Abstract

A miniature, simplified and planar plasmonic lens based on the circular array of nano-pinholes for on-axis beaming has been proposed and investigated systematically in the visible spectrum. Focusing properties of the designed plasmonic lens illuminated under circular polarized (CP) light for different radius of circular ring, filled with different dielectrics, with different numbers of pinholes have been investigated and analyzed in detail by finite element method (FEM). Our simulated results demonstrate such a miniature single-turn structure can also generate a totally centrosymmetric focusing spot under the CP illumination. Besides, by properly manipulating the filled dielectric and incident wavelengths, enhanced transmission, elongated depth of focus have also be realized, which can be used to modulate the transmitting fields effectively. Such a miniature and simplified plasmonic focusing lens can open up a vital path toward fiber-end planar photonic devices for biosensing and imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Circular polarization analyzer based on an Archimedean nano-pinholes array

Jingran Zhang, Zhongyi Guo, Keya Zhou, Lingling Ran, Lie Zhu, Wei Wang, Yongxuan Sun, Fei Shen, Jun Gao, and Shutian Liu
Opt. Express 23(23) 30523-30531 (2015)

Plasmonic focusing in spiral nanostructures under linearly polarized illumination

Jie Li, Chaojie Yang, Huabo Zhao, Feng Lin, and Xing Zhu
Opt. Express 22(14) 16686-16693 (2014)

Metallic planar lens constructed by double-turn waveguides for sub-diffraction-limit focusing

Kunlun Qi, Yechuan Zhu, Hao Sun, and Yiting Yu
Opt. Express 25(18) 21191-21200 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6(1), 11–18 (2011).
    [Crossref] [PubMed]
  3. H. Ditlbacher, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25(8), 563–565 (2000).
    [Crossref] [PubMed]
  4. P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  5. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
    [Crossref] [PubMed]
  6. K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
    [Crossref] [PubMed]
  7. W. Chen, R. L. Nelson, and Q. Zhan, “Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens,” Opt. Lett. 37(9), 1442–1444 (2012).
    [Crossref] [PubMed]
  8. R. Li, Z. Guo, W. Wang, J. Zhang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22(23), 27968–27975 (2014).
    [Crossref] [PubMed]
  9. J. Zhang, Z. Guo, R. Li, W. Wang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure,” Plasmonics (posted 24 Mar. 2015, in press).
  10. L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
    [Crossref]
  11. J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
    [Crossref] [PubMed]
  12. W. Wang, Z. Guo, R. Li, J. Zhang, Y. Liu, X. Wang, and S. Qu, “Ultra-thin, planar, broadband, dual-polarity plasmonic metalens,” Photon. Res. 3(3), 68–71 (2015).
    [Crossref]
  13. J. Dong, J. Liu, B. Hu, J. Xie, and Y. Wang, “Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings,” Appl. Phys. Lett. 104(1), 011115 (2014).
    [Crossref]
  14. L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
    [Crossref]
  15. Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
    [Crossref]
  16. Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization effect on superfocusing of a plasmonic lens structured with radialized and chirped elliptical nanopinholes,” Plasmonics 5(2), 175–182 (2010).
    [Crossref]
  17. Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1, 18–29 (2011).
    [Crossref]
  18. S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
    [Crossref] [PubMed]
  19. Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high‐order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
    [Crossref]
  20. S. Y. Lee, I. M. Lee, J. Park, C. Y. Hwang, and B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011).
    [Crossref] [PubMed]
  21. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  22. M. Pournoury, H. E. Arabi, and K. Oh, “Strong polarization dependence in the optical transmission through a bull’s eye with an elliptical sub-wavelength aperture,” Opt. Express 20(24), 26798–26805 (2012).
    [Crossref] [PubMed]
  23. M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
    [Crossref]
  24. C. D. Ku, W. L. Huang, J. S. Huang, and C. B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” Photonics J. 5(3), 4800409 (2013).
    [Crossref]
  25. S. W. Cho, J. Park, S. Y. Lee, H. Kim, and B. Lee, “Coupling of spin and angular momentum of light in plasmonic vortex,” Opt. Express 20(9), 10083–10094 (2012).
    [PubMed]
  26. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [Crossref] [PubMed]
  27. R. Gordon and A. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
    [Crossref] [PubMed]
  28. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  29. C. G. Biris and N. C. Panoiu, “Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing,” Nanotechnology 22(23), 235502 (2011).
    [Crossref] [PubMed]
  30. A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Fano resonances in complex plasmonic necklaces composed of gold nanodisks clusters for enhanced LSPR sensing,” Sensors Journal, IEEE 15(3), 1588–1594 (2015).
    [Crossref]
  31. A. Ahmadivand and N. Pala, “Tailoring the negative-refractive-index metamaterials composed of semiconductor–metal–semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum,” J. Opt. Soc. Am. A 32(2), 204–212 (2015).
    [Crossref]
  32. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
    [Crossref] [PubMed]

