Abstract

We propose a scheme for the distillation of partially entangled two-photon Bell and three-photon W states using metamaterials. The distillation of partially entangled Bell states is achieved by using two metamaterials with polarization dependence, one of which is rotated by π/2 around the direction of propagation of the photons. On the other hand, the distillation of three-photon W states is achieved by using one polarization dependent metamaterial and two polarization independent metamaterials. Upon transmission of the photons of the partially entangled states through the metamaterials the entanglement of the states increases and they become distilled. This work opens up new directions in quantum optical state engineering by showing how metamaterials can be used to carry out a quantum information processing task.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement

Xi-Han Li and Shohini Ghose
Opt. Express 24(16) 18388-18398 (2016)

High-efficient entanglement distillation from photon loss and decoherence

Tie-Jun Wang and Chuan Wang
Opt. Express 23(24) 31550-31563 (2015)

Hyperentanglement concentration for n-photon 2n-qubit systems with linear optics

Ming-Xing Luo, Xiu-Bo Chen, Yi-Xian Yang, Zhi-Guo Qu, and Xiaojun Wang
J. Opt. Soc. Am. B 31(1) 67-74 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  2. I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, “Compact size highly directive antennas based on the SRR metamaterial medium,” New J. Phys. 7, 223 (2005).
    [Crossref]
  3. H. Odabasi, F. Teixeira, and D. O. Güney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
    [Crossref]
  4. U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys. 9(8), 254 (2007).
    [Crossref]
  5. D. O. Güney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Phys. Rev. A 79(6), 063834 (2009).
    [Crossref]
  6. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
    [Crossref]
  7. A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci Rep 4, 4901 (2014).
    [Crossref] [PubMed]
  8. M. I. Aslam and D. O. Güney, “On negative index metamaterial spacers and their unusual optical properties,” Prog. Electromagn. Res. B 47, 203–217 (2013).
    [Crossref]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  10. T. Xu, Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express 16(18), 13579–13584 (2008).
    [Crossref] [PubMed]
  11. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  12. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
    [Crossref] [PubMed]
  13. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
    [Crossref] [PubMed]
  14. J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B 80(3), 035109 (2009).
    [Crossref]
  15. D. O. Güney, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009).
    [Crossref] [PubMed]
  16. D. O. Güney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18(12), 12348–12353 (2010).
    [Crossref] [PubMed]
  17. M. I. Aslam and D. O. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84(19), 195465 (2011).
    [Crossref]
  18. M. I. Aslam and D. O. Güney, “Dual band double-negative polarization independent metamaterial for the visible spectrum,” J. Opt. Soc. Am. B 29(10), 2839–2847 (2012).
    [Crossref]
  19. S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, “A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization,” IEEE Antenn. Propag. M. 55(2), 91–106 (2013).
    [Crossref]
  20. P. W. Miloni, “Field quantization and radiative processes in dispersive dielectric media,” J. Mod. Opt. 42(10), 1991–2004 (1995).
    [Crossref]
  21. P. W. Milonni and G. J. Maclay, “Quantized-field description of light in negative-index media,” Opt. Commun. 228(1-3), 161–165 (2003).
    [Crossref]
  22. M. Ligare, “Propagation of quantized fields through negative-index media,” J. Mod. Opt. 58(17), 1551–1559 (2011).
    [Crossref]
  23. F. Dominec, C. Kadlec, H. Němec, P. Kužel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Express 22(25), 30492–30503 (2014).
    [Crossref] [PubMed]
  24. J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
    [PubMed]
  25. D. O. Güney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24(2), 283–294 (2007).
    [Crossref]
  26. D. O. Güney and D. A. Meyer, “Integrated conditional teleportation and readout circuit based on a photonic crystal single chip,” J. Opt. Soc. Am. B 24(2), 391–397 (2007).
    [Crossref]
  27. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
    [Crossref] [PubMed]
  28. J. L. van Velsen, J. Tworzydlo, and C. W. J. Beenakker, “Scattering theory of plasmon-assisted entanglement transfer and distillation,” Phys. Rev. A 68(4), 043807 (2003).
    [Crossref]
  29. E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92(23), 236801 (2004).
    [Crossref] [PubMed]
  30. M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
    [Crossref]
  31. M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008).
    [Crossref] [PubMed]
  32. D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim, “Long-range surface plasmon-polariton excitation at the quantum level,” Phys. Rev. A 79(5), 053845 (2009).
    [Crossref]
  33. D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface-plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).
    [Crossref]
  34. B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons,” Phys. Rev. Lett. 110(15), 156802 (2013).
    [Crossref] [PubMed]
  35. D. O. Güney, Th. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
    [Crossref]
  36. D. A. Meyer and N. R. Wallach, “Global entanglement in multipartite systems,” J. Math. Phys. 43(9), 4273–4278 (2002).
    [Crossref]
  37. T. Yamamoto, M. Koashi, S. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421(6921), 343–346 (2003).
    [Crossref] [PubMed]
  38. P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409(6823), 1014–1017 (2001).
    [Crossref] [PubMed]
  39. R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
    [Crossref] [PubMed]
  40. T. Yamamoto, K. Hayashi, S. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2(8), 488–491 (2008).
    [Crossref]
  41. T. Tashima, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11(2), 023024 (2009).
    [Crossref]
  42. T. Tashima, T. Wakatsuki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon w state,” Phys. Rev. Lett. 102(13), 130502 (2009).
    [Crossref] [PubMed]
  43. P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94(24), 240501 (2005).
    [Crossref]
  44. Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13(10), 103003 (2011).
    [Crossref]
  45. F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89(4), 042311 (2014).
    [Crossref]
  46. T. Tashima, T. Kitano, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Demonstration of local expansion toward large-scale entangled webs,” Phys. Rev. Lett. 105(21), 210503 (2010).
    [Crossref] [PubMed]
  47. B. Gu, D. Quan, and S. Xiao, “Multi-photon entanglement concentration protocol for partially entangled W states with projection measurement,” Int. J. Theor. Phys. 51(9), 2966–2973 (2012).
    [Crossref]
  48. B. Gu, “Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics,” J. Opt. Soc. Am. B 29, 1685–1689 (2012).
  49. F.-F. Du, T. Li, B.-C. Ren, H.-R. Wei, and F.-G. Deng, “Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29(6), 1399–1405 (2012).
    [Crossref]
  50. L. Zhou, Y.-B. Sheng, W.-W. Cheng, L.-Y. Gong, and S.-M. Zhao, “Efficient entanglement concentration for arbitrary single-photon multimode W state,” J. Opt. Soc. Am. B 30(1), 71–78 (2013).
    [Crossref]
  51. Y. B. Sheng and L. Zhou, “Efficient W-state entanglement concentration using quantum-dot and optical microcavities,” J. Opt. Soc. Am. B 30(3), 678–686 (2013).
    [Crossref]
  52. T. J. Wang and G. L. Long, “Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics,” J. Opt. Soc. Am. B 30(4), 1069–1076 (2013).
    [Crossref]
  53. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [Crossref] [PubMed]
  54. C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 367–375 (2010).
    [Crossref]
  55. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
    [Crossref] [PubMed]
  56. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–2220 (1983).
    [Crossref] [PubMed]
  57. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  58. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
    [Crossref] [PubMed]
  59. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  60. M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95(8), 084105 (2009).
    [Crossref]
  61. P. He, P. V. Parimi, Y. He, V. G. Harris, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electron. Lett. 43(25), 1440–1441 (2007).
    [Crossref]
  62. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
    [Crossref]
  63. D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15(6), 3342–3347 (2007).
    [Crossref] [PubMed]
  64. M. V. Gorkunov and M. A. Osipov, “Tunability of wire-grid metamaterial immersed into nematic liquid crystal,” J. Appl. Phys. 103(3), 036101 (2008).
    [Crossref]
  65. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
    [Crossref]
  66. H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
    [Crossref]
  67. K. R. McEnery, M. S. Tame, S. A. Maier, and M. S. Kim, “Tunable negative permeability in a quantum plasmonic metamaterial,” Phys. Rev. A 89(1), 013822 (2014).
    [Crossref]

