Abstract

Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the −1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors

Chen-Han Huang, Hsing-Ying Lin, Shihtse Chen, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng
Opt. Express 19(12) 11441-11450 (2011)

Effect of substrate overetching and heat treatment of titanium oxide waveguide gratings and thin films on their optical properties

Muhammad Rizwan Saleem, Seppo Honkanen, and Jari Turunen
Appl. Opt. 52(3) 422-432 (2013)

Subwavelength grating based metal-oxide nano-hair structures for optical vortex generation

Indumathi Raghu Srimathi, Yuan Li, William F. Delaney, and Eric G. Johnson
Opt. Express 23(15) 19056-19065 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
    [Crossref]
  2. T. Weber, T. Käsebier, E. B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
    [Crossref] [PubMed]
  3. T. Weber, T. Kasebier, A. Szeghalmi, M. Knez, E. B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
    [Crossref]
  4. W. Freese, T. Kämpfe, E. B. Kley, and A. Tünnermann, “Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett. 35(5), 676–678 (2010).
    [Crossref] [PubMed]
  5. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H. J. Fuchs, E. B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42(34), 6934–6938 (2003).
    [Crossref] [PubMed]
  6. T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, and A. Tünnermann, “Reflection-reduced encapsulated transmission grating,” Opt. Lett. 33(17), 1972–1974 (2008).
    [Crossref] [PubMed]
  7. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33(14), 1554–1556 (2008).
    [Crossref] [PubMed]
  8. H. C. Cao, C. H. Zhou, J. J. Feng, P. Lv, and J. Y. Ma, “Polarization-independent triangular-groove fused-silica gratings with high efficiency at a wavelength of 1550 nm,” Opt. Commun. 283(21), 4271–4273 (2010).
    [Crossref]
  9. J. Nishii, K. Kintaka, and T. Nakazawa, “High-efficiency transmission gratings buried in a fused-SiO2 glass plate,” Appl. Opt. 43(6), 1327–1330 (2004).
    [Crossref] [PubMed]
  10. T. Clausnitzer, T. Kämpfe, E. B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16(8), 5577–5584 (2008).
    [Crossref] [PubMed]
  11. G. Kalkowski, U. Zeitner, T. Benkenstein, J. Fuchs, C. Rothhardt, and R. Eberhardt, “Direct wafer bonding for encapsulation of fused silica optical gratings,” Microelectron. Eng. 97, 177–180 (2012).
    [Crossref]
  12. K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing - part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
    [Crossref]
  13. G. Spierings, “Wet chemical etching of silicate-glasses in hydrofluoric-acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
    [Crossref]
  14. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
    [Crossref] [PubMed]
  15. D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res. 16(12), 3331–3334 (2001).
    [Crossref]
  16. A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gosele, and M. Knez, “Flexible replication technique for high-aspect-ratio nanostructures,” Small 6(23), 2701–2707 (2010).
    [Crossref] [PubMed]
  17. J. Oh, J. Myoung, J. S. Bae, and S. Lim, “Etch behavior of ALD Al2O3 on HfSiO and HfSiON stacks in acidic and basic etchants,” J. Electrochem. Soc. 158(4), D217–D222 (2011).
    [Crossref]
  18. B. Zhou and W. F. Ramirez, “Kinetics and modeling of wet etching of aluminum oxide by warm phosphoric acid,” J. Electrochem. Soc. 143(2), 619–623 (1996).
    [Crossref]
  19. J. A. Aboaf, “Deposition and properties of aluminum oxide obtained by pyrolytic decomposition of an aluminum alkoxide,” J. Electrochem. Soc. 114(9), 948–952 (1967).
    [Crossref]
  20. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982).
    [Crossref]
  21. J. Želudevičius, R. Danilevičius, K. Viskontas, N. Rusteika, and K. Regelskis, “Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber,” Opt. Express 21(5), 5338–5345 (2013).
    [Crossref] [PubMed]

2013 (1)

2012 (2)

T. Weber, T. Kasebier, A. Szeghalmi, M. Knez, E. B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

G. Kalkowski, U. Zeitner, T. Benkenstein, J. Fuchs, C. Rothhardt, and R. Eberhardt, “Direct wafer bonding for encapsulation of fused silica optical gratings,” Microelectron. Eng. 97, 177–180 (2012).
[Crossref]

2011 (2)

J. Oh, J. Myoung, J. S. Bae, and S. Lim, “Etch behavior of ALD Al2O3 on HfSiO and HfSiON stacks in acidic and basic etchants,” J. Electrochem. Soc. 158(4), D217–D222 (2011).
[Crossref]

T. Weber, T. Käsebier, E. B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
[Crossref] [PubMed]

2010 (4)

W. Freese, T. Kämpfe, E. B. Kley, and A. Tünnermann, “Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett. 35(5), 676–678 (2010).
[Crossref] [PubMed]

