Abstract

The recent advances in far-field super-resolution (SR) microscopy rely on, and therefore are limited by the ability to control the fluorescence of label molecules. We suggest a new, label-free, far-field SR microscopy based on temperature dependence of Raman scattering. Here, we present simulation and experimental characterization of the method. In an ultrafast pump-probe scheme, a spatial temperature profile is optically excited throughout the diffraction-limited spot; the Raman spectrum is probed with an overlapping laser. Thermally induced shifts, recorded in a specific spectral region of interest (ROI), enable spatial discrimination between areas of different temperature. Our simulations show spatial resolution that surpasses the diffraction limit by more than a factor of 2. Our method is compatible with material characterization in ambient, vacuum and liquid, thin and thick samples alike.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications

Hope T. Beier, Gary D. Noojin, and Benjamin A. Rockwell
Opt. Express 19(20) 18885-18892 (2011)

Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy

Marco Andreana, Marie-Andrée Houle, Douglas J. Moffatt, Andrew Ridsdale, Edlef Buettner, François Légaré, and Albert Stolow
Opt. Express 23(22) 28119-28131 (2015)

Single-beam heterodyne FAST CARS microscopy

Yujie Shen, Dmitri V. Voronine, Alexei V. Sokolov, and Marlan O. Scully
Opt. Express 24(19) 21652-21662 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
    [Crossref] [PubMed]
  2. T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(6), 066613 (2001).
    [Crossref] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  4. R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers 95(5), 322–331 (2011).
    [Crossref] [PubMed]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  6. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
    [Crossref] [PubMed]
  7. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
    [Crossref] [PubMed]
  8. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
    [Crossref] [PubMed]
  9. O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, “Superresolution microscopy with quantum emitters,” Nano Lett. 13(12), 5832–5836 (2013).
    [Crossref] [PubMed]
  10. A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
    [Crossref] [PubMed]
  11. Y. Shechtman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express 19(16), 14807–14822 (2011).
    [Crossref] [PubMed]
  12. A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci Rep 4, 5388 (2014).
    [Crossref] [PubMed]
  13. P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
    [Crossref] [PubMed]
  14. D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
    [Crossref] [PubMed]
  15. A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
    [Crossref] [PubMed]
  16. J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
    [Crossref] [PubMed]
  17. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34(8), 1240–1242 (2009).
    [Crossref] [PubMed]
  18. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
    [Crossref]
  19. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006).
    [Crossref] [PubMed]
  20. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
    [Crossref] [PubMed]
  21. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
    [Crossref] [PubMed]
  22. J. Cheng and X. S. Xie, “Coherent anti-Stocks Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [Crossref]
  23. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
    [Crossref]
  24. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).
  25. P. Nandakumar, A. Kovalev, and A. Volkmer, “a Kovalev, and a Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
    [Crossref]
  26. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17(5), 3651–3658 (2009).
    [Crossref] [PubMed]
  27. W. P. Beeker, C. J. Lee, K.-J. Boller, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 1–4 (2010).
    [Crossref]
  28. W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
    [Crossref]
  29. W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
    [Crossref] [PubMed]
  30. C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
    [Crossref]
  31. C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
    [Crossref]
  32. V. Raghunathan and E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
    [PubMed]
  33. K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, and H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
    [Crossref] [PubMed]
  34. W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
    [Crossref]
  35. L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
    [Crossref]
  36. H. Kim, G. W. Bryant, and S. J. Stranick, “Superresolution four-wave mixing microscopy,” Opt. Express 20(6), 6042–6051 (2012).
    [PubMed]
  37. P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
    [Crossref] [PubMed]
  38. O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
    [Crossref] [PubMed]
  39. Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
    [Crossref] [PubMed]
  40. M. R. Abel, T. L. Wright, W. P. King, and S. Graham, “Thermal metrology of silicon microstructures using Raman spectroscopy,” IEEE Trans. Compon. Packag. Tech. 30(2), 200–208 (2007).
    [Crossref]
  41. A. Milner, K. Zhang, V. Garmider, and Y. Prior, “Heating of an atomic force microscope tip by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 99(1), 1–8 (2010).
    [Crossref]
  42. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [Crossref] [PubMed]
  43. M. Balkanski, R. F. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
    [Crossref]
  44. J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
    [Crossref]
  45. J. Menendez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and a-Sn: Anharmonic effects,” Phys. Rev. B 29(4), 2051–2059 (1984).
    [Crossref]
  46. H. Y. Sun, S.-C. Lien, Z. R. Qiu, H. C. Wang, T. Mei, C. W. Liu, and Z. C. Feng, “Temperature dependence of Raman scattering in bulk 4H-SiC with different carrier concentration,” Opt. Express 21(22), 26475 (2013).
    [Crossref]
  47. M. S. Liu, L. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, and G. Y. Zhang, “Temperature dependence of Raman scattering in single crystal GaN films,” Appl. Phys. Lett. 74(21), 3125 (1999).
    [Crossref]
  48. J. R. Shealy and G. W. Wicks, “Investigation by Raman scattering of the properties of III-V compound semiconductors at high temperature,” Appl. Phys. Lett. 50(17), 1173 (1987).
    [Crossref]
  49. J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
    [Crossref]