2014 (4)

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci Rep 4, 4901 (2014).
[Crossref] [PubMed]

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89(4), 042311 (2014).
[Crossref]

K. R. McEnery, M. S. Tame, S. A. Maier, and M. S. Kim, “Tunable negative permeability in a quantum plasmonic metamaterial,” Phys. Rev. A 89(1), 013822 (2014).
[Crossref]

F. Dominec, C. Kadlec, H. Němec, P. Kužel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Express 22(25), 30492–30503 (2014).
[Crossref] [PubMed]

2013 (8)

L. Zhou, Y.-B. Sheng, W.-W. Cheng, L.-Y. Gong, and S.-M. Zhao, “Efficient entanglement concentration for arbitrary single-photon multimode W state,” J. Opt. Soc. Am. B 30(1), 71–78 (2013).
[Crossref]

Y. B. Sheng and L. Zhou, “Efficient W-state entanglement concentration using quantum-dot and optical microcavities,” J. Opt. Soc. Am. B 30(3), 678–686 (2013).
[Crossref]

T. J. Wang and G. L. Long, “Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics,” J. Opt. Soc. Am. B 30(4), 1069–1076 (2013).
[Crossref]

M. I. Aslam and D. O. Güney, “On negative index metamaterial spacers and their unusual optical properties,” Prog. Electromagn. Res. B 47, 203–217 (2013).
[Crossref]

H. Odabasi, F. Teixeira, and D. O. Güney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, “A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization,” IEEE Antenn. Propag. M. 55(2), 91–106 (2013).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons,” Phys. Rev. Lett. 110(15), 156802 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (5)

M. I. Aslam and D. O. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84(19), 195465 (2011).
[Crossref]

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

D. O. Güney, Th. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
[Crossref]

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13(10), 103003 (2011).
[Crossref]

M. Ligare, “Propagation of quantized fields through negative-index media,” J. Mod. Opt. 58(17), 1551–1559 (2011).
[Crossref]

2010 (4)

D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface-plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).
[Crossref]

C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 367–375 (2010).
[Crossref]

T. Tashima, T. Kitano, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Demonstration of local expansion toward large-scale entangled webs,” Phys. Rev. Lett. 105(21), 210503 (2010).
[Crossref] [PubMed]

D. O. Güney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18(12), 12348–12353 (2010).
[Crossref] [PubMed]

2009 (9)

D. O. Güney, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009).
[Crossref] [PubMed]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95(8), 084105 (2009).
[Crossref]

T. Tashima, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11(2), 023024 (2009).
[Crossref]

T. Tashima, T. Wakatsuki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon w state,” Phys. Rev. Lett. 102(13), 130502 (2009).
[Crossref] [PubMed]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim, “Long-range surface plasmon-polariton excitation at the quantum level,” Phys. Rev. A 79(5), 053845 (2009).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B 80(3), 035109 (2009).
[Crossref]

D. O. Güney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Phys. Rev. A 79(6), 063834 (2009).
[Crossref]

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
[Crossref]

2008 (8)

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008).
[Crossref] [PubMed]

T. Yamamoto, K. Hayashi, S. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2(8), 488–491 (2008).
[Crossref]

M. V. Gorkunov and M. A. Osipov, “Tunability of wire-grid metamaterial immersed into nematic liquid crystal,” J. Appl. Phys. 103(3), 036101 (2008).
[Crossref]

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

T. Xu, Y. Zhao, J. Ma, C. Wang, J. Cui, C. Du, and X. Luo, “Sub-diffraction-limited interference photolithography with metamaterials,” Opt. Express 16(18), 13579–13584 (2008).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

