size, subjected to in-plane polarization. Propagation of light is along y direction, polarization along z direction. (b) Second series: standard drilled triangle (200 nm edge, 40 nm diameter hole) with nano-antennas of varied L/D ratios (L/D = 1.0 and 3.5 shown here as examples), subjected to transverse polarization in y direction. These triangles are built in the same reference frame as for the first series but now propagation is along x direction. (c) The color scheme used for the phasor: center (black) indicates an |(E)y| of 0, perimeter is the maximum value of the (E)y, hue is mapped from HSV color wheel and indicates phase.
Fig. 2
Fig. 2 Plasmon resonances in drilled triangle. Log plot of the extinction efficiency of the triangles as a function of light energy and hole diameter. The hole breaches the edges of the triangle at about 120 nm diameter (horizontal dotted line)
Fig. 3
Fig. 3 Spatial distributions of surface charge (E)y, maximum magnitude (||(E)||), and phase of (E)y, for resonances A to F for a triangle with a 40 nm diameter hole. The surface charge distributions are shown at times separated by π/2 radians in phase. ||(E)|| is rendered on a ‘temperature’ color scale and the phasor maps are rendered using the HSV color scale (a) Mode A, see Visualization 1, (b) Mode (b), see Visualization 2, (c) Mode C, see Visualization 3, (d) Mode D, see Visualization 4, (e) Mode E, see Visualization 5, (f) Mode F, see Visualization 6.
Fig. 4
Fig. 4 Eigenmodes identified by BEM analysis on the surface of a triangle with a 40 nm diameter hole. (a) Extinction or absorption spectra (EELS). Dashed lines are for quasistatic calculations, solid lines include the effect of retardation. The Qext spectrum calculated by DDSCAT is also shown for comparison. (b) Symmetric and antisymmetric modes identified by the BEM analysis.
Fig. 5
Fig. 5 Resonance modes identified by BEM simulations of an EELS scan. (a) Retarded centre-fire loss spectrum for a nano-triangles with 20:1 aspect compared to quasistatic and retarded calculations for a standard drilled triangle with 40:1 aspect ratio. (b) Simulated EELS maps corresponding to rastering of electron beam over a drilled nano-triangle with 20:1 aspect ratio. Resonances are arranged in ascending order of energy. (c) Phasor maps for centre-fire EELS resonances X1 to X6 of the drilled nano-triangle with 40:1 aspect ratio, see Visualization 7.
Fig. 6
Fig. 6 Effect of aspect ratio of the nano-antenna on the optical response of the composite system. (a) Qext mapped against length to diameter ratio (L/D) of the nano-antenna and energy of exciting light. (b) Peak Qext for the strongest (Q and S) higher-order resonances plotted against L/D.
Fig. 7
Fig. 7 Spatial distributions of surface charge (E)y (all on a scale of −3 to + 3), maximum magnitude (||(E)||), and phase of (E)y, for resonances excited in a nanotriangle with a 40 nm diameter hole by the cylindrical nanoantenna. The surface charge distributions are shown at times separated by π/2 radians in phase. ||(E)|| is rendered on a ‘temperature’ color scale and the phasor maps are rendered using the HSV color scale. (Only the electric field in the vacuum is shown, the intersection of the image plane with solid part of the silver nano-antenna is blacked out.) (a) Resonance Q. Calculations performed for L/D = 1.625 and light = 2.43 eV, see Visualization 8. (b) Resonance R, L/D = 1.125, light = 2.60 eV), see Visualization 9, (c) Resonance S, and L/D of nano-antenna = 2.50, light = 2.85 eV, see Visualization 10, (d) Resonance U, L/D = 1.375, light = 3.12 eV, see Visualization 11, (e) Resonance V, L/D = 1.0, light = 3.22 eV, see Visualization 12,(f) Resonances T1 and T2 do not require the presence of either a nanoantenna or a hole. They are simply edge resonances of the triangle.
Fig. 8
Fig. 8 Spatial distributions of magnetic oscillations in the near-field. In the depictions above a |(B)| that is less than that of the magnetic field of incident light is rendered in tones of red and a |(B)| that is amplified is rendered in tones of blue. A common color scale of |B| relative to that of the incident light (white) has been used to facilitate comparison.

Metrics