2015 (1)

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

2014 (6)

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci Rep 4, 5388 (2014).
[Crossref] [PubMed]

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

2013 (4)

H. Y. Sun, S.-C. Lien, Z. R. Qiu, H. C. Wang, T. Mei, C. W. Liu, and Z. C. Feng, “Temperature dependence of Raman scattering in bulk 4H-SiC with different carrier concentration,” Opt. Express 21(22), 26475 (2013).
[Crossref]

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, “Superresolution microscopy with quantum emitters,” Nano Lett. 13(12), 5832–5836 (2013).
[Crossref] [PubMed]

2012 (3)

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

H. Kim, G. W. Bryant, and S. J. Stranick, “Superresolution four-wave mixing microscopy,” Opt. Express 20(6), 6042–6051 (2012).
[PubMed]

2011 (4)

Y. Shechtman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express 19(16), 14807–14822 (2011).
[Crossref] [PubMed]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers 95(5), 322–331 (2011).
[Crossref] [PubMed]

2010 (4)

A. Milner, K. Zhang, V. Garmider, and Y. Prior, “Heating of an atomic force microscope tip by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 99(1), 1–8 (2010).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 1–4 (2010).
[Crossref]

K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, and H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
[Crossref] [PubMed]

V. Raghunathan and E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
[PubMed]

2009 (5)

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
[Crossref] [PubMed]

2007 (3)

M. R. Abel, T. L. Wright, W. P. King, and S. Graham, “Thermal metrology of silicon microstructures using Raman spectroscopy,” IEEE Trans. Compon. Packag. Tech. 30(2), 200–208 (2007).
[Crossref]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

2006 (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006).
[Crossref] [PubMed]

2004 (2)

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

J. Cheng and X. S. Xie, “Coherent anti-Stocks Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

2003 (1)

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

2002 (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

2001 (1)

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(6), 066613 (2001).
[Crossref] [PubMed]

2000 (2)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

1999 (1)

M. S. Liu, L. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, and G. Y. Zhang, “Temperature dependence of Raman scattering in single crystal GaN films,” Appl. Phys. Lett. 74(21), 3125 (1999).
[Crossref]

1998 (2)

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

1997 (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

1987 (1)

J. R. Shealy and G. W. Wicks, “Investigation by Raman scattering of the properties of III-V compound semiconductors at high temperature,” Appl. Phys. Lett. 50(17), 1173 (1987).
[Crossref]

1984 (1)

J. Menendez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and a-Sn: Anharmonic effects,” Phys. Rev. B 29(4), 2051–2059 (1984).
[Crossref]

1983 (1)

M. Balkanski, R. F. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[Crossref]

Abel, M. R.

M. R. Abel, T. L. Wright, W. P. King, and S. Graham, “Thermal metrology of silicon microstructures using Raman spectroscopy,” IEEE Trans. Compon. Packag. Tech. 30(2), 200–208 (2007).
[Crossref]

Amtmann, K.

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

Balkanski, M.

M. Balkanski, R. F. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[Crossref]

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Barsic, A.

A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci Rep 4, 5388 (2014).
[Crossref] [PubMed]

Bartels, R. A.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Beeker, W.

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

Beeker, W. P.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 1–4 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Biris, A. S.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Boller, K. J.

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

Boller, K.-J.

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 1–4 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bryant, G. W.

Bullkich, E.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Bursill, L.

M. S. Liu, L. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, and G. Y. Zhang, “Temperature dependence of Raman scattering in single crystal GaN films,” Appl. Phys. Lett. 74(21), 3125 (1999).
[Crossref]

Cardona, M.