2007 (7)

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

2005 (3)

P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94(24), 240501 (2005).
[Crossref]

I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, “Compact size highly directive antennas based on the SRR metamaterial medium,” New J. Phys. 7, 223 (2005).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

2004 (2)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92(23), 236801 (2004).
[Crossref] [PubMed]

2003 (3)

P. W. Milonni and G. J. Maclay, “Quantized-field description of light in negative-index media,” Opt. Commun. 228(1-3), 161–165 (2003).
[Crossref]

J. L. van Velsen, J. Tworzydlo, and C. W. J. Beenakker, “Scattering theory of plasmon-assisted entanglement transfer and distillation,” Phys. Rev. A 68(4), 043807 (2003).
[Crossref]

T. Yamamoto, M. Koashi, S. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421(6921), 343–346 (2003).
[Crossref] [PubMed]

2002 (4)

D. A. Meyer and N. R. Wallach, “Global entanglement in multipartite systems,” J. Math. Phys. 43(9), 4273–4278 (2002).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[Crossref] [PubMed]

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

2001 (1)

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409(6823), 1014–1017 (2001).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1995 (1)

P. W. Miloni, “Field quantization and radiative processes in dispersive dielectric media,” J. Mod. Opt. 42(10), 1991–2004 (1995).
[Crossref]

1983 (1)

Alexander, R. W.

Altewischer, E.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[Crossref] [PubMed]

Altintas, A. A.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89(4), 042311 (2014).
[Crossref]

Arslanagic, S.

S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, “A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization,” IEEE Antenn. Propag. M. 55(2), 91–106 (2013).
[Crossref]

Aslam, M. I.

M. I. Aslam and D. O. Güney, “On negative index metamaterial spacers and their unusual optical properties,” Prog. Electromagn. Res. B 47, 203–217 (2013).
[Crossref]

M. I. Aslam and D. O. Güney, “Dual band double-negative polarization independent metamaterial for the visible spectrum,” J. Opt. Soc. Am. B 29(10), 2839–2847 (2012).
[Crossref]

M. I. Aslam and D. O. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84(19), 195465 (2011).
[Crossref]

Averitt, R. D.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Aydin, K.

I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, “Compact size highly directive antennas based on the SRR metamaterial medium,” New J. Phys. 7, 223 (2005).
[Crossref]

Azad, A. K.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Ballester, D.

D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface-plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).
[Crossref]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim, “Long-range surface plasmon-polariton excitation at the quantum level,” Phys. Rev. A 79(5), 053845 (2009).
[Crossref]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008).
[Crossref] [PubMed]

Barraza-Lopez, S.

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409(6823), 1014–1017 (2001).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Beenakker, C. W. J.

J. L. van Velsen, J. Tworzydlo, and C. W. J. Beenakker, “Scattering theory of plasmon-assisted entanglement transfer and distillation,” Phys. Rev. A 68(4), 043807 (2003).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Blakestad, R. B.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

Breinbjerg, O.

S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, “A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization,” IEEE Antenn. Propag. M. 55(2), 91–106 (2013).
[Crossref]

Britton, J.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

Bugu, S.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89(4), 042311 (2014).
[Crossref]

Bulu, I.

I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, “Compact size highly directive antennas based on the SRR metamaterial medium,” New J. Phys. 7, 223 (2005).
[Crossref]

Caglayan, H.

I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, “Compact size highly directive antennas based on the SRR metamaterial medium,” New J. Phys. 7, 223 (2005).
[Crossref]

Chen, H.-T.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Cheng, W.-W.

Cirac, J. I.

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92(23), 236801 (2004).
[Crossref] [PubMed]

Cui, J.

Cummer, S. A.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Deng, F.-G.

Dickson, W.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Dolling, G.

Dominec, F.

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Du, C.

Du, F.-F.

Erni, D.

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92(23), 236801 (2004).
[Crossref] [PubMed]

Evans, P. G.

B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons,” Phys. Rev. Lett. 110(15), 156802 (2013).
[Crossref] [PubMed]

García-Meca, C.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

García-Vidal, F. J.

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92(23), 236801 (2004).
[Crossref] [PubMed]

Genov, D. A.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Gisin, N.

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409(6823), 1014–1017 (2001).
[Crossref] [PubMed]

Gong, L.-Y.

Gorkunov, M.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95(8), 084105 (2009).
[Crossref]

Gorkunov, M. V.

M. V. Gorkunov and M. A. Osipov, “Tunability of wire-grid metamaterial immersed into nematic liquid crystal,” J. Appl. Phys. 103(3), 036101 (2008).
[Crossref]

Gregersen, A. H.

S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, “A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization,” IEEE Antenn. Propag. M. 55(2), 91–106 (2013).
[Crossref]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Gu, B.

B. Gu, D. Quan, and S. Xiao, “Multi-photon entanglement concentration protocol for partially entangled W states with projection measurement,” Int. J. Theor. Phys. 51(9), 2966–2973 (2012).
[Crossref]

B. Gu, “Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics,” J. Opt. Soc. Am. B 29, 1685–1689 (2012).

Güney, D. O.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci Rep 4, 4901 (2014).
[Crossref] [PubMed]

H. Odabasi, F. Teixeira, and D. O. Güney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

M. I. Aslam and D. O. Güney, “On negative index metamaterial spacers and their unusual optical properties,” Prog. Electromagn. Res. B 47, 203–217 (2013).
[Crossref]

M. I. Aslam and D. O. Güney, “Dual band double-negative polarization independent metamaterial for the visible spectrum,” J. Opt. Soc. Am. B 29(10), 2839–2847 (2012).
[Crossref]

M. I. Aslam and D. O. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84(19), 195465 (2011).
[Crossref]

D. O. Güney, Th. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
[Crossref]

D. O. Güney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18(12), 12348–12353 (2010).
[Crossref] [PubMed]

D. O. Güney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Phys. Rev. A 79(6), 063834 (2009).
[Crossref]

D. O. Güney, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009).
[Crossref] [PubMed]

D. O. Güney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24(2), 283–294 (2007).
[Crossref]

D. O. Güney and D. A. Meyer, “Integrated conditional teleportation and readout circuit based on a photonic crystal single chip,” J. Opt. Soc. Am. B 24(2), 391–397 (2007).
[Crossref]

Gwamuri, J.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci Rep 4, 4901 (2014).
[Crossref] [PubMed]

Hand, T. H.

