Abstract

We report on a 795 nm atomic filter consisting of a stimulated Raman gain amplifier together with normal Faraday anomalous dispersion optical filtering (FADOF) at the rubidium D1 line. The filter is operated with a single transmission peak. The gain of the filter’s transmission light signal is enhanced up to 85-fold compared to case operating without a stimulated Raman transition. Based on atomic coherence, the filter’s minimum transmission bandwidth is less than 22 MHz. In each filtering channel, the signal light’s frequency can be tuned by changing the detuning of the coupling light. Such a filter with stimulated Raman gain is more efficient in extracting weak signals in the presence of a strong light background compared with the normal FADOF. This expands the range of potential applications in optical communications and lidar technology. This filtering method can also be extended to the lines of other atoms.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm

Yanfei Wang, Xiaogang Zhang, Dongying Wang, Zhiming Tao, Wei Zhuang, and Jingbiao Chen
Opt. Express 20(23) 25817-25825 (2012)

An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy

Xiaogang Zhang, Zhiming Tao, Chuanwen Zhu, Yelong Hong, Wei Zhuang, and Jingbiao Chen
Opt. Express 21(23) 28010-28018 (2013)

An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping

Longfei Yin, Bin Luo, Anhong Dang, and Hong Guo
Opt. Express 22(7) 7416-7421 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21(11), 2069–2075 (1982).
    [Crossref] [PubMed]
  2. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16(11), 867–869 (1991).
    [Crossref] [PubMed]
  3. B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett. 16(20), 1617–1619 (1991).
    [Crossref] [PubMed]
  4. S. D. Harrell, C. Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters revisited: theory and applications,” J. Opt. Soc. Am. B 26(4), 659–670 (2009).
    [Crossref]
  5. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16(11), 846–848 (1991).
    [Crossref] [PubMed]
  6. Z. Tan, X. P. Sun, J. Luo, Y. Cheng, X. C. Zhao, X. Zhou, J. Wang, and M. S. Zhan, “Ultranarrow bandwidth tunable atomic filter via quantum interference-induced polarization rotation in Rb vapor,” Chin. Opt. Lett. 9, 021405 (2011).
  7. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20(1), 106–108 (1995).
    [Crossref] [PubMed]
  8. L. Yin, B. Luo, A. Dang, and H. Guo, “An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping,” Opt. Express 22(7), 7416–7421 (2014).
    [Crossref] [PubMed]
  9. Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
    [Crossref]
  10. X. Shan, X. P. Sun, J. Luo, Z. Tan, and M. S. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89(19), 191121 (2006).
    [Crossref]
  11. J. A. Zielińska, F. A. Beduini, V. G. Lucivero, and M. W. Mitchell, “Atomic filtering for hybrid continuous-variable/discrete-variable quantum optics,” Opt. Express 22(21), 25307–25317 (2014).
    [Crossref] [PubMed]
  12. J. Höffner and C. Fricke-Begemann, “Accurate lidar temperatures with narrowband filters,” Opt. Lett. 30(8), 890–892 (2005).
    [Crossref] [PubMed]
  13. A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53(5), 051407 (2014).
    [Crossref]
  14. C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, “A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements,” Can. J. Phys. 85(2), 111–118 (2007).
    [Crossref]
  15. X. Shan, X. Sun, J. Luo, and M. Zhan, “Ultranarrow-bandwidth atomic filter with Raman light amplification,” Opt. Lett. 33(16), 1842–1844 (2008).
    [Crossref] [PubMed]
  16. Y. F. Zhu, “Light amplification mechanisms in a coherently coupled atomic system,” Phys. Rev. A 55(6), 4568–4575 (1997).
    [Crossref]
  17. J. L. Bowie, J. C. Garrison, and R. Y. Chiao, “Stimulated Raman gain in a Λ-type atomic system with doubly excited transitions,” Phys. Rev. A 61(5), 053811 (2000).
    [Crossref]
  18. S. Q. Liu, Y. D. Zhang, H. Wu, and D. K. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun. 284(18), 4180–4184 (2011).
    [Crossref]
  19. W. J. Zhang and Y. F. Peng, “Transmission characteristics of a Raman-amplified atomic optical filter in rubidium at 780 nm,” J. Opt. Technol. 81(4), 174–181 (2014).
    [Crossref]

2014 (4)

2012 (1)

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

2011 (2)

S. Q. Liu, Y. D. Zhang, H. Wu, and D. K. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun. 284(18), 4180–4184 (2011).
[Crossref]

Z. Tan, X. P. Sun, J. Luo, Y. Cheng, X. C. Zhao, X. Zhou, J. Wang, and M. S. Zhan, “Ultranarrow bandwidth tunable atomic filter via quantum interference-induced polarization rotation in Rb vapor,” Chin. Opt. Lett. 9, 021405 (2011).