J. Menendez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and a-Sn: Anharmonic effects,” Phys. Rev. B 29(4), 2051–2059 (1984).
[Crossref]

Chen, Y.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Cheng, J.

J. Cheng and X. S. Xie, “Coherent anti-Stocks Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

Cheng, J. X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Cheshnovsky, O.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
[Crossref] [PubMed]

Cleff, C.

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Cohen, O.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Cohen-Hyams, T.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Colyer, R.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Cui, J. B.

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

Dake, F.

Dana, H.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Danielli, A.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Dertinger, T.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Dervishi, E.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Deutsch, Z.

O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, “Superresolution microscopy with quantum emitters,” Nano Lett. 13(12), 5832–5836 (2013).
[Crossref] [PubMed]

Dorn, G. W.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Eldar, Y. C.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Y. Shechtman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express 19(16), 14807–14822 (2011).
[Crossref] [PubMed]

Enderlein, J.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Engel, E.

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(6), 066613 (2001).
[Crossref] [PubMed]

Ertl, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Fallnich, C.

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Feng, Z. C.

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

Fujita, K.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Fukui, K.

Galanzha, E. I.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Garcia-Uribe, A.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Garmider, V.

A. Milner, K. Zhang, V. Garmider, and Y. Prior, “Heating of an atomic force microscope tip by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 99(1), 1–8 (2010).
[Crossref]

Gazit, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Gong, L.

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

Graham, S.

M. R. Abel, T. L. Wright, W. P. King, and S. Graham, “Thermal metrology of silicon microstructures using Raman spectroscopy,” IEEE Trans. Compon. Packag. Tech. 30(2), 200–208 (2007).
[Crossref]

Griffiths, C.

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers 95(5), 322–331 (2011).
[Crossref] [PubMed]

Groß, P.

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

Gross, P.

Grover, G.

A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci Rep 4, 5388 (2014).
[Crossref] [PubMed]

Gustafsson, M. G.

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

Haglund, R. F.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Hajek, K. M.

Haro, E.

M. Balkanski, R. F. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[Crossref]

Hartschuh, A.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

Hell, S. W.

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(6), 066613 (2001).
[Crossref] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Henriques, R.

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers 95(5), 322–331 (2011).
[Crossref] [PubMed]

Herek, J.

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

Herek, J. L.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 1–4 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Hesper Rego, E.

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers 95(5), 322–331 (2011).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Ioffe, Z.

Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
[Crossref] [PubMed]

Itoh, K.

Itzhakov, S.

O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, “Superresolution microscopy with quantum emitters,” Nano Lett. 13(12), 5832–5836 (2013).
[Crossref] [PubMed]

Iyer, G.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

Kawano, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Kawata, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Kfir, K.

Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
[Crossref] [PubMed]

Kim, H.

King, W. P.

M. R. Abel, T. L. Wright, W. P. King, and S. Graham, “Thermal metrology of silicon microstructures using Raman spectroscopy,” IEEE Trans. Compon. Packag. Tech. 30(2), 200–208 (2007).
[Crossref]

Klar, T. A.

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(6), 066613 (2001).
[Crossref] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

Kley, E. B.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Kobayashi, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “a Kovalev, and a Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Kruse, K.

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Lee, C.

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

Lee, C. J.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 1–4 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Levitt, J. M.

O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, “Superresolution microscopy with quantum emitters,” Nano Lett. 13(12), 5832–5836 (2013).
[Crossref] [PubMed]

Ley, L.

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

Li, C.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

Lien, S.-C.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Littleton, B.

Liu, C. W.

Liu, M. S.

M. S. Liu, L. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, and G. Y. Zhang, “Temperature dependence of Raman scattering in single crystal GaN films,” Appl. Phys. Lett. 74(21), 3125 (1999).
[Crossref]

Liu, W.

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

Marvel, R. E.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Masihzadeh, O.

Maslov, K.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Mazur, E.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

McIntyre, T. J.

Mei, T.

Menendez, J.

J. Menendez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and a-Sn: Anharmonic effects,” Phys. Rev. B 29(4), 2051–2059 (1984).
[Crossref]

Mhlanga, M. M.

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers 95(5), 322–331 (2011).
[Crossref] [PubMed]

Milner, A.