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

Hansen, T. V.

S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, “A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization,” IEEE Antenn. Propag. M. 55(2), 91–106 (2013).
[Crossref]

Harris, V. G.

P. He, P. V. Parimi, Y. He, V. G. Harris, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electron. Lett. 43(25), 1440–1441 (2007).
[Crossref]

Hayashi, K.

T. Yamamoto, K. Hayashi, S. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2(8), 488–491 (2008).
[Crossref]

He, P.

P. He, P. V. Parimi, Y. He, V. G. Harris, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electron. Lett. 43(25), 1440–1441 (2007).
[Crossref]

He, Y.

P. He, P. V. Parimi, Y. He, V. G. Harris, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electron. Lett. 43(25), 1440–1441 (2007).
[Crossref]

Hurtado, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Imoto, N.

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13(10), 103003 (2011).
[Crossref]

T. Tashima, T. Kitano, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Demonstration of local expansion toward large-scale entangled webs,” Phys. Rev. Lett. 105(21), 210503 (2010).
[Crossref] [PubMed]

T. Tashima, T. Wakatsuki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon w state,” Phys. Rev. Lett. 102(13), 130502 (2009).
[Crossref] [PubMed]

T. Tashima, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11(2), 023024 (2009).
[Crossref]

T. Yamamoto, K. Hayashi, S. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2(8), 488–491 (2008).
[Crossref]

T. Yamamoto, M. Koashi, S. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421(6921), 343–346 (2003).
[Crossref] [PubMed]

Jost, J. D.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kadlec, C.

F. Dominec, C. Kadlec, H. Němec, P. Kužel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Express 22(25), 30492–30503 (2014).
[Crossref] [PubMed]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Kadlec, F.

F. Dominec, C. Kadlec, H. Němec, P. Kužel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Express 22(25), 30492–30503 (2014).
[Crossref] [PubMed]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Kafesaki, M.

D. O. Güney, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B 80(3), 035109 (2009).
[Crossref]

Kang, L.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Khoo, I.-C.

Kildishev, A. V.

Kim, M. S.

K. R. McEnery, M. S. Tame, S. A. Maier, and M. S. Kim, “Tunable negative permeability in a quantum plasmonic metamaterial,” Phys. Rev. A 89(1), 013822 (2014).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface-plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).
[Crossref]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim, “Long-range surface plasmon-polariton excitation at the quantum level,” Phys. Rev. A 79(5), 053845 (2009).
[Crossref]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008).
[Crossref] [PubMed]

Kitano, T.

T. Tashima, T. Kitano, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Demonstration of local expansion toward large-scale entangled webs,” Phys. Rev. Lett. 105(21), 210503 (2010).
[Crossref] [PubMed]

Kivshar, Y.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95(8), 084105 (2009).
[Crossref]

Knill, E.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

Koashi, M.

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13(10), 103003 (2011).
[Crossref]

T. Tashima, T. Kitano, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Demonstration of local expansion toward large-scale entangled webs,” Phys. Rev. Lett. 105(21), 210503 (2010).
[Crossref] [PubMed]

T. Tashima, T. Wakatsuki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon w state,” Phys. Rev. Lett. 102(13), 130502 (2009).
[Crossref] [PubMed]

T. Tashima, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11(2), 023024 (2009).
[Crossref]

T. Yamamoto, K. Hayashi, S. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2(8), 488–491 (2008).
[Crossref]

T. Yamamoto, M. Koashi, S. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421(6921), 343–346 (2003).
[Crossref] [PubMed]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Koschny, T.

D. O. Güney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18(12), 12348–12353 (2010).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B 80(3), 035109 (2009).
[Crossref]

D. O. Güney, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Koschny, Th.

D. O. Güney, Th. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
[Crossref]

Kriegler, C. E.

C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 367–375 (2010).
[Crossref]

Kulkarni, A.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci Rep 4, 4901 (2014).
[Crossref] [PubMed]

Kuzel, P.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Kužel, P.

Kwiat, P. G.

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409(6823), 1014–1017 (2001).
[Crossref] [PubMed]

Kwon, D.-H.

Langer, C.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

Lapine, M.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95(8), 084105 (2009).
[Crossref]

Lawrie, B. J.

B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons,” Phys. Rev. Lett. 110(15), 156802 (2013).
[Crossref] [PubMed]

Lee, C.

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim, “Long-range surface plasmon-polariton excitation at the quantum level,” Phys. Rev. A 79(5), 053845 (2009).
[Crossref]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008).
[Crossref] [PubMed]

Lee, J.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim, “Long-range surface plasmon-polariton excitation at the quantum level,” Phys. Rev. A 79(5), 053845 (2009).
[Crossref]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008).
[Crossref] [PubMed]

Leibfried, D.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

Leonhardt, U.

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys. 9(8), 254 (2007).
[Crossref]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Li, T.

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Ligare, M.

M. Ligare, “Propagation of quantized fields through negative-index media,” J. Mod. Opt. 58(17), 1551–1559 (2011).
[Crossref]

Linden, S.

C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 367–375 (2010).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[Crossref] [PubMed]

Loncar, M.

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

Long, G. L.

Long, L. L.

Luo, X.

Ma, J.