2009 (1)

2008 (1)

2007 (1)

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, “A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements,” Can. J. Phys. 85(2), 111–118 (2007).
[Crossref]

2006 (1)

X. Shan, X. P. Sun, J. Luo, Z. Tan, and M. S. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89(19), 191121 (2006).
[Crossref]

2005 (1)

2000 (1)

J. L. Bowie, J. C. Garrison, and R. Y. Chiao, “Stimulated Raman gain in a Λ-type atomic system with doubly excited transitions,” Phys. Rev. A 61(5), 053811 (2000).
[Crossref]

1997 (1)

Y. F. Zhu, “Light amplification mechanisms in a coherently coupled atomic system,” Phys. Rev. A 55(6), 4568–4575 (1997).
[Crossref]

1995 (1)

1991 (3)

1982 (1)

Allocca, D. M.

Beduini, F. A.

Benson, K.

Billmers, R. I.

Bloom, S. H.

Bowie, J. L.

J. L. Bowie, J. C. Garrison, and R. Y. Chiao, “Stimulated Raman gain in a Λ-type atomic system with doubly excited transitions,” Phys. Rev. A 61(5), 053811 (2000).
[Crossref]

Chen, H.

Chen, J.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

Chen, S. S.

Cheng, Y.

Chiao, R. Y.

J. L. Bowie, J. C. Garrison, and R. Y. Chiao, “Stimulated Raman gain in a Λ-type atomic system with doubly excited transitions,” Phys. Rev. A 61(5), 053811 (2000).
[Crossref]

Contarino, V. M.

Dang, A.

Dick, D. J.

Fan, D. K.

S. Q. Liu, Y. D. Zhang, H. Wu, and D. K. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun. 284(18), 4180–4184 (2011).
[Crossref]

Fricke-Begemann, C.

Garrison, J. C.

J. L. Bowie, J. C. Garrison, and R. Y. Chiao, “Stimulated Raman gain in a Λ-type atomic system with doubly excited transitions,” Phys. Rev. A 61(5), 053811 (2000).
[Crossref]

Gayen, S. K.

Guo, H.

Harrell, S. D.

Höffner, J.

Hong, Y.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

Hu, Z. L.

Kawahara, T. D.

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, “A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements,” Can. J. Phys. 85(2), 111–118 (2007).
[Crossref]

Korevaar, E.

Krueger, D. A.

Liu, C. S.

Liu, S. Q.

S. Q. Liu, Y. D. Zhang, H. Wu, and D. K. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun. 284(18), 4180–4184 (2011).
[Crossref]

Liu, Z.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

Lucivero, V. G.

Luo, B.

Luo, J.

Menders, J.

Mitchell, M. W.

Peng, Y. F.

Rudolf, A.

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53(5), 051407 (2014).
[Crossref]

Scharpf, W. J.

Shan, X.

X. Shan, X. Sun, J. Luo, and M. Zhan, “Ultranarrow-bandwidth atomic filter with Raman light amplification,” Opt. Lett. 33(16), 1842–1844 (2008).
[Crossref] [PubMed]

X. Shan, X. P. Sun, J. Luo, Z. Tan, and M. S. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89(19), 191121 (2006).
[Crossref]

Shay, T. M.

She, C. Y.

S. D. Harrell, C. Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters revisited: theory and applications,” J. Opt. Soc. Am. B 26(4), 659–670 (2009).
[Crossref]

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, “A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements,” Can. J. Phys. 85(2), 111–118 (2007).
[Crossref]

Squicciarini, M. F.

Sun, Q.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

Sun, X.

Sun, X. P.

Tan, Z.

Vance, J. D.

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, “A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements,” Can. J. Phys. 85(2), 111–118 (2007).
[Crossref]

Walther, T.

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53(5), 051407 (2014).
[Crossref]

Wang, J.

Williams, B. P.

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, “A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements,” Can. J. Phys. 85(2), 111–118 (2007).
[Crossref]

Wu, H.

S. Q. Liu, Y. D. Zhang, H. Wu, and D. K. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun. 284(18), 4180–4184 (2011).
[Crossref]

Wu, Q.

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, “A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements,” Can. J. Phys. 85(2), 111–118 (2007).
[Crossref]

Yeh, P.

Yin, B.

Yin, L.

Yuan, T.

Zhan, M.

Zhan, M. S.

Zhang, W. J.

Zhang, Y. D.

S. Q. Liu, Y. D. Zhang, H. Wu, and D. K. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun. 284(18), 4180–4184 (2011).
[Crossref]

Zhao, X. C.

Zhou, X.

Zhu, Y. F.