A. Milner, K. Zhang, V. Garmider, and Y. Prior, “Heating of an atomic force microscope tip by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 99(1), 1–8 (2010).
[Crossref]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

Mitchell, J.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “a Kovalev, and a Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Nedosekin, D. A.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Niu, H.

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

Novotny, L.

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006).
[Crossref] [PubMed]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

Noy, G.

Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
[Crossref] [PubMed]

Nugent, K. W.

M. S. Liu, L. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, and G. Y. Zhang, “Temperature dependence of Raman scattering in single crystal GaN films,” Appl. Phys. Lett. 74(21), 3125 (1999).
[Crossref]

Offerhaus, H.

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

Offerhaus, H. L.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 1–4 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Ong, C. K.

Ophir, A.

Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
[Crossref] [PubMed]

Oron, D.

O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, “Superresolution microscopy with quantum emitters,” Nano Lett. 13(12), 5832–5836 (2013).
[Crossref] [PubMed]

Osherovich, E.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Ozeki, Y.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Pettinger, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Pevzner, A.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Picardi, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Piestun, R.

A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci Rep 4, 5388 (2014).
[Crossref] [PubMed]

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Potma, E. O.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

V. Raghunathan and E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
[PubMed]

Prawer, S.

M. S. Liu, L. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, and G. Y. Zhang, “Temperature dependence of Raman scattering in single crystal GaN films,” Appl. Phys. Lett. 74(21), 3125 (1999).
[Crossref]

Prior, Y.

A. Milner, K. Zhang, V. Garmider, and Y. Prior, “Heating of an atomic force microscope tip by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 99(1), 1–8 (2010).
[Crossref]

Qiu, Z. R.

Raghunathan, V.

Ren, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Ristein, J.

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

Rubinsztein-Dunlop, H.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

Sánchez, E. J.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

Schlup, P.

Schuster, R.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

Schwartz, O.

O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, “Superresolution microscopy with quantum emitters,” Nano Lett. 13(12), 5832–5836 (2013).
[Crossref] [PubMed]

Segev, M.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Y. Shechtman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express 19(16), 14807–14822 (2011).
[Crossref] [PubMed]

Selzer, Y.

Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
[Crossref] [PubMed]

Shamai, T.

Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
[Crossref] [PubMed]

Shealy, J. R.

J. R. Shealy and G. W. Wicks, “Investigation by Raman scattering of the properties of III-V compound semiconductors at high temperature,” Appl. Phys. Lett. 50(17), 1173 (1987).
[Crossref]

Shechtman, Y.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Y. Shechtman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express 19(16), 14807–14822 (2011).
[Crossref] [PubMed]

Shoham, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Sidorenko, P.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Slipchenko, M. N.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Steiner, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Stranick, S. J.

H. Kim, G. W. Bryant, and S. J. Stranick, “Superresolution four-wave mixing microscopy,” Opt. Express 20(6), 6042–6051 (2012).
[PubMed]

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006).
[Crossref] [PubMed]

Sun, H. Y.

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Szameit, A.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Y. Shechtman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express 19(16), 14807–14822 (2011).
[Crossref] [PubMed]

Tenne, R.

O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, “Superresolution microscopy with quantum emitters,” Nano Lett. 13(12), 5832–5836 (2013).
[Crossref] [PubMed]

Tong, Y. Z.

M. S. Liu, L. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, and G. Y. Zhang, “Temperature dependence of Raman scattering in single crystal GaN films,” Appl. Phys. Lett. 74(21), 3125 (1999).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

Turk, D.

Tzang, O.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Upputuri, P. K.

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “a Kovalev, and a Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Wallis, R. F.

M. Balkanski, R. F. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[Crossref]

Wang, H.

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22(11), 12890–12899 (2014).
[Crossref] [PubMed]

Wang, H. C.

Wang, L.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

Wang, L. V.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

Wang, P.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Weiss, S.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Wicks, G. W.

J. R. Shealy and G. W. Wicks, “Investigation by Raman scattering of the properties of III-V compound semiconductors at high temperature,” Appl. Phys. Lett. 50(17), 1173 (1987).
[Crossref]

Winkler, A. M.

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

Wright, T. L.

M. R. Abel, T. L. Wright, W. P. King, and S. Graham, “Thermal metrology of silicon microstructures using Raman spectroscopy,” IEEE Trans. Compon. Packag. Tech. 30(2), 200–208 (2007).
[Crossref]

Wu, Z.