Mabuchi, H.

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

Maclay, G. J.

P. W. Milonni and G. J. Maclay, “Quantized-field description of light in negative-index media,” Opt. Commun. 228(1-3), 161–165 (2003).
[Crossref]

Maier, S. A.

K. R. McEnery, M. S. Tame, S. A. Maier, and M. S. Kim, “Tunable negative permeability in a quantum plasmonic metamaterial,” Phys. Rev. A 89(1), 013822 (2014).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Marques, R.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95(8), 084105 (2009).
[Crossref]

Martí, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Martínez, A.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Martín-Moreno, L.

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92(23), 236801 (2004).
[Crossref] [PubMed]

Matsunaga, E.

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13(10), 103003 (2011).
[Crossref]

McEnery, K. R.

K. R. McEnery, M. S. Tame, S. A. Maier, and M. S. Kim, “Tunable negative permeability in a quantum plasmonic metamaterial,” Phys. Rev. A 89(1), 013822 (2014).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Meyer, D. A.

Miloni, P. W.

P. W. Miloni, “Field quantization and radiative processes in dispersive dielectric media,” J. Mod. Opt. 42(10), 1991–2004 (1995).
[Crossref]

Milonni, P. W.

P. W. Milonni and G. J. Maclay, “Quantized-field description of light in negative-index media,” Opt. Commun. 228(1-3), 161–165 (2003).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Moreno, E.

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92(23), 236801 (2004).
[Crossref] [PubMed]

Mortensen, N. A.

S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, “A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization,” IEEE Antenn. Propag. M. 55(2), 91–106 (2013).
[Crossref]

Mounaix, P.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Nemec, H.

F. Dominec, C. Kadlec, H. Němec, P. Kužel, and F. Kadlec, “Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods,” Opt. Express 22(25), 30492–30503 (2014).
[Crossref] [PubMed]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Odabasi, H.

H. Odabasi, F. Teixeira, and D. O. Güney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

Ordal, M. A.

Osipov, M. A.

M. V. Gorkunov and M. A. Osipov, “Tunability of wire-grid metamaterial immersed into nematic liquid crystal,” J. Appl. Phys. 103(3), 036101 (2008).
[Crossref]

Ozaydin, F.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89(4), 042311 (2014).
[Crossref]

Ozbay, E.

I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, “Compact size highly directive antennas based on the SRR metamaterial medium,” New J. Phys. 7, 223 (2005).
[Crossref]

Ozdemir, S. K.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Özdemir, S. K.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89(4), 042311 (2014).
[Crossref]

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13(10), 103003 (2011).
[Crossref]

T. Tashima, T. Kitano, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Demonstration of local expansion toward large-scale entangled webs,” Phys. Rev. Lett. 105(21), 210503 (2010).
[Crossref] [PubMed]

T. Tashima, T. Wakatsuki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon w state,” Phys. Rev. Lett. 102(13), 130502 (2009).
[Crossref] [PubMed]

T. Tashima, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11(2), 023024 (2009).
[Crossref]

T. Yamamoto, K. Hayashi, S. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2(8), 488–491 (2008).
[Crossref]

T. Yamamoto, M. Koashi, S. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421(6921), 343–346 (2003).
[Crossref] [PubMed]

Ozeri, R.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Padilla, W. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Pala, N.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci Rep 4, 4901 (2014).
[Crossref] [PubMed]

Parimi, P. V.

P. He, P. V. Parimi, Y. He, V. G. Harris, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electron. Lett. 43(25), 1440–1441 (2007).
[Crossref]

Paternostro, M.

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008).
[Crossref] [PubMed]

Pearce, J. M.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci Rep 4, 4901 (2014).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys. 9(8), 254 (2007).
[Crossref]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Pooser, R. C.

B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons,” Phys. Rev. Lett. 110(15), 156802 (2013).
[Crossref] [PubMed]

Powell, D.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95(8), 084105 (2009).
[Crossref]

Quan, D.

B. Gu, D. Quan, and S. Xiao, “Multi-photon entanglement concentration protocol for partially entangled W states with projection measurement,” Int. J. Theor. Phys. 51(9), 2966–2973 (2012).
[Crossref]

Reichle, R.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

Ren, B.-C.

Resch, K. J.

P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94(24), 240501 (2005).
[Crossref]

Rill, M. S.

C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 367–375 (2010).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Scherer, A.

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Seidelin, S.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

Shadrivov, I.

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95(8), 084105 (2009).
[Crossref]

Shalaev, V. M.

Sheng, Y. B.

Sheng, Y.-B.

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Sigmund, O.

S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, “A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization,” IEEE Antenn. Propag. M. 55(2), 91–106 (2013).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Soukoulis, C. M.

D. O. Güney, Th. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
[Crossref]

D. O. Güney, T. Koschny, and C. M. Soukoulis, “Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial,” Opt. Express 18(12), 12348–12353 (2010).
[Crossref] [PubMed]

D. O. Güney, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009).
[Crossref] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B 80(3), 035109 (2009).
[Crossref]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Stefanov, A.

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409(6823), 1014–1017 (2001).
[Crossref] [PubMed]

Tame, M.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89(4), 042311 (2014).
[Crossref]

Tame, M. S.

K. R. McEnery, M. S. Tame, S. A. Maier, and M. S. Kim, “Tunable negative permeability in a quantum plasmonic metamaterial,” Phys. Rev. A 89(1), 013822 (2014).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface-plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).
[Crossref]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim, “Long-range surface plasmon-polariton excitation at the quantum level,” Phys. Rev. A 79(5), 053845 (2009).
[Crossref]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008).
[Crossref] [PubMed]

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Tashima, T.