2015 (3)

2014 (5)

R. Li, Z. Guo, W. Wang, J. Zhang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22(23), 27968–27975 (2014).
[Crossref] [PubMed]

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

J. Dong, J. Liu, B. Hu, J. Xie, and Y. Wang, “Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings,” Appl. Phys. Lett. 104(1), 011115 (2014).
[Crossref]

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high‐order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

2013 (2)

C. D. Ku, W. L. Huang, J. S. Huang, and C. B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” Photonics J. 5(3), 4800409 (2013).
[Crossref]

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

2012 (7)

2011 (4)

S. Y. Lee, I. M. Lee, J. Park, C. Y. Hwang, and B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011).
[Crossref] [PubMed]

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6(1), 11–18 (2011).
[Crossref] [PubMed]

C. G. Biris and N. C. Panoiu, “Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing,” Nanotechnology 22(23), 235502 (2011).
[Crossref] [PubMed]

Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1, 18–29 (2011).
[Crossref]

2010 (1)

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization effect on superfocusing of a plasmonic lens structured with radialized and chirped elliptical nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

2009 (3)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[Crossref] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

2005 (2)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

R. Gordon and A. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2000 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Ahmadivand, A.

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Fano resonances in complex plasmonic necklaces composed of gold nanodisks clusters for enhanced LSPR sensing,” Sensors Journal, IEEE 15(3), 1588–1594 (2015).
[Crossref]

A. Ahmadivand and N. Pala, “Tailoring the negative-refractive-index metamaterials composed of semiconductor–metal–semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum,” J. Opt. Soc. Am. A 32(2), 204–212 (2015).
[Crossref]

Antosiewicz, T. J.

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6(1), 11–18 (2011).
[Crossref] [PubMed]

Arabi, H. E.

Aussenegg, F. R.

Bachman, K. A.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Biris, C. G.

C. G. Biris and N. C. Panoiu, “Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing,” Nanotechnology 22(23), 235502 (2011).
[Crossref] [PubMed]

Brolo, A.

Cao, P.

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

Chen, W.

Cheng, L.

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

Cho, S. W.

Chon, J. W.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Chum, C. C.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high‐order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Collins, R. T.

Dal Negro, L.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ditlbacher, H.

Dong, J.

J. Dong, J. Liu, B. Hu, J. Xie, and Y. Wang, “Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings,” Appl. Phys. Lett. 104(1), 011115 (2014).
[Crossref]

Du, C.

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Flammer, P. D.

Fu, Y.

Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1, 18–29 (2011).
[Crossref]

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization effect on superfocusing of a plasmonic lens structured with radialized and chirped elliptical nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

Furtak, T. E.

Gao, J.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Golmohammadi, S.

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Fano resonances in complex plasmonic necklaces composed of gold nanodisks clusters for enhanced LSPR sensing,” Sensors Journal, IEEE 15(3), 1588–1594 (2015).
[Crossref]

Gordon, R.

Gu, M.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Guo, Z.

Hollingsworth, R. E.

Hu, B.

J. Dong, J. Liu, B. Hu, J. Xie, and Y. Wang, “Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings,” Appl. Phys. Lett. 104(1), 011115 (2014).
[Crossref]

Huang, C. B.

C. D. Ku, W. L. Huang, J. S. Huang, and C. B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” Photonics J. 5(3), 4800409 (2013).
[Crossref]

Huang, J. S.

C. D. Ku, W. L. Huang, J. S. Huang, and C. B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” Photonics J. 5(3), 4800409 (2013).
[Crossref]

Huang, W. L.

C. D. Ku, W. L. Huang, J. S. Huang, and C. B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” Photonics J. 5(3), 4800409 (2013).
[Crossref]

Hwang, C. Y.

Im, S.

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

Ishii, S.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Joe, H. E.

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

Karabiyik, M.