H. C. Cao, C. H. Zhou, J. J. Feng, P. Lv, and J. Y. Ma, “Polarization-independent triangular-groove fused-silica gratings with high efficiency at a wavelength of 1550 nm,” Opt. Commun. 283(21), 4271–4273 (2010).
[Crossref]

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gosele, and M. Knez, “Flexible replication technique for high-aspect-ratio nanostructures,” Small 6(23), 2701–2707 (2010).
[Crossref] [PubMed]

2008 (3)

2004 (1)

2003 (2)

2001 (1)

D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res. 16(12), 3331–3334 (2001).
[Crossref]

1996 (1)

B. Zhou and W. F. Ramirez, “Kinetics and modeling of wet etching of aluminum oxide by warm phosphoric acid,” J. Electrochem. Soc. 143(2), 619–623 (1996).
[Crossref]

1995 (1)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[Crossref] [PubMed]

1993 (1)

G. Spierings, “Wet chemical etching of silicate-glasses in hydrofluoric-acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
[Crossref]

1982 (1)

1967 (1)

J. A. Aboaf, “Deposition and properties of aluminum oxide obtained by pyrolytic decomposition of an aluminum alkoxide,” J. Electrochem. Soc. 114(9), 948–952 (1967).
[Crossref]

Aboaf, J. A.

J. A. Aboaf, “Deposition and properties of aluminum oxide obtained by pyrolytic decomposition of an aluminum alkoxide,” J. Electrochem. Soc. 114(9), 948–952 (1967).
[Crossref]

Bae, J. S.

J. Oh, J. Myoung, J. S. Bae, and S. Lim, “Etch behavior of ALD Al2O3 on HfSiO and HfSiON stacks in acidic and basic etchants,” J. Electrochem. Soc. 158(4), D217–D222 (2011).
[Crossref]

Benkenstein, T.

G. Kalkowski, U. Zeitner, T. Benkenstein, J. Fuchs, C. Rothhardt, and R. Eberhardt, “Direct wafer bonding for encapsulation of fused silica optical gratings,” Microelectron. Eng. 97, 177–180 (2012).
[Crossref]

Brückner, F.

Brunner, R.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gosele, and M. Knez, “Flexible replication technique for high-aspect-ratio nanostructures,” Small 6(23), 2701–2707 (2010).
[Crossref] [PubMed]

Cao, H. C.

H. C. Cao, C. H. Zhou, J. J. Feng, P. Lv, and J. Y. Ma, “Polarization-independent triangular-groove fused-silica gratings with high efficiency at a wavelength of 1550 nm,” Opt. Commun. 283(21), 4271–4273 (2010).
[Crossref]

Chen, Z.

D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res. 16(12), 3331–3334 (2001).
[Crossref]

Clausnitzer, T.

Danilevicius, R.

Dickey, E. C.

D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res. 16(12), 3331–3334 (2001).
[Crossref]

Eberhardt, R.

G. Kalkowski, U. Zeitner, T. Benkenstein, J. Fuchs, C. Rothhardt, and R. Eberhardt, “Direct wafer bonding for encapsulation of fused silica optical gratings,” Microelectron. Eng. 97, 177–180 (2012).
[Crossref]

Erfurth, W.

A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gosele, and M. Knez, “Flexible replication technique for high-aspect-ratio nanostructures,” Small 6(23), 2701–2707 (2010).
[Crossref] [PubMed]

Feng, J.

Feng, J. J.

H. C. Cao, C. H. Zhou, J. J. Feng, P. Lv, and J. Y. Ma, “Polarization-independent triangular-groove fused-silica gratings with high efficiency at a wavelength of 1550 nm,” Opt. Commun. 283(21), 4271–4273 (2010).
[Crossref]

Freese, W.

Fuchs, H. J.

Fuchs, J.

G. Kalkowski, U. Zeitner, T. Benkenstein, J. Fuchs, C. Rothhardt, and R. Eberhardt, “Direct wafer bonding for encapsulation of fused silica optical gratings,” Microelectron. Eng. 97, 177–180 (2012).
[Crossref]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[Crossref] [PubMed]

Gaylord, T. K.

Gong, D.

D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res. 16(12), 3331–3334 (2001).
[Crossref]

Gosele, U.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gosele, and M. Knez, “Flexible replication technique for high-aspect-ratio nanostructures,” Small 6(23), 2701–2707 (2010).
[Crossref] [PubMed]

Grimes, C. A.

D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res. 16(12), 3331–3334 (2001).
[Crossref]

Gupta, K.

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing - part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
[Crossref]

Heinze, R.

Helgert, M.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gosele, and M. Knez, “Flexible replication technique for high-aspect-ratio nanostructures,” Small 6(23), 2701–2707 (2010).
[Crossref] [PubMed]

Heyroth, F.