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13(10), 103003 (2011).
[Crossref]

T. Tashima, T. Kitano, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Demonstration of local expansion toward large-scale entangled webs,” Phys. Rev. Lett. 105(21), 210503 (2010).
[Crossref] [PubMed]

T. Tashima, T. Wakatsuki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon w state,” Phys. Rev. Lett. 102(13), 130502 (2009).
[Crossref] [PubMed]

T. Tashima, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11(2), 023024 (2009).
[Crossref]

Taylor, A. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Teixeira, F.

H. Odabasi, F. Teixeira, and D. O. Güney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Tworzydlo, J.

J. L. van Velsen, J. Tworzydlo, and C. W. J. Beenakker, “Scattering theory of plasmon-assisted entanglement transfer and distillation,” Phys. Rev. A 68(4), 043807 (2003).
[Crossref]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

van Exter, M. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[Crossref] [PubMed]

van Velsen, J. L.

J. L. van Velsen, J. Tworzydlo, and C. W. J. Beenakker, “Scattering theory of plasmon-assisted entanglement transfer and distillation,” Phys. Rev. A 68(4), 043807 (2003).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Vittoria, C.

P. He, P. V. Parimi, Y. He, V. G. Harris, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electron. Lett. 43(25), 1440–1441 (2007).
[Crossref]

von Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Vora, A.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci Rep 4, 4901 (2014).
[Crossref] [PubMed]

Vuckovic, J.

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

Wakatsuki, T.

T. Tashima, T. Wakatsuki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon w state,” Phys. Rev. Lett. 102(13), 130502 (2009).
[Crossref] [PubMed]

Wallach, N. R.

D. A. Meyer and N. R. Wallach, “Global entanglement in multipartite systems,” J. Math. Phys. 43(9), 4273–4278 (2002).
[Crossref]

Walther, P.

P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94(24), 240501 (2005).
[Crossref]

Wang, C.

Wang, T. J.

Ward, C. A.

Wegener, M.

C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 367–375 (2010).
[Crossref]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[Crossref] [PubMed]

Wei, H.-R.

Werner, D. H.

Wineland, D. J.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

Woerdman, J. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[Crossref] [PubMed]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Xiao, S.

B. Gu, D. Quan, and S. Xiao, “Multi-photon entanglement concentration protocol for partially entangled W states with projection measurement,” Int. J. Theor. Phys. 51(9), 2966–2973 (2012).
[Crossref]

Xu, T.

Yahiaoui, R.

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

Yamamoto, T.

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13(10), 103003 (2011).
[Crossref]

T. Tashima, T. Kitano, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Demonstration of local expansion toward large-scale entangled webs,” Phys. Rev. Lett. 105(21), 210503 (2010).
[Crossref] [PubMed]

T. Tashima, T. Wakatsuki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon w state,” Phys. Rev. Lett. 102(13), 130502 (2009).
[Crossref] [PubMed]

T. Tashima, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11(2), 023024 (2009).
[Crossref]

T. Yamamoto, K. Hayashi, S. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2(8), 488–491 (2008).
[Crossref]

T. Yamamoto, M. Koashi, S. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421(6921), 343–346 (2003).
[Crossref] [PubMed]

Yesilyurt, C.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89(4), 042311 (2014).
[Crossref]

Zayats, A. V.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008).
[Crossref] [PubMed]

Zeilinger, A.

P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94(24), 240501 (2005).
[Crossref]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Zhang, S.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, X.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
[Crossref]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhao, Q.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Zhao, S.-M.

Zhao, Y.

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B 80(3), 035109 (2009).
[Crossref]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

Zhou, L.

Ziolkowski, R. W.

S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, “A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization,” IEEE Antenn. Propag. M. 55(2), 91–106 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[Crossref]

M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, “Structural tunability in metamaterials,” Appl. Phys. Lett. 95(8), 084105 (2009).
[Crossref]

Electron. Lett. (1)

P. He, P. V. Parimi, Y. He, V. G. Harris, and C. Vittoria, “Tunable negative refractive index metamaterial phase shifter,” Electron. Lett. 43(25), 1440–1441 (2007).
[Crossref]

IEEE Antenn. Propag. M. (1)

S. Arslanagic, T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, “A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization,” IEEE Antenn. Propag. M. 55(2), 91–106 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. E. Kriegler, M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16(2), 367–375 (2010).
[Crossref]

Int. J. Theor. Phys. (1)

B. Gu, D. Quan, and S. Xiao, “Multi-photon entanglement concentration protocol for partially entangled W states with projection measurement,” Int. J. Theor. Phys. 51(9), 2966–2973 (2012).
[Crossref]

J. Appl. Phys. (3)

M. V. Gorkunov and M. A. Osipov, “Tunability of wire-grid metamaterial immersed into nematic liquid crystal,” J. Appl. Phys. 103(3), 036101 (2008).
[Crossref]

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[Crossref]

H. Odabasi, F. Teixeira, and D. O. Güney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

J. Math. Phys. (1)

D. A. Meyer and N. R. Wallach, “Global entanglement in multipartite systems,” J. Math. Phys. 43(9), 4273–4278 (2002).
[Crossref]

J. Mod. Opt. (2)

P. W. Miloni, “Field quantization and radiative processes in dispersive dielectric media,” J. Mod. Opt. 42(10), 1991–2004 (1995).
[Crossref]

M. Ligare, “Propagation of quantized fields through negative-index media,” J. Mod. Opt. 58(17), 1551–1559 (2011).
[Crossref]

J. Opt. Soc. Am. B (8)

D. O. Güney and D. A. Meyer, “Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity,” J. Opt. Soc. Am. B 24(2), 283–294 (2007).
[Crossref]

D. O. Güney and D. A. Meyer, “Integrated conditional teleportation and readout circuit based on a photonic crystal single chip,” J. Opt. Soc. Am. B 24(2), 391–397 (2007).
[Crossref]

F.-F. Du, T. Li, B.-C. Ren, H.-R. Wei, and F.-G. Deng, “Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29(6), 1399–1405 (2012).
[Crossref]