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Fano resonances in complex plasmonic necklaces composed of gold nanodisks clusters for enhanced LSPR sensing,” Sensors Journal, IEEE 15(3), 1588–1594 (2015).
[Crossref]

Kildishev, A. V.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Kim, D.

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

Kim, H.

Kong, W.

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

Ku, C. D.

C. D. Ku, W. L. Huang, J. S. Huang, and C. B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” Photonics J. 5(3), 4800409 (2013).
[Crossref]

Lamprecht, B.

Lee, B.

Lee, I. M.

Lee, S. Y.

Leitner, A.

Leong, E. S. P.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high‐order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, J.

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

Li, R.

Li, Y.

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

Li, Z.

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

Lim, L. E. N.

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

Lin, F.

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

Liu, H.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high‐order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Liu, J.

J. Dong, J. Liu, B. Hu, J. Xie, and Y. Wang, “Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings,” Appl. Phys. Lett. 104(1), 011115 (2014).
[Crossref]

R. Li, Z. Guo, W. Wang, J. Zhang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22(23), 27968–27975 (2014).
[Crossref] [PubMed]

Liu, Y.

Liu, Y. J.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high‐order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Min, B. K.

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

Nazari, T.

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

Nelson, R. L.

Oh, K.

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

M. Pournoury, H. E. Arabi, and K. Oh, “Strong polarization dependence in the optical transmission through a bull’s eye with an elliptical sub-wavelength aperture,” Opt. Express 20(24), 26798–26805 (2012).
[Crossref] [PubMed]

Pala, N.

A. Ahmadivand and N. Pala, “Tailoring the negative-refractive-index metamaterials composed of semiconductor–metal–semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum,” J. Opt. Soc. Am. A 32(2), 204–212 (2015).
[Crossref]

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Fano resonances in complex plasmonic necklaces composed of gold nanodisks clusters for enhanced LSPR sensing,” Sensors Journal, IEEE 15(3), 1588–1594 (2015).
[Crossref]

Panoiu, N. C.

C. G. Biris and N. C. Panoiu, “Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing,” Nanotechnology 22(23), 235502 (2011).
[Crossref] [PubMed]

Park, J.

Park, J. H.

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

Pasquale, A. J.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
[Crossref] [PubMed]

Peltzer, J. J.

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Pournoury, M.

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

M. Pournoury, H. E. Arabi, and K. Oh, “Strong polarization dependence in the optical transmission through a bull’s eye with an elliptical sub-wavelength aperture,” Opt. Express 20(24), 26798–26805 (2012).
[Crossref] [PubMed]

Qu, S.

Reinhard, B. M.

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Shi, Z.

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization effect on superfocusing of a plasmonic lens structured with radialized and chirped elliptical nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

Song, S.

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sung, Y. M.

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

Szoplik, T.

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6(1), 11–18 (2011).
[Crossref] [PubMed]

Teng, J. H.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high‐order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wang, W.

Wang, X.

Wang, Y.

J. Dong, J. Liu, B. Hu, J. Xie, and Y. Wang, “Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings,” Appl. Phys. Lett. 104(1), 011115 (2014).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wróbel, P.

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6(1), 11–18 (2011).
[Crossref] [PubMed]

Xie, J.

J. Dong, J. Liu, B. Hu, J. Xie, and Y. Wang, “Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings,” Appl. Phys. Lett. 104(1), 011115 (2014).
[Crossref]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Yang, C.

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

Yang, S.

Zhan, Q.

Zhang, A.

Zhang, J.

Zhang, X.

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1, 18–29 (2011).
[Crossref]

Zhao, H.

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

Zhao, X.

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

Zhou, W.

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

Zhou, X.

Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1, 18–29 (2011).
[Crossref]

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization effect on superfocusing of a plasmonic lens structured with radialized and chirped elliptical nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

Zhu, S.

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization effect on superfocusing of a plasmonic lens structured with radialized and chirped elliptical nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

Zhu, X.

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Zu, S.