Y. F. Zhu, “Light amplification mechanisms in a coherently coupled atomic system,” Phys. Rev. A 55(6), 4568–4575 (1997).
[Crossref]

Zhuang, W.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

Zielinska, J. A.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101(21), 211102 (2012).
[Crossref]

X. Shan, X. P. Sun, J. Luo, Z. Tan, and M. S. Zhan, “Free-space quantum key distribution with Rb vapor filters,” Appl. Phys. Lett. 89(19), 191121 (2006).
[Crossref]

Can. J. Phys. (1)

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, “A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements,” Can. J. Phys. 85(2), 111–118 (2007).
[Crossref]

Chin. Opt. Lett. (1)

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

Opt. Commun. (1)

S. Q. Liu, Y. D. Zhang, H. Wu, and D. K. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun. 284(18), 4180–4184 (2011).
[Crossref]

Opt. Eng. (1)

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53(5), 051407 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. A (2)

Y. F. Zhu, “Light amplification mechanisms in a coherently coupled atomic system,” Phys. Rev. A 55(6), 4568–4575 (1997).
[Crossref]

J. L. Bowie, J. C. Garrison, and R. Y. Chiao, “Stimulated Raman gain in a Λ-type atomic system with doubly excited transitions,” Phys. Rev. A 61(5), 053811 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the experimental apparatus: Laser 1, emitted from a Toptica TA pro laser at 795 nm, is used to provide the coupling and pumping lights. Laser 2, emitted from a Toptica DL 100 laser at 795 nm, provides the signal light. The two lasers are overlapped with a small angle in cell 1, and an aperture (AP) is set behind PBS 3 to further eliminate the slight coupling light. PBS 1, 2, and 3 are polarizing beam splitters. Cells 1, 2, and 3 stand for rubidium atom cells 1, 2, and 3, respectively. M stands for mirror. P1 and P2 are Glan-Taylor polarizers 1 and 2, respectively. PD1 and PD2 are photoelectric detectors.
Fig. 2
Fig. 2 Rubidium-85 detuned three-levelΛ- type scheme.
Fig. 3
Fig. 3 Typical Raman-gain transmission spectrum with the coupling light. Fit to the theory is shown by a dashed blue curve. The black curve is the reference absorption signal detected from cell 2 for identification of the detuning. The red curve is obtained when Δ1 = 3 GHz corresponds to the transmission bandwidths of the normal FADOF depicted in the inset. The left filtering channel of the normal FADOF has a bandwidth of approximately 650 MHz.
Fig. 4
Fig. 4 The transmission spectra of the atomic filter with stimulated Raman gain versus different detuning coupling lights. The black absorption curves correspond to the transition Rubidium-87 5 2 S 1/2 , F=2 5 2 P 1/2 , F =1 .
Fig. 5
Fig. 5 Transmission bandwidth (a) and Raman-gain factor (b) of the signal light with different coupling light power. The curves are obtained when the signal light power was set to 26 μW, 77 μW, and 280 μW, respectively. Detuning of the coupling light is the same as that in Fig. 3.
Fig. 6
Fig. 6 The 85-fold enhancement transmission spectrum is obtained with 22 MHz bandwidth shown in the inset. The green line presents the transmission without Raman gain. The inset shows the bandwidth of the enhancement transmission spectrum by the calibration of the rubidium atomic absorption peaks (black).
Fig. 7
Fig. 7 The transmission spectra of the atomic filter based on the simulated Raman transitions, which work with the related filtering channels of the normal FADOF. The powers of the coupling light and signal light are 180 mW and 210 μW, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d ρ 11 dt =Λ( ρ 33 ρ 11 )+i Ω 31 ( ρ 31 ρ 13 )+ γ 31 ρ 33 , d ρ 22 dt =i Ω 32 ( ρ 32 ρ 23 )+ γ 32 ρ 33 , d ρ 33 dt =Λ( ρ 11 ρ 33 )+i Ω 31 ( ρ 31 ρ 13 )+i Ω 32 ( ρ 32 ρ 23 )( γ 31 + γ 32 ) ρ 33 , d ρ 12 dt =( Λ 2 +i( Δ 2 Δ 1 ) ) ρ 12 i Ω 32 ρ 13 +i Ω 31 ρ 32 , d ρ 13 dt =( γ 31 + γ 32 2 +Λ+i Δ 2 ) ρ 13 i Ω 32 ρ 12 +i Ω 31 ( ρ 33 ρ 11 ), d ρ 23 dt =( Λ+ γ 31 + γ 32 2 +i Δ 1 ) ρ 23 i Ω 31 ρ 21 +i Ω 32 ( ρ 33 ρ 22 ), ρ 11 + ρ 22 + ρ 33 =1.
ρ 13 =2i Ω 31 ( ρ 33 ρ 11 ) Ω 32 ρ 12 2Λ+ γ 31 + γ 32 .
T= 1 2 G e Im( k + + k )L { cosh[ Im( k + + k )L ]cos[ Re( k + k )L ] }.

Metrics