B. Gu, “Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics,” J. Opt. Soc. Am. B 29, 1685–1689 (2012).

M. I. Aslam and D. O. Güney, “Dual band double-negative polarization independent metamaterial for the visible spectrum,” J. Opt. Soc. Am. B 29(10), 2839–2847 (2012).
[Crossref]

L. Zhou, Y.-B. Sheng, W.-W. Cheng, L.-Y. Gong, and S.-M. Zhao, “Efficient entanglement concentration for arbitrary single-photon multimode W state,” J. Opt. Soc. Am. B 30(1), 71–78 (2013).
[Crossref]

Y. B. Sheng and L. Zhou, “Efficient W-state entanglement concentration using quantum-dot and optical microcavities,” J. Opt. Soc. Am. B 30(3), 678–686 (2013).
[Crossref]

T. J. Wang and G. L. Long, “Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics,” J. Opt. Soc. Am. B 30(4), 1069–1076 (2013).
[Crossref]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[Crossref] [PubMed]

Nat. Photonics (2)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

T. Yamamoto, K. Hayashi, S. K. Özdemir, M. Koashi, and N. Imoto, “Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace,” Nat. Photonics 2(8), 488–491 (2008).
[Crossref]

Nat. Phys. (2)

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
[Crossref]

Nature (5)

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[Crossref] [PubMed]

T. Yamamoto, M. Koashi, S. K. Özdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421(6921), 343–346 (2003).
[Crossref] [PubMed]

P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin, “Experimental entanglement distillation and ‘hidden’ non-locality,” Nature 409(6823), 1014–1017 (2001).
[Crossref] [PubMed]

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443(7113), 838–841 (2006).
[Crossref] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

New J. Phys. (4)

T. Tashima, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11(2), 023024 (2009).
[Crossref]

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13(10), 103003 (2011).
[Crossref]

U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” New J. Phys. 9(8), 254 (2007).
[Crossref]

I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, “Compact size highly directive antennas based on the SRR metamaterial medium,” New J. Phys. 7, 223 (2005).
[Crossref]

Opt. Commun. (1)

P. W. Milonni and G. J. Maclay, “Quantized-field description of light in negative-index media,” Opt. Commun. 228(1-3), 161–165 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (6)

K. R. McEnery, M. S. Tame, S. A. Maier, and M. S. Kim, “Tunable negative permeability in a quantum plasmonic metamaterial,” Phys. Rev. A 89(1), 013822 (2014).
[Crossref]

J. L. van Velsen, J. Tworzydlo, and C. W. J. Beenakker, “Scattering theory of plasmon-assisted entanglement transfer and distillation,” Phys. Rev. A 68(4), 043807 (2003).
[Crossref]

D. O. Güney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Phys. Rev. A 79(6), 063834 (2009).
[Crossref]

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89(4), 042311 (2014).
[Crossref]

D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim, “Long-range surface plasmon-polariton excitation at the quantum level,” Phys. Rev. A 79(5), 053845 (2009).
[Crossref]

D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface-plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).
[Crossref]

Phys. Rev. B (5)

J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index response of weakly and strongly coupled optical metamaterials,” Phys. Rev. B 80(3), 035109 (2009).
[Crossref]

D. O. Güney, Th. Koschny, and C. M. Soukoulis, “Surface plasmon driven electric and magnetic resonators for metamaterials,” Phys. Rev. B 83(4), 045107 (2011).
[Crossref]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79(24), 241108 (2009).
[Crossref]

M. I. Aslam and D. O. Güney, “Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum,” Phys. Rev. B 84(19), 195465 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

J. Vucković, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (8)

E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92(23), 236801 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

T. Tashima, T. Kitano, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Demonstration of local expansion toward large-scale entangled webs,” Phys. Rev. Lett. 105(21), 210503 (2010).
[Crossref] [PubMed]

T. Tashima, T. Wakatsuki, S. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon w state,” Phys. Rev. Lett. 102(13), 130502 (2009).
[Crossref] [PubMed]

P. Walther, K. J. Resch, and A. Zeilinger, “Local conversion of Greenberger-Horne-Zeilinger states to approximate W states,” Phys. Rev. Lett. 94(24), 240501 (2005).
[Crossref]

B. J. Lawrie, P. G. Evans, and R. C. Pooser, “Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons,” Phys. Rev. Lett. 110(15), 156802 (2013).
[Crossref] [PubMed]

M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim, “Single-photon excitation of surface plasmon polaritons,” Phys. Rev. Lett. 101(19), 190504 (2008).
[Crossref] [PubMed]

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106(6), 067402 (2011).
[Crossref] [PubMed]

Prog. Electromagn. Res. B (1)

M. I. Aslam and D. O. Güney, “On negative index metamaterial spacers and their unusual optical properties,” Prog. Electromagn. Res. B 47, 203–217 (2013).
[Crossref]

Sci Rep (1)

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci Rep 4, 4901 (2014).
[Crossref] [PubMed]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Distillation of partially entangled photons using (b) appropriately designed plasmonic metamaterials.

Fig. 2
Fig. 2

Two different views of the unit cell of a plasmonic metamaterial structure. The unit cell consists of a gold thin film in the middle and two gold nano-patterned structures on both sides of the thin film. The nano-patterned structures are the same on both sides except that they are diagonally shifted by a/ 2 in their planes with respect to each other where ais the unit cell size for the square lattice. The metamaterial is designed to be functional under normally incident light indicated by wave vector k and polarizations |0 and |1. The metamaterial can be designed as polarization-independent (or polarization dependent) by choosing the strip widths w 0 and w 1 equal (or slightly different).