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

ACS Nano (1)

A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano 6(5), 4341–4348 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal holey metal microlenses with significantly suppressed side lobes and high‐order diffractions in focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Dong, J. Liu, B. Hu, J. Xie, and Y. Wang, “Subwavelength light focusing with a single slit lens based on the spatial multiplexing of chirped surface gratings,” Appl. Phys. Lett. 104(1), 011115 (2014).
[Crossref]

Insciences J (1)

Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1, 18–29 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (3)

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Nanotechnology (1)

C. G. Biris and N. C. Panoiu, “Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing,” Nanotechnology 22(23), 235502 (2011).
[Crossref] [PubMed]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Pournoury, H. E. Joe, J. H. Park, T. Nazari, Y. M. Sung, B. K. Min, S. Im, D. Kim, and K. Oh, “Polarization-dependent transmission through a bull's eye with an elliptical aperture,” Opt. Commun. 316, 1–4 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Photon. Res. (1)

Photonics J. (1)

C. D. Ku, W. L. Huang, J. S. Huang, and C. B. Huang, “Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral,” Photonics J. 5(3), 4800409 (2013).
[Crossref]

Plasmonics (5)

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Performance of scanning near-field optical microscope probes with single groove and various metal coatings,” Plasmonics 6(1), 11–18 (2011).
[Crossref] [PubMed]

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

J. Li, C. Yang, J. Li, Z. Li, S. Zu, S. Song, H. Zhao, F. Lin, and X. Zhu, “Plasmonic focusing in nanostructures,” Plasmonics 9(4), 879–886 (2014).
[Crossref] [PubMed]

L. Cheng, P. Cao, Y. Li, W. Kong, X. Zhao, and X. Zhang, “High efficient far-field nanofocusing with tunable focus under radial polarization illumination,” Plasmonics 7(1), 175–184 (2012).
[Crossref]

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization effect on superfocusing of a plasmonic lens structured with radialized and chirped elliptical nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

Res. Lett. Phys. (1)

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

Sensors Journal, IEEE (1)

A. Ahmadivand, S. Golmohammadi, M. Karabiyik, and N. Pala, “Fano resonances in complex plasmonic necklaces composed of gold nanodisks clusters for enhanced LSPR sensing,” Sensors Journal, IEEE 15(3), 1588–1594 (2015).
[Crossref]

Other (1)

J. Zhang, Z. Guo, R. Li, W. Wang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure,” Plasmonics (posted 24 Mar. 2015, in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the single-turn pinholes-based plasmonic lens. The 24 nano-pinholes are uniformly arranged along the circular ring. It is illuminated by circularly polarized light at the wavelength of 660nm. (a)The lateral view, (b) the top view.
Fig. 2
Fig. 2 The nano-pinholes arrays with different parameters, (a) a = 50nm,b = 150nm; (b) a = 150nm, b = 50nm; (c) a = b = 150nm. Electric field intensity distributions in z = −3400nm plane of the different corresponding nano-pinholes arrays (d)(e)(f), and x = 0 plane (g)(h)(i). The incident wavelength is 660nm and the corresponding wavelength of SPPs is 629nm when the dielectric in the pinholes is air. r0 is set to be 2λspp.
Fig. 3
Fig. 3 (a) the phase distribution of vertical surface plasmon field with X-linearly polarized illumination .The red dashed arrow denoted the input polarization direction.(b) logarithmic electric field distribution at the metal/air surface with X-linearly polarized illumination.(c) diagram of optical transmission through the pinholes of the entire structure.
Fig. 4
Fig. 4 The transmitting electric field intensities along the z-axis (a) and x-axis (b) for different radii (r0) of circular ring, (c) the comparison for different numbers of pinholes, (d) the full-width at half-maximum (FWHM) along the z-axis direction and x-axis direction. (a)(b)(d) are the results for the filling dielectric of glass.
Fig. 5
Fig. 5 The electric field intensity along the z-axis for the structure with different r0 from 1300nm to 3000nm by a step of 340nm.
Fig. 6
Fig. 6 The electric field intensity distributions at zoy plane for (a)r0 = 1258nm, (b)r0 = 2516nm, (c)r0 = 2660nm, (d)r0 = 3000nm. The diameter of pinhole is set to be a = b = 150nm and the dielectric in holes is set to be glass.
Fig. 7
Fig. 7 The electric field intensity distributions(a) at x = 0 plane for a = b = 200nm with the radius of circular ring r0 = 3λspp. Corresponding intensity profile comparison (b) for a = b = 100nm, 125nm, 150nm, 175nm and 200nm along the z-axis direction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E z ( R , Φ ) z 0 2 π e i 2 θ e i R k r cos ( Φ θ ) d θ = z J q ( k s p p R ) e x p ( i q ϕ )
tan h ( d / 2 β 2 k 0 2 ε d ) = ε d β 2 k 0 2 ε m ε m β 2 k 0 2 ε d
I = C I 0 4 r 0 λ s p e ( ( r 0 / L s p ) )

Metrics