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Hu, W. C.

D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res. 16(12), 3331–3334 (2001).
[Crossref]

Jupé, M.

Kalkowski, G.

G. Kalkowski, U. Zeitner, T. Benkenstein, J. Fuchs, C. Rothhardt, and R. Eberhardt, “Direct wafer bonding for encapsulation of fused silica optical gratings,” Microelectron. Eng. 97, 177–180 (2012).
[Crossref]

Kämpfe, T.

Kasebier, T.

T. Weber, T. Kasebier, A. Szeghalmi, M. Knez, E. B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

Käsebier, T.

Kintaka, K.

Kley, E. B.

Knez, M.

T. Weber, T. Kasebier, A. Szeghalmi, M. Knez, E. B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gosele, and M. Knez, “Flexible replication technique for high-aspect-ratio nanostructures,” Small 6(23), 2701–2707 (2010).
[Crossref] [PubMed]

Lim, S.

J. Oh, J. Myoung, J. S. Bae, and S. Lim, “Etch behavior of ALD Al2O3 on HfSiO and HfSiON stacks in acidic and basic etchants,” J. Electrochem. Soc. 158(4), D217–D222 (2011).
[Crossref]

Limpert, J.

Lv, P.

H. C. Cao, C. H. Zhou, J. J. Feng, P. Lv, and J. Y. Ma, “Polarization-independent triangular-groove fused-silica gratings with high efficiency at a wavelength of 1550 nm,” Opt. Commun. 283(21), 4271–4273 (2010).
[Crossref]

Ma, J. Y.

H. C. Cao, C. H. Zhou, J. J. Feng, P. Lv, and J. Y. Ma, “Polarization-independent triangular-groove fused-silica gratings with high efficiency at a wavelength of 1550 nm,” Opt. Commun. 283(21), 4271–4273 (2010).
[Crossref]

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[Crossref] [PubMed]

Moharam, M. G.

Myoung, J.

J. Oh, J. Myoung, J. S. Bae, and S. Lim, “Etch behavior of ALD Al2O3 on HfSiO and HfSiON stacks in acidic and basic etchants,” J. Electrochem. Soc. 158(4), D217–D222 (2011).
[Crossref]

Nakazawa, T.

Nishii, J.

Oh, J.

J. Oh, J. Myoung, J. S. Bae, and S. Lim, “Etch behavior of ALD Al2O3 on HfSiO and HfSiON stacks in acidic and basic etchants,” J. Electrochem. Soc. 158(4), D217–D222 (2011).
[Crossref]

Parriaux, O.

Ramirez, W. F.

B. Zhou and W. F. Ramirez, “Kinetics and modeling of wet etching of aluminum oxide by warm phosphoric acid,” J. Electrochem. Soc. 143(2), 619–623 (1996).
[Crossref]

Regelskis, K.

Ristau, D.

Rothhardt, C.

G. Kalkowski, U. Zeitner, T. Benkenstein, J. Fuchs, C. Rothhardt, and R. Eberhardt, “Direct wafer bonding for encapsulation of fused silica optical gratings,” Microelectron. Eng. 97, 177–180 (2012).
[Crossref]

Rusteika, N.

Singh, R. S.

D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res. 16(12), 3331–3334 (2001).
[Crossref]

Sklarek, K.

A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gosele, and M. Knez, “Flexible replication technique for high-aspect-ratio nanostructures,” Small 6(23), 2701–2707 (2010).
[Crossref] [PubMed]

Spierings, G.

G. Spierings, “Wet chemical etching of silicate-glasses in hydrofluoric-acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
[Crossref]

Szeghalmi, A.

T. Weber, T. Kasebier, A. Szeghalmi, M. Knez, E. B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gosele, and M. Knez, “Flexible replication technique for high-aspect-ratio nanostructures,” Small 6(23), 2701–2707 (2010).
[Crossref] [PubMed]

Tishchenko, A. V.

Tünnermann, A.

Varghese, O. K.

D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res. 16(12), 3331–3334 (2001).
[Crossref]

Viskontas, K.

Wang, B.

Wasilik, M.

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing - part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
[Crossref]

Weber, T.

T. Weber, T. Kasebier, A. Szeghalmi, M. Knez, E. B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

T. Weber, T. Käsebier, E. B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
[Crossref] [PubMed]

Williams, K. R.

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing - part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
[Crossref]

Zeitner, U.

G. Kalkowski, U. Zeitner, T. Benkenstein, J. Fuchs, C. Rothhardt, and R. Eberhardt, “Direct wafer bonding for encapsulation of fused silica optical gratings,” Microelectron. Eng. 97, 177–180 (2012).
[Crossref]

Zellmer, H.

Želudevicius, J.

Zheng, J.

Zhou, B.