Fig. 3
Fig. 3

(a) Reflectance (R), transmittance (T), and absorbance (A) of a polarization independent plasmonic metamaterial. Retrieved effective (b) refractive index, (c) relative electrical permittivity ( ε r = ε r +i ε r ) and relative magnetic permeability ( μ r = μ r +i μ r ). The strip widths w 0 = w 1 =40nm. The lattice constant a=80nm. The thicknesses of the thin film and the strips are 5nm and 11nm, respectively. The strips are separated from the thin film in the middle by 8nm. The thickness of the unit cell along the direction of propagation is 100nm. The dashed green line in (b) indicates the first Brillouin zone edge.

Fig. 4
Fig. 4

Transmittance for horizontally and vertically polarized light. w 0 =39nm, w 1 =45nm. Other parameters are the same as in Fig. 3.

Fig. 5
Fig. 5

Distillation of partially entangled Bell states | Φ 2 . The first photon (i.e., Photon 1) in the partially entangled state travels through the metamaterial of Design I and the second photon (i.e., Photon 2) travels through the metamaterial of Design I*. The transmittance of the metamaterial with Design I is | α | for the horizontal polarization |0 and | β | for the vertical polarization |1. The metamaterial of Design I* is obtained by rotating the Design I around k by π/2 . For example, for | α |=0.6 and | β |=0.8, Design I refers to the metamaterial structure operating at 396THz, considered in Fig. 4.

Fig. 6
Fig. 6

Distillation of partially entangled 3-photon W states | Φ 3 . The first photon (i.e., Photon 1) in the partially entangled state travels through the metamaterial of Design I2, the second (i.e., Photon 2) and third photons (i.e., Photon 3) travel through polarization-independent metamaterials of Design II. The transmittance of the metamaterial with Design I2 is | α | 2 for the horizontal polarization |0 and | β | 2 for the vertical polarization |1 (i.e., compare the required transmittances for Design I and Design I2 for the naming). The metamaterial with Design II has polarization independent transmittance | γ | 2 . For example, for | α | 2 =0.8 and | β | 2 =0.2, Design I2 refers to the metamaterial structure operating at 418THz, considered in Fig. 4, while Design II refers to the polarization independent metamaterial structure considered in Fig. 3, operating at the same frequency.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

Q( |ψ )= 4 n j=1 n D( μ j ( 0 )|ψ, μ j ( 1 )|ψ ).
D( |u,|v )=  x<y | u x v y u y v x | 2
μ j ( b )| b 1   b n =  δ b b j | b 1   b j ^   b n .
| W n = 1 n ( |1 1 |0 2 |0 3 ... |0 n + |0 1 |1 2 |0 3 ... |0 n + |0 1 |0 2 |1 3 ... |0 n +...+ |0 1 |0 2 |0 3 ... |1 n ).
| W n = 1 n ( t ( 1 ) |1 1 |0 2 |0 3 ... |0 n + t ( 2 ) |0 1 |1 2 |0 3 ... |0 n + t ( 3 ) |0 1 |0 2 |1 3 ... |0 n +...+ t ( n ) |0 1 |0 2 |0 3 ... |1 n ),
t ( i ) = t 01 t 02   t 1i t 0n Z . 
Q( | W n )= 8 i<j | t [ i ] | 2 | t [ j ] | 2   n ( i=1 n | t [ i ] | 2 ) 2    ,
t [ i ] = t ( i ) Z= t 01 t 02   t 1i t 0n
Q( | W 3 )= 8 3 ( | t [ 1 ] | 2 | t [ 2 ] | 2 + | t [ 1 ] | 2 | t [ 3 ] | 2 + | t [ 2 ] | 2 | t [ 3 ] | 2 ) ( | t [ 1 ] | 2 + | t [ 2 ] | 2 + | t [ 3 ] | 2 ) 2  
Q( | W n )=Q( | W n )= 4( n1 ) n 2 .  
| Φ n =α |1 1 |0 2 |0 3 ... |0 n +β( |0 1 |1 2 |0 3 ... |0 n + |0 1 |0 2 |1 3 ... |0 n +...+ |0 1 |0 2 |0 3 ... |1 n ),
| α | 2 +( n1 ) | β | 2 =1.
| Φ n =α t ( 1 ) |1 1 |0 2 |0 3 ... |0 n +β( t ( 2 ) |0 1 |1 2 |0 3 ... |0 n + t ( 3 ) |0 1 |0 2 |1 3 ... |0 n +...+ t ( n ) |0 1 |0 2 |0 3 ... |1 n ).
Q( | Φ n )= 8 n ( | αβ t ( 1 ) | 2 i=2 n | t ( i ) | 2 + | β | 4 i=2 n i<j  | t ( i ) t ( j ) | 2 ).  
Q( | Φ 2 )= 4 | αβ | 2 τ 1 ( | α | 2 + | β | 2 τ 1 ) 2 ,
| t 01 |=| t 12 |= | α | ,
| t 11 |=| t 02 |= | β | .
Q( | Φ 3 )= 8 3 | αβ | 2 τ 2 + | β | 4 τ 3 2 ( | α | 2 + | β | 2 τ 2 ) 2 , 
τ 2 = ( | t [ 2 ] | 2 + | t [ 3 ] | 2 ) | t [ 1 ] | 2   ,
τ 3 = | t [ 2 ] || t [ 3 ] | | t [ 1 ] | 2 . 
τ 2 = u 2 + v 2 ,
τ 3 =uv,
u= | t [ 2 ] | | t [ 1 ] |  ,
v= | t [ 3 ] | | t [ 1 ] | .
u= τ 2 cosθ ,
v= τ 2 sinθ ,
Q( | Φ 3 )= 8 3 | αβ | 2 τ 2 + | β | 4 ( τ 2 2 sin( 2θ ) ) 2 ( | α | 2 + | β | 2 τ 2 ) 2 . 
u=v= | α | | β | .    
| t 02 | = | t 03 | = | t 12 |=| t 13 |,
| t 01 |=| α |,
| t 11 |=| β |, 

Metrics