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

J. Cheng and X. S. Xie, “Coherent anti-Stocks Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

Xu, X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Yamanaka, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

Yang, C.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Yao, J.

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

Yavneh, I.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Yutsis, I.

Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
[Crossref] [PubMed]

Zhang, C.

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

Zhang, G. Y.

M. S. Liu, L. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, and G. Y. Zhang, “Temperature dependence of Raman scattering in single crystal GaN films,” Appl. Phys. Lett. 74(21), 3125 (1999).
[Crossref]

Zhang, K.

A. Milner, K. Zhang, V. Garmider, and Y. Prior, “Heating of an atomic force microscope tip by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 99(1), 1–8 (2010).
[Crossref]

Zharov, V. P.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Zibulevsky, M.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Annu. Rev. Phys. Chem. (1)

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57(1), 303–331 (2006).
[Crossref] [PubMed]

Appl. Phys. B (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Appl. Phys. Lett. (3)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

M. S. Liu, L. Bursill, S. Prawer, K. W. Nugent, Y. Z. Tong, and G. Y. Zhang, “Temperature dependence of Raman scattering in single crystal GaN films,” Appl. Phys. Lett. 74(21), 3125 (1999).
[Crossref]

J. R. Shealy and G. W. Wicks, “Investigation by Raman scattering of the properties of III-V compound semiconductors at high temperature,” Appl. Phys. Lett. 50(17), 1173 (1987).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Milner, K. Zhang, V. Garmider, and Y. Prior, “Heating of an atomic force microscope tip by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 99(1), 1–8 (2010).
[Crossref]

Biopolymers (1)

R. Henriques, C. Griffiths, E. Hesper Rego, and M. M. Mhlanga, “PALM and STORM: unlocking live-cell super-resolution,” Biopolymers 95(5), 322–331 (2011).
[Crossref] [PubMed]

IEEE Trans. Compon. Packag. Tech. (1)

M. R. Abel, T. L. Wright, W. P. King, and S. Graham, “Thermal metrology of silicon microstructures using Raman spectroscopy,” IEEE Trans. Compon. Packag. Tech. 30(2), 200–208 (2007).
[Crossref]

J. Appl. Phys. (2)

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

J. B. Cui, K. Amtmann, J. Ristein, and L. Ley, “Noncontact temperature measurements of diamond by Raman scattering spectroscopy,” J. Appl. Phys. 83(12), 7929 (1998).
[Crossref]

J. Biomed. Opt. (1)

A. Danielli, K. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, Y. Chen, G. W. Dorn, and L. V. Wang, “Label-free photoacoustic nanoscopy,” J. Biomed. Opt. 19(8), 086006 (2014).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

J. Cheng and X. S. Xie, “Coherent anti-Stocks Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[Crossref]

J. Raman Spectrosc. (1)

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

Nano Lett. (2)

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-resolution in label-free photomodulated reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, “Superresolution microscopy with quantum emitters,” Nano Lett. 13(12), 5832–5836 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, “Detection of heating in current-carrying molecular junctions by Raman scattering,” Nat. Nanotechnol. 3(12), 727–732 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J. X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “a Kovalev, and a Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. A (5)

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. Offerhaus, J. Herek, K. Kruse, W. Beeker, C. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 1–4 (2010).
[Crossref]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 023830 (2011).
[Crossref]

L. Gong and H. Wang, “Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study,” Phys. Rev. A 90(1), 013818 (2014).
[Crossref]

Phys. Rev. B (2)

J. Menendez and M. Cardona, “Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and a-Sn: Anharmonic effects,” Phys. Rev. B 29(4), 2051–2059 (1984).
[Crossref]

M. Balkanski, R. F. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28(4), 1928–1934 (1983).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(6), 066613 (2001).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99(22), 228105 (2007).
[Crossref] [PubMed]

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Phys. Rev. Lett. 92(9), 096101 (2004).
[Crossref] [PubMed]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[Crossref] [PubMed]

J. Yao, L. Wang, C. Li, C. Zhang, and L. V. Wang, “Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging,” Phys. Rev. Lett. 112(1), 014302 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[Crossref] [PubMed]

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Sci Rep (1)

A. Barsic, G. Grover, and R. Piestun, “Three-dimensional super-resolution and localization of dense clusters of single molecules,” Sci Rep 4, 5388 (2014).
[Crossref] [PubMed]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(80), 1857–1861 (2008).