B. Zhou and W. F. Ramirez, “Kinetics and modeling of wet etching of aluminum oxide by warm phosphoric acid,” J. Electrochem. Soc. 143(2), 619–623 (1996).
[Crossref]

Zhou, C.

Zhou, C. H.

H. C. Cao, C. H. Zhou, J. J. Feng, P. Lv, and J. Y. Ma, “Polarization-independent triangular-groove fused-silica gratings with high efficiency at a wavelength of 1550 nm,” Opt. Commun. 283(21), 4271–4273 (2010).
[Crossref]

Zöllner, K.

Adv. Funct. Mater. (1)

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gosele, and M. Knez, “Tunable guided-mode resonance grating filter,” Adv. Funct. Mater. 20(13), 2053–2062 (2010).
[Crossref]

Appl. Opt. (2)

J. Electrochem. Soc. (3)

J. Oh, J. Myoung, J. S. Bae, and S. Lim, “Etch behavior of ALD Al2O3 on HfSiO and HfSiON stacks in acidic and basic etchants,” J. Electrochem. Soc. 158(4), D217–D222 (2011).
[Crossref]

B. Zhou and W. F. Ramirez, “Kinetics and modeling of wet etching of aluminum oxide by warm phosphoric acid,” J. Electrochem. Soc. 143(2), 619–623 (1996).
[Crossref]

J. A. Aboaf, “Deposition and properties of aluminum oxide obtained by pyrolytic decomposition of an aluminum alkoxide,” J. Electrochem. Soc. 114(9), 948–952 (1967).
[Crossref]

J. Mater. Res. (1)

D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res. 16(12), 3331–3334 (2001).
[Crossref]

J. Mater. Sci. (1)

G. Spierings, “Wet chemical etching of silicate-glasses in hydrofluoric-acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
[Crossref]

J. Microelectromech. Syst. (1)

K. R. Williams, K. Gupta, and M. Wasilik, “Etch rates for micromachining processing - part II,” J. Microelectromech. Syst. 12(6), 761–778 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

Microelectron. Eng. (2)

G. Kalkowski, U. Zeitner, T. Benkenstein, J. Fuchs, C. Rothhardt, and R. Eberhardt, “Direct wafer bonding for encapsulation of fused silica optical gratings,” Microelectron. Eng. 97, 177–180 (2012).
[Crossref]

T. Weber, T. Kasebier, A. Szeghalmi, M. Knez, E. B. Kley, and A. Tünnermann, “High aspect ratio deep UV wire grid polarizer fabricated by double patterning,” Microelectron. Eng. 98, 433–435 (2012).
[Crossref]

Opt. Commun. (1)

H. C. Cao, C. H. Zhou, J. J. Feng, P. Lv, and J. Y. Ma, “Polarization-independent triangular-groove fused-silica gratings with high efficiency at a wavelength of 1550 nm,” Opt. Commun. 283(21), 4271–4273 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Science (1)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[Crossref] [PubMed]

Small (1)

A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gosele, and M. Knez, “Flexible replication technique for high-aspect-ratio nanostructures,” Small 6(23), 2701–2707 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Encapsulation process based of a binary grating. The process is divided in 5 major steps. First, the grooves of the grating (height h, period p and ridge width s) (a) are filled with a sacrificial layer (layer thickness a) (b), then the excess material is removed (c). It follows a deposition of cover layer on top of the filled grating (d). The cover layer is structured (cover thickness d and period P) (e) to obtain an access to the sacrificial layer which is removed by selective etching (f).
Fig. 2
Fig. 2 (a) SEM image (cross section) of the encapsulated grating before the H3PO4 etching, (b) SEM image (cross section) of the encapsulated grating after the H3PO4 etching, (c) EDX spectrum of the encapsulated grating before and after H3PO4 etching, (d) SEM image (top view) of the encapsulated grating after the H3PO4 etching
Fig. 3
Fig. 3 (a) Amount of Al2O3 etched for two different Al2O3 coatings deposited at different ALD processes as function of the reaction time; reaction temperature: 60°C; 30% phosphoric acid and (b) etch amount of SiO2 etched at different reaction temperatures in 85% phosphoric acid bath within 2.5 h.
Fig. 4
Fig. 4 Design study for high efficiency encapsulated grating.
Fig. 5
Fig. 5 (a) Transmission efficiency in the −1st diffraction order for TM-polarized light: Ideal grating parameters (black line), real grating parameters (dashed line), measurement on the real grating (black dots), (b) SEM image (cross section) of the encapsulated grating and (c) grating model used for the simulation.
Fig. 6
Fig. 6 (a) Light microscope image after the cross cut test (ISO:9211-4:2007-03) of the encapsulated grating and (b) SEM image (side view) of small debris encapsulated in the grating top layer

Tables (1)

Tables Icon

Table 1 Ideal and realized grating parameters.

Metrics