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Small (1)

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-resolution nonlinear photothermal microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Key elements of the proposed method. a- The spectral changes in Raman Stokes peak in 300K silicon (Blue) due to heating to 700K(Red). Note the changes in integrated intensity, line shape broadening and frequency shift. The Hot and Cold ROI mark spectral regions which change extensively upon heating. Top left insert – Heating simulation of silicon by a 400nm, 1ps laser pulse, with a Gaussian intensity profile. 3D simulation of temperature distribution is depicted at t = 1ps after the short pulse. b- Temperature profiles at different delays after excitation. Each line represents a temporal snapshot of the spatial temperature distribution. Heat diffusion blurs the initial heating pattern.
Fig. 2
Fig. 2 Response of a silicon Raman emitter to temperature a-. Calibration measurements. Experimental temperature dependence of silicon Raman spectra using a temperature stabilized heating plate. b- The integrated Raman signal for a point emitter as a function of temperature. Black –integrated Stokes signal. Red- integrated Stokes signal in the ROI (defined in 2a). Note the nonlinear response. Top left insert – Focused beams and Si point targets on sapphire substrate.
Fig. 3
Fig. 3 Simulation of the PSF of the Raman ROI super resolution method. A Raman point source was scanned using a Gaussian heating beam and a Raman gaussian probe beam with 210nm FWHM each. Red – Pump and probe intensity profile. Blue – Super resolution based on the heated Stokes peak integrated in the defined spectral ROI. Black –The difference due to heating in the ROI. In this curve the heated Raman signal in the ROI is subtracted form the unheated peak (achieving better resolution). Resolution of ~100nm can be achieved, x2 enhancement over the diffraction limit. Identical simulation results were obtained for the corresponding anti-Stokes peak.
Fig. 4
Fig. 4 Diagram of the optical setup. In a pump probe configuration a 785nm probe pulse and 392nm pump are temporally synchronized and spatially overlapped into a scanning microscope and focused on the sample by a high NA air objective. Detection modalities include both Raman scattering spectral detection and Thermoreflectance (in which RM is removed and the chopper is activated). RM- removable mirror .DM- dichroic mirror. BS – beam splitter. PD –photo diode. LLF- laser line filter.
Fig. 5
Fig. 5 Experiment characterization: a - time resolved Raman intensity and TR as a function of pump probe delay at a fixed point on the silicon. Integrated intensity of the Stokes Raman peak (Red) and the Transient TR (blue) as a function of the pump-probe delay. Thermalization time for electron phonon scattering is marked in black. b –Raman spectra of silicon, cold (blue) and hot (red) taken at delays of timing of −5ps and 5ps respectively, relative to the pump laser, and difference spectrum (black).
Fig. 6
Fig. 6 Resolution enhancement in photo-modulated Raman microscopy. a- Experimental Raman scan of a single SOS strip. Blue – cold Raman scan (pump probe delay of −5 ps). Red – hot Raman scan (pump probe delay of + 5 ps). Black- The difference signal, I ΔRaman b –Simulation: Scan of a line Raman emitter: The difference signal, I ΔRaman , (black), Cold Stokes (blue) and the Hot Stokes (red) scan profiles. c- Black – Difference Raman signal of single SOS stripe (Cold –Hot). Blue – rescaled cold Raman scan. The curve is rescaled to the height of the black (photo-modulated) curve to highlight the differences is widths (resolution). Top left insert- SEM image of the scanned SOS sample.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 π * 1 2 Γ(T) ( ω vib ω s (T)) 2 + ( 1 2 Γ(T)) 2  
Γ w (T)= A( 1+ 2 e ( ω 0 2 K B T ) 1   )+B( 1+ 3 e ( ω 0 3 K B T ) 1 + 3 ( e ( ω 0 3 K B T ) 1 ) 2 )
ω s ( T )= ω 0 +C( 1+ 2 e ( ω 0 2 K B T ) 1   )+D( 1+ 3 e ( ω 0 3 K B T ) 1 + 3 ( e ( ω 0 3 K B T ) 1 ) 2 )
Δ I Raman (ω)= r=0 I p r obe ( r ){ σ Raman ( ω, T( r ) ) σ Raman ( ω, 300K )}d r
W PM_Raman = W pump 2 W probe 2 /( W pump 2 +  W probe 2 )